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Abstract

Biased information about the payoffs received by others can drive innovation, risk-taking, and
investment booms. We study this cultural phenomenon using a model based on two premises.
The first is a tendency for large successes, and the actions that lead to them, to be more salient
to onlookers than small successes or failures. The second premise is selection neglect — the failure
of observers to adjust for biased observation. In our model, each firm in sequence chooses to
adopt or to reject a project that has two possible payoffs, one positive and one negative. The
probability of success is higher in the high state of the world than in the low state. Each firm
observes the payoffs received by past adopters before making its decision, but there is a chance
that an adopter’s outcome will be censored, especially if the payoff was negative. Failure to
account for biased censorship causes firms to become overly optimistic, leading to irrational
booms in adoption. Booms may eventually collapse, or may last forever. We describe these
effects as a form of cultural evolution with adoption or rejection viewed as traits transmitted
between firms. Evolution here is driven not only by differential copying of successful traits, but
also by cognitive reasoning about which traits are more likely to succeed — quantified using the
Price Equation to decompose the effects of mutation pressure and evolutionary selection. This
account provides a new explanation for investment booms, merger and IPO waves, and waves
of technological innovation.

1 Introduction

We study how biases in social transmission of information about the actions and payoffs of others
induces innovation and risk-taking by firms. Our model is based on two premises. The first is the
tendency for large successes, and the actions that led to them, to be more visible and salient to
others than failures. For example, if 999 out of 1000 small start-ups fail completely, and one grows
to become as large and successful as Google, each of the failures, being small, is seldom noticed
and remembered, whereas discussion of the huge success becomes ubiquitous. Successes tend to be
more visible because they are associated with extensive continuing economic transactions, which
garner attention, whereas failures tend to vanish.

The second premise is the psychological phenomenon of selection neglect, the failure of
observers to adjust for bias in the process that generates the data they observeH We apply these two
premises to business initiatives, such as creating a startup firm, undertaking a corporate ‘moonshot’
or ‘sure bet’ investment project, or making a large acquisition. We show that this evolutionary

1See, e.g., (Nisbett and Ross 1980), (Brenner, Koehler, and Tversky 1996)), and, in the financial context, (Koehler
and Mercer 2009).



process can result in boom and bust dynamics, consistent with merger and IPO waves, and sudden
waves of innovative technological activity.

In our setting, firms in sequence decide whether or not to undertake (adopt or reject) a risky
project, based on observation of the actions and payoffs of previous firms. If the project is adopted,
it yields one of two possible payoffs—a positive success payoff or a negative failure payoff. We
assume biased censorship—a higher probability of observing successful projects and their outcomes
than failed ones. Owing to selection neglect, a manager will have a biased assessment of the
prospects of the project. We analyze how these factors shape boom/bust dynamics and long-term
survival of different behaviors: adoption versus rejection of projects with different characteristics.
We consider these dynamics in the context of cultural evolution of financial traits in a population
of firms.

The probability of project success is higher in the high state of the world than in the low
state, such that the project is profitable in expectation only in the high state. Each firm observes
payoff outcomes of predecessors, but there is some probability that any given adopter’s payoff is
censored. If observers were rational, then in the long run firms would adopt only if the state of the
world were high. However, owing to selection neglect, later firms tend to become overly optimistic
about the state of the world, so there can be a positive probability that all firms adopt in the
low state. In this state biased censorship can also exacerbate boom/bust dynamics wherein a long
string of adopts occurs before ultimate collapse.

We view adoption or rejection of the risky project as a cultural trait transmitted between
firms. We employ the Price Equation to decompose this trait’s evolution into a component due to
natural selection and a component due to mutation. Surprisingly, despite the central role of selection
bias in the evolution of project choice in the model, the predominant source of cultural change in
our context is not natural selection, but rather mutation pressure. The importance of mutation
during transmission differs sharply from cultural evolutionary models with biased imitation, in
which there is only natural selection. This feature of our analysis highlights the role of cognitive
reasoning in the cultural evolution of risk-taking behaviors.

Our approach differs from a literature on entrepreneurship that assumes that entrepreneurs
are exogenously overoptimistic. Beyond the conclusion of overadoption of projects, we derive im-
plications about boom/bust dynamics, and a variety of distinctive comparative statics predictions.
More broadly, our analysis suggests that it is important to account for the psychology of attention
and social interaction rather than solely of overconfidence.

We are not the first to examine selection bias and learning by firms. Denrell (Denrell 2003))
also examines a setting in which observers neglect selection bias in the information they observe
about firms. As in our model, failure is less likely to be observed than success. Denrell’s focus is
on how this biases learning about the traits that are characteristic of the upper tail of successful
firms, which he argues will disproportionately consist of variance-increasing strategies. So Denrell
concludes that selection bias will cause the spread of risky and unreliable management practices.

Our study differs in several ways. First, we focus on beliefs about the benefits of project
adoption rather than about general managerial practices. Second, we allow for sequential choices
and selection bias. In other words, we model explicitly how neglect of selection bias affects an
arbitrary observer’s behavior, not just beliefs; and how the observer in turn becomes the target
of observation for the next agent, and so forth. This allows us to study the implications of se-
lection bias for the dynamics investment booms and collapses. Third, our modeling allows us to
analyze the evolutionary process by which behavioral traits are transmitted across agents in terms
of selection and mutation pressure. Fourth, Denrell’s focus is on how differences in variance bi-
ases choices, whereas we analyze payoff asymmetry, and show that greater moonshotness promotes
project overadoption.



Table 1: Payoff Probabilities
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Han et al. (Han, Hirshleifer, and Walden 2020)) examine a setting in which stock market
investors randomly meet to discuss their strategies, and the probability that an investor reports
the investor’s return performance is increasing in return. An investor has an exogenous probabil-
ity of copying another investor’s strategy that is increasing with reported return, if the investor
receives a report. As a result, high variance investing strategies spread through the population.
Our focus here is on project choices by firms that update beliefs in a quasi-Bayesian fashion, based
on sequential observation of a history of past payoffs by other firms. In contrast, in (Han, Hir-
shleifer, and Walden 2020) investors are randomly drawn to meet, and message receivers have an
exogenous switching probability based upon the single observation during that meeting. Our study
also differs in deriving boom/bust dynamics, novel comparative statics about moonshotness, and
decomposition of outcomes into evolutionary components.

2 The basic setting

Consider a setting in which agents in sequence choose between two actions, adopt or reject an
investment project. Each agent learns about the state of the world from the payoff experiences of
predecessors (see (Schlag 1998), (Bolton and Harris 1999), and (Cao, Han, and Hirshleifer 2011))).
Reject always generates a payoff of zero, whereas adopting generates one of two possible payoffs
which are distributed independently across firms, conditional upon state. Let the possible actions
for the n'" agent in the sequence, denoted I, be a, = A, R (Adopt or Reject). When an agent
rejects, the payoff is zero. The binary state of the world is 8 = H, L, with prior probability ¢ of
state H. In each state, there are two possible net payoffs to adoption, v =V > 0 or v = —1.
Project success has probability p > 1/2 in state H and 1 — p in state L. Therefore high payoff is a
symmetric binary signal about state, with payoff probabilities shown in Table

We assume that when indifferent an agent rejects, and we impose parameter constraints such
that adopting is, in expectation, strictly profitable in state H and unprofitable in state L. We let
the expected profit from adopting conditional on state be IIY,

HH
HL

Ep|0=H]=pV —(1-p)>0
Ewl0 =L =(1-p)V—-p<O0, (1)

which together imply that 1]'%1” <V 1%.

Agents maximize expected profits conditional on their information, which derives from ob-
serving past actions and payoffs. To avoid the trivial outcome that all agents always reject, we
assume that the prior expected value of action A is positive,

E] = qpV -1 -p)]+1-g[(1-p)V —p]
= q2p-D(V+1)+(1-pV-p>0. (2)

This implies that the first agent, 17, adopts.



3 Full observability of past payoffs

If at any point an agent I;’s belief about the state becomes sufficiently pessimistic, I; rejects the
investment project, and I;’s payoff of 0 contains no information about state. Since I;11 has no
additional information, I;;; also rejects, as do all later agents. So in the stochastic process of
actions and payoffs, the action R is an absorbing outcome. With full observability of past payoffs,
there is a random walk on beliefs, as measured by the log-likelihood ratio (LLR) between the two
states, with a lower absorbing barrier that produces long-run project rejection (see e.g., (Cao, Han,
and Hirshleifer 2011))).

Specifically, conditional on state, so long as agents adopt, the belief follows a random walk
with drift. Let d; be the difference between the number of high payoff realizations (V') and the
number of low realizations (—1) observed by agent I; (i.e., through the payoff of I;,_;), where by
convention, d; = 0. Since v realizations are conditionally independent given state ¢ = H or L, a
standard result for Bayesian updating with binary state and signals is that updated beliefs depend
only on the difference between the counts of the two types of outcomes,

o (Biiay )~ (755) e (755). ®
So the relevant payoff history from past adopts is fully summarized by d;. (Rejects generate a
deterministic payoff, and therefore are uninformative.)

The belief state in our model, as measured by the log likelihood ratio \;, therefore behaves
according to the standard Gambler’s Ruin additive random walk. The LLR changes at each step
by the increment log(};((f}"g)) ), which is positive when v = V' and negative when v = —1, and which
has the same absolute value in both cases. In state § = H, the probabilities of these increments
are p for v =V and 1 — p for v = —1. In state L, the probabilities are 1 — p for v = V and p for
v=—1.

The lower absorbing barrier in this Gambler’s Ruin is the cutoff on the LLR above which
adoption has a positive expected payoff. Intuitively, under the prior belief, an agent adopts, and so
bad news (d; < 0) is required for an agent to reject. We can calculate the continuous cutoff value
d* above which an agent I; would be just willing to adopt by imposing the positive profit condition

Ai

Eloldi] = P(H|d)[pV — (1~ p)] + (1 — P(H|:)[(1 — p)V — p] = 0, (4)

By equations Eq. [I] and [3] the indifference cutoff on d is

e t) (1) i
log (%)

Since an indifferent agent rejects, the first reject occurs when d; reaches or crosses d*, d; < |d*].
For example, if d* = —1.1, the first reject occurs when d; = —2. The numerator of Eq. [5]is negative
(see SI for details), which implies that d* < 0. In summary, the count of past high minus low
payoffs follows a random walk with a lower absorbing barrier [d*| < 0.

The model therefore endogenously generates a Gambler’s Ruin random walk in beliefs. In
general, for a random walk with a lower absorbing barrier at 0 and an up move probability r < 1/2
the probability of ultimate ruin starting from position dg > 0 is 1, and with » > 1/2, is P(Ruin) =

(%)do, which is decreasing in dy (Feller 1950)). Intuitively, unless the probability of an up move
exceeds that of a down move (r > 1/2), the gambler will eventually wander below the barrier and



go broke. In contrast, if » > 1/2, the upward drift in the walk gives the gambler a chance of
exceeding the lower barrier forever.

The standard Gambler’s Ruin random walk is an equivalent transformation of our model in
which the absorbing barrier |d*| < 0 is increased to zero, and the starting position is accordingly
increased to dy = —|d*]. Here the probability of an up move corresponds to p > 1/2 or 1 — p in
the H or L state respectively. We therefore have

Proposition 1 With observation of all past actions and payoffs:

1. In state L, with probability one the project will eventually be abandoned by an agent (and by
all subsequent agents).

2. In state H, there is a strictly positive probability that all agents will adopt the project.

The exact formula for the probability that all agents adopt in state H is given in the SI. The proof
is also given in the SI.

The results are intuitive. If an arbitrarily large number of agents were to adopt, beliefs would
converge to virtual certainty in state L, causing rejection. As for state H, either early bad news
makes adopt seem so bad that the reject barrier is crossed (in which case no further information is
generated, so all subsequent agents reject), or else there is an infinite number of adopts, so that in
the long run agents become highly confident of the H state.

From a welfare perspective, a key property of the model is underexploration. When an agent
chooses A, the payoff outcomes provide information about state that is useful for later agents. Each
agent ignores this external benefit, so that, from the viewpoint of social welfare, agents choose A
too rarely. Specifically, even if the expected private gain to adopting A is slightly negative, from
a social perspective A should be adopted. A similar form of underexploration arises in models of
social two-armed bandit problems ((Bolton and Harris 1999)).

4 Biased censorship and rational updating

Suppose now that high-payoff outcomes are more likely to be observed than low-payoff outcomes.
Specifically, we assume that a payoff of v = V is observed with probability § < 1, whereas a payoff
of v = —1 is observed only with probability 7 < J. So the upside censorship probability is 1 —¢ > 0
and the downside censorship probability is 1 — 7 > 0. We assume strict inequalities, where the case
of § =7 =1 is a benchmark for comparison.

We call greater censorship of downside outcomes upside salience, defined algebraically as
the ratio § = 0/m. Intuitively, projects that succeed are associated with high scale of continuing
economic transactions, which garners attention, whereas projects that fail tend to vanish. Consis-
tent with the example in the introduction of a thousand start-ups, one of which has a big success,
there is extensive evidence from psychology that rare events are salient and tend to be overweighted
((Tversky and Kahneman 1974)) and, similarly, that people disproportionately recall realizations
with extreme payoffs ((R.Madan and L.Spetch 2012). This motivates our assumption that g > 1,
especially for low g and large V.

We can think of censorship of observation of a firm’s project outcome as meaning that the
outcome is not reported conspicuously in the media. So we assume that censorship of an agent is
universal: the agent’s payoff is either visible to all successors or to none of themE|

2 As a result agents cannot glean any private information from the action choices of predecessors. This point is not
relevant for our main analysis, since, in our setting with imperfect rationality, agents do not even realize that there
is any such indirect information to be extracted.



A related motivation for the assumption S > 1 is that managers and firms have an incentive
to disclose good news immediately, and to defer the disclosure of bad news. If investors are not fully
attentive to these strategic incentives, then the withholding of bad news about project payoffs will
cause investors to process high payoff outcomes more often than low payoff outcomes ((Milgrom
and Roberts 1986)).

Let v; = V or —1 be the realized payoff outcome of agent I; if j adopts. Since I; adopts,
observation by rational Iy of Ii’s payoff updates Io’s belief about state H to beliefs that are
independent of 7 and ¢ (see SI for details). This is because conditional on observation of a payoff,
the greater censorship of low payoffs makes no difference for inferences. The only information
contained in the sheer fact of observation is that the payoff is less likely to be —1. But conditional
on a payoff that is directly observed, this information is redundant.

In contrast, the absence of an observation of an earlier agent contains useful information for
agent I;, as in the story in which detective Sherlock Holmes draws a key inference from “the dog
that did not bark.” For example, if I does not observe I;, then the rational inference is tilted
toward state § = L, since the occurrence of no observation tends to comes from the payoff —1 (since
m < 0). However, there is evidence that in reality, financial decision makers and markets sometimes
under-react to the information implicit in event nonoccurence (Giglio and Shue 2014).

5 Neglect of payoff-biased censorship

What if agents neglect the fact that there is biased censorship the payoffs of past investment
projects? We first consider how neglect of censorship affects short-term and long-term dynamics
of project adoption. In Section [5] we examine basic comparative statics on long-run adoption. In
Section [0, we examine the sources of cultural evolution toward adopt or reject using the Price
Equation.

Neglect of biased censorship and adoption dynamics

When agents are unaware of censorship, if agent I; observes j' < j — 1 past actions and payoffs,
agent I; mistakenly believes that he is the (j' + 1)™ agent in the decision queue. We expect
that disproportionate censorship of low payoffs will make agents overly optimistic about project
adoption.

We will show that the beliefs of an appropriate sequence of agents follows a random walk
with drift, with an absorbing barrier that induces rejection. Consider the subsequence of the belief
sequence that removes all agents whose payoffs are censored. This uncensored subsequence contains
the beliefs of all agents whose payoffs matter for later agents. We will see that the beliefs (LLRs)
of agents in this subsequence follow a random walk.

Let a B (for Biased) superscript denote an imperfectly rational expectation. A biased
agent mistakenly fails to condition on observation versus non-observation of payoffs when forming
expectations. So for I (see SI for details),
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We see that the beliefs conditional on seeing V' or —1 are the same as for a rational agent,
independent of noncensorship probabilities § and 7. So neglecting the information implicit in the
fact that a payoff was observed does not affect conditional beliefs.

In contrast, neglect of the information implicit in the absence of an observation crucially
affects action dynamics and the evolution of beliefs, because unlike a rational agent, an inattentive
agent does not draw inferences from censored observations.

When agents naively neglect non-observation, they update based on the observed difference
between the numbers of high and low payoffs, just as in the case with no censorship. Specifically,
let j be the index for the subsequence, i.e., a count in order of the uncensored agents. Let d; be the
difference in the number of V' and —1 outcomes through the (j — 1)** agent in this subsequence.
Then Eq. [3] holds with 7 replaced with j.

However, neglect of censorship modifies the probabilities of an up or down move in beliefs
conditional on state in the LLR walk. In the uncensored subsequence, the probabilities of an up
move and down move in the next step are constant over time. So in the random walk for the
uncensored subsequence, conditional on state § = H the probabilities of an up move, p™*, and of
a down move, 1 — pf*, are (see SI for details)

N
p+(1-p)/B

l1—p
1—pl* = —— ~ _<1-p, (6)
1+p(B-1)
where the inequalities follow because upside salience § > 1. The probability of an up move in the
subsequence random walk conditional upon state H is increased by upside salience.
Similarly, in the subsequence random walk, conditional on state § = L the probabilities of
an up move and a down move respectively are

pH* = P(’Ul = V|H, 021) = >D

1-p
1—-pl* = —— & >S1-p
1—p+p/B
L p
p = ———— <p, 7
p+B(1—p) @)

since 8 > 1.

There are two key differences in the evolution of beliefs from the case of no censorship. First,
we must characterize beliefs for censored agents as well. These are determined trivially from the
beliefs in the uncensored subsequence. Any censored agent’s belief is identical to the belief of the
next uncensored agent, since the next uncensored agent does not see intervening censored payoffs.
Second, the probability of an up move in the LLR walk is higher with neglect of biased censorship.



This effect can be arbitrarily large. As 3 becomes large (7 = 0), both p*, 1 — p* — 1. So with
neglect of biased censorship, beliefs can tend to march upward, even in the L state where complete
information would inevitably lead to rational rejection.

We summarize the evolutionary dynamics of adoption under biased censorship in the follow-
ing Proposition.

Proposition 2 Under biased censorship, if:

1. In state L:

(a) (Weak upside salience) If 5 < p/(1—p), then with probability one the project is eventually
abandoned.

(b) (Strong upside salience) If 5 > p/(1 — p), then the probability that all agents adopt is
strictly between 0 and 1, and it is increasing in & and decreasing in w. Otherwise, the
project is eventually abandoned.

2. In state H, the probability that all agents adopt is strictly between 0 and 1, and it is increasing
in § and decreasing in w. Otherwise, the project it is eventually abandoned

In sharp contrast with Proposition [I, owing to neglect of censorship of low payoffs, there
is a positive probability that all agents adopt, even when the project has negative expected value
(state L). Moreover, the chance all agents adopt is greater in state H than without censorship.

Let 3 = p/(1 — p) be the cutoff value on upside salience such that with positive probability
agents adopt in the long run even in state L. Clearly B is increasing with p, the superiority in the
success rate in the high versus low state. When project success is highly sensitive to state, greater
relative selection bias on the upside versus the downside is needed to induce long-run adoption in
state L.

Proposition [2]shows that the model generates boom dynamics, with strings of adoption, even
in state L. Owing to upside salience, such booms occur more often when agents neglect censorship.
Such neglect causes irrational extra booms. Booms may be followed by collapse, or they may
be sustained permanently. Adoption continues until (if ever) the preponderance of uncensored
evidence, in the form of low payoffs, favors reject.

In some realizations there is no boom (a single adopt followed by all reject). In others there
is a boom period followed by a collapse (several or many adopts and then all reject). In other cases
there is a persistent boom (all adopt). In the L state, the boom component of the boom/collapse
pattern is mistaken relative to full knowledge of state.

Since agents do not know the state, booms and busts do not in themselves indicate bad
decision making. Without censorship, all decisions are rational, but such mistakes still occur with
positive probability. However, when there is biased censorship and selection neglect, there are
irrational booms and busts. This is illustrated in Figure [1} which depicts realizations belief LLR
over time. Without censorship, after two Adopts, the Reject barrier is reached, and all subsequent
agents reject. In contrast, under censorship there is a temporary boom, until the late sequence of
negative payoffs brings about collapse. This must eventually happen in the L state if upside salience
is sufficiently weak. The bottom graph makes a similar comparison under a set of realizations in
which, under censorship, the boom takes longer to collapse. Indeed, the boom may continue forever
even in state L, provided upside salience is sufficiently strong.

Under selection neglect, the probability of an early string of adopts is increased—there are
adoption bubbles. Suppose, for example, that there is relatively little censorship. By Proposi-
tion [2, with probability 1, in the L state eventually all agents reject. So censorship causes extra
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Figure 1: Booms of project adoption, with and without biased censorship. The top graph compares
belief states of successive firms (x-axis) in the case of censorship (black) to the case of no censorship
(gray), under a set of payoff realizations in which the boom eventually collapses. The bottom graph
makes a similar comparison under a set of realizations in which, under censorship, the boom takes
longer to collapse, or may never collapse. Red payoffs correspond to censored outcomes.



booms that would not occur were agents rational. If censorship is not too severe, these booms later
crash. If censorship is more severe, matters are even worse—there are permanent mistaken bOOHISE|
The model therefore offers a new explanation for real investment booms and busts (Chirinko and
Schaller 2001)), ITPO waves and overoptimism (Ritter 1991; |Rajan and Servaes 1997; Lowry and
Schwert 2002)), and value-reducing merger waves (Moeller, Schlingemann, and Stulz 2005; Bouw-
man, Fuller, and Nain 2009))). This explanation differs from some past explanations that require
payoff externalities (DeMarzo, Kaniel, and Kremer 2007) or shifts in investor sentiment (Gilchrist,
Himmelberg, and Huberman 2005). There are, of course, other possible explanations as well.

Since key parameters of a model, such as 3, can never be estimated perfectly, it is important
to know whether model implications are robust to parameter variations. The qualitative implica-
tions of Propositions [1| and [2| are robust to small variations in 3, except for the measure-zero set of
critical values described in the propositions.

Comparative statics of long-run adoption

How does the upside payoff, the censorship probability, and the prior likelihood of success affect
the chance of eventual adoption? To address these questions, in either state H or L, we analyze
the partial derivatives of the chance of persistent adoption with respect to model parameters.

The long-run log rejection probability in the two states (where for state L, we impose the
condition that 5 > p/(1 — p) so that ruin is not assured) is

~(la))og (L2)  ito=m

log(P(Ever Reject|f)) = '
—(d*]) log ﬁ) if 6= L.

(8)

Since log(p/(1 — p)) and log((1 — p)/p) have opposite sign, it is evident that all the parameters
except perhaps p and 8 (which reflects 6 and 7) have opposite directional effects on the long-run
reject probabilities.

We use a version of Eq. [§] that ignores the floor function as a continuous approximation for
the chance long-run rejection, after substituting Eq. 5| for d*. To derive comparative statics, let RY
and R” denote the log probabilities of ever rejecting in state H or L:

RH
RL

log(P(Ever Reject|d = H))
log(P(Ever Reject|d = L)) 9)

We study the partial derivatives of R¥ and R with respect to model parameters, p, ¢, V, and
B (or m and § separately) in regime with a positive chance of all agents adopting even in state L
(ie. B> p/(1—p)).

The effect of increasing upside salience follows immediately from differentiating Eq. [8] with
respect to 5. This gives 88%, % < 0. Since § and 7 enter the reject probability expressions
only through the definition of 3, we also immediately have %, % < 0, and %, % > 0. So
as upside salience becomes stronger (owing to either lower upside censorship or stronger downside
censorship), the long-run chance of adoption under L increases. Intuitively, upside salience breeds

overoptimism, reducing rejection probability.

3The conclusion that booms last forever will not hold for some applications in which payoffs are interdependent,
in contrast with our model assumption. For example, if firms undertake projects that are in competition with each
other, then adoption by early firms reduces the expected payoffs to later firms of adopting. In such a setting, booms
would eventually end as firms started to experience lower and lower payoffs.
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We can show several other simple conclusions (see SI for derivations). High upside payoff, V,
and high probability of the H state, ¢, both promote long-run adoption. These facts have opposite
implications about the effects of moonshotness, which is by definition associated with both high V'
and low ¢. For state H, as the upside reward V of the project increases, or the prior likelihood of
state H increases, the probability of long-run adoption increases. Likewise, for state L, so long as
biased censorship is strong enough that there is no certainty of eventual rejection, the probability of
eventual rejection is increasing in chance of failure p, decreasing in upside payoff V', and decreasing
in q.

Higher p promotes rejection because payoffs become more accurate indicators of the actual
state, L. Agents also understand that payoffs are more accurate, and therefore update more
strongly to payoff outcomes. This increases the sizes of up- and down-moves in the LLR random
walk, reducing the mean number of steps required to reach the absorbing barrier. This effect
also promotes rejection in the long run. Some less obvious comparative statics, including those
pertaining to interactive effects of parameters obtained from mixed partial derivatives, are derived
and discussed in the SI.

Proposition 3 In both states 0 = H, L, where for statee L we require pamgmeter valuees sugh that
RY < 1, we have the following comparative statics: %%,68% < 0 and 88% <0 ; %i\/’ 3@% < 0.

. L 2 pL 2 pL
Furthermore, in state L, for parameter values such that R* < 1, we have: %ip > 0; gﬂ%, % <0

92RE . 0?RE
and 70V > 0, Waq > 0.

Moonshots, sure bets, and upside salience

A moonshot is a project that has low probability of success, as reflected in the probability of the H
state, ¢, and a high upside payoff V. This is the opposite of a ‘sure bet’ project, which has high ¢
and low V. The key psychological premise of our analysis of moonshotness is that upside salience
B to be greater for moonshots than for sure bets. Both a low ex ante probability of success and a
high conditional payoff makes success more surprising and newsworthy.

As stated in Proposition [3] long-run adoption is more likely when upside salience 3 is larger.
So the model offers the empirical implication that moonshots will tend to be adopted more heavily
than sure bet projects, even after controlling for net expected value.

We study the effects of moonshotness formally by considering excess rejection probabilities
in the two states. As before, we assume that 5 > 1, and, for the analysis of state L, focus on the
case in which 8 > p/(1 — p) so that eventual rejection is not assured. Specifically, for two possible
values of upside salience, 8 and 3 (where both satisfy the relevant inequality above), let the excess
log reject probability relative to benchmark f§ in state H or L be defined as

RHB

BB == —los(52) /1o (%52)
eL(ﬁ,g)E_ZE:Z = —log (55 ) /108 (575 - (10)

where RS and R%P are the values of RY for two given values of 3, and where the algebraic
expressions follow from Eq. The excess log reject probability captures the idea that, for any
given values of ¢, V', and p, greater upside salience biases agents away from rejecting. So these
expressions are decreasing with upside salience, ﬁﬁ Notably, these are exact expressions, and they
are independent of ¢ and V.

4Since the benchmark denominator expression ROF < 0, a negative sign is needed to ensure that higher (8, 5)
is indicative of higher reject probability.
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To understand the effect of moonshotness in more depth, consider the probability of eventual
rejection when varying V' and ¢ inversely while holding constant the prior expected payoff, v = E(v).
As argued above, an increase in moonshotness, captured here by an increase in V', increases upside
salience (. Since the expressions in Eq. have no direct dependence upon V and ¢, varying
moonshotness affects these expressions only through its effect on upside salience .

Specifically, differentiating Fq. [L0| with respect to § yields

oef (8, B) 1
- <0
5 e )
9e(6,B) _ 1 <0. (11)

9 Bl (B(lp—m)

So greater upside salience S decreases the excess rejection probability. By increasing upside salience,
an increase in moonshotness decreases excess rejection, meaning it decreases rejection after con-
trolling for the direct effects of V' and ¢ (apart from there indirect effect via beta ). Intuitively,
moonshotness biases observation toward past successes rather than failures, which promotes adop-
tion. In the SI, we discuss in greater detail the conceptual experiment underlying the comparative
statics on excess log reject probabilities.

Salience and firm size

The noncensorship parameter 7 in the model is a proxy for the salience of downside outcomes, and
d for the salience of upside outcomes, where we have defined § = §/7 as the relative attention to
the upside payoff (upside salience). Greater overall attention by media and observers will tend to
increase both 7 and 4.

This effect on 8 will in general be asymmetric. For example, other things equal, large firms
tend to receive much greater attention than small firms (O’Brien and Bushan 1990). In the limit, if
a well-known firm such as Ford receives high attention to both its successes and failures, 7 = § ~ 1,
so B = 1, i.e., there is no upside salience. In other words, for a large firm, failure of a major project
can be notable enough to be reported upon in the media. In contrast, small start-ups often fail
unnoticed. What is mainly reported in the media are extraordinary successes that start in garages
and become tech giants. So other things equal, § will be higher for small firms than for large firms.
The model therefore implies that the bias in favor of adopting risky projects will be especially
strong for small start-ups. A further implication is that moonshots that are initiated with great
fanfare and heavy investment may not generate as much mythology and overestimation as stories
about firms that started in a garage.

If the effects of the model are stronger for small startups, then naive observers will strongly
overestimate the probability of such startups succeeding, resulting in active and impetuous en-
trepreneurial activity. There is survey evidence that entrepreneurs are highly overoptimistic about
their likely success (Cooper, Woo, and Dunkelberg 1988|). Our model suggests that there will
tend to be much less overoptimism about the innovative projects of large firms, and therefore less
frequent undertaking of such projects.
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6 Identifying sources of cultural evolution using the Price Equa-
tion

Our model is an evolutionary system in which later agents stochastically inherit the trait of adopt
versus reject from earlier agents. If we designate some set of earlier agents as ancestral, and some
set of later agents as descendant, then we can glean insight into the drivers of cultural evolution
using the Price Equation (Price 1970)). The Price Equation decomposes evolutionary change into
selection and nonselection effects. The nonselection component is often called mutation pressure—
the degree to which traits shift through the inheritance process instead of fitness-biased biased
replication. The standard Price Equation applies to realizations; we take expectations to employ
it in ex ante form.

Most studies on cultural evolution focus on trait change driven by the cultural analogue of
natural selection: namely, biased imitation of traits that produce high payoff. Under biased imita-
tion, some traits are more likely to be imitated than other traits. In the large field of evolutionary
game theory, for example, biased imitation of high-payoff traits is often the only force considered
(Nowak 2006)).

However, the Price Equation highlights that evolutionary change in general also derives
from mutation pressure-the tendency for traits to be systematically modified in the process of
being transmitted from an ancestor to a descendant, irrespective of ancestor fitness. We therefore
use the Price Equation to explore the roles of selection versus mutation pressure on the evolution of
the financial trait of adopting versus rejecting an investment project. As we will see, the conclusions
are somewhat surprising.

The ex ante Price Equation

The insights provided by the Price Equation depend on how key categories are defined: ances-
tors, descendants, inheritance, and traits. We view inheritance in our setting as a potential causal
dependence of the adopt/reject trait among descendants on the traits of ancestors. Under this inter-
pretation there is no inheritance from a censored agent, because later agents derive no information
from such an agent.

With our definition of inheritance in mind, we now apply a stochastic version of the Price
Equation. Let the ancestral generation be denoted a and the descendant generation d. Let ¢* be the
frequency of type ¢ in the a population, where ¢ = 0 indicates reject and ¢ = 1 indicates adopt. Let
¢"* be the frequency of type i in the d population. We use overlines to denote expected frequencies,
so let ¢ = E[¢"!]. In a realization where type i = 0 has zero frequency in a, fitness is undefined.
We therefore use a form of the Price Equation emphasized by (Frank 1997) that contains ancestral
and descendant frequencies instead of fitnesses.

Letting 2° denote the trait value of ancestral agent i, the average trait values in the a and
d populations are 2 = Y ¢'z%, 2 = ¢"2"". In our context the sum is over the two alleles, adopt
and reject. We code these types with index ¢ = 0, 1, which have ancestral alleles z2° = 0 and 2! = 1,
where 0 indicates reject and 1 indicates adopt. We study the change in trait value, Az = 2/ — 2
and its conditional expectation.

Let A¢' = ¢ — ¢* be the frequency change due to natural selection. Let the trait value
change be Az = 2/ — 2%, The Price Equation decomposes average trait change into two terms

Az = Zq'i (Az’) +Z (Aqi) 2, (12)

mutation pressure selection
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as given by (Frank 1997).

Consider, in state 6, a sequence of A or R realizations through agent I,,. We consider this
population of n agents to be the ancestral generation, and we analyze the change or expected change
in the average trait value to the descendant generation, I,,41, which is a population consisting of a
single agent.

Under our definition of inheritance as a potential causal dependence of traits, an ancestral
agent who is censored has no descendants. Furthermore, an agent with trait ¢ = 0 rejects, resulting
in a deterministic payoff of zero, which is uninformative to later agents. Since reject agents have
no influence on later beliefs or actions, reject agents have no descendants. Finally, an uncensored
agent with trait ¢ = 1 does generate information that influences the information, and potentially
the behavior, of the descendant I;;1. So all uncensored agents collectively share the same, single
descendant. That is, the descendant I, inherits from all ancestral agentsE] Since ¢ refers to type
in the above equations, the terms reflect the aggregated inheritance derived from all the agents of
each type.

Selection and mutation pressure in project adoption

We study the expected evolution of traits conditional on the behaviors of early agents. We examine
two conditionings: (i) all ancestral agents through I,, have adopted or (ii) not all ancestral agents
adopted. Then we examine unconditional trait evolution in an illustrative special case.

Case 1: All ancestral agents adopted

Consider first the case in which, in state 6, all agents adopt through agent I,,. There is only
type i = 1 in the a generation, so ¢° = 0 and ¢' = 1. Trivially, there can be no selection in the
evolutionary sense, because the a population has only one allele. Furthermore, there is stochastic
mutation pressure wherein the 2 = 1 ancestors can map into a z’* = 0 descendant. Observe that
¢! = 1; all agents in d are descendants of type i = 1 in generation a.

Since it is not meaningful to study evolution when there are no ancestors, let B denote the
event that there is at least one uncensored ancestor. Substituting into the expectation of Eqn. 12
conditional upon B and on all past adopt, we obtain

—

Az = E[Z"—1lz1 = =2,=1,8]

mutation pressure

= PE'=1lzn==2,=1,B) -1, (13)

Vv
mutation pressure

where on the RHS, the selection term of the Price Equation is zero. (The overline notation leaves
implicit the conditioning of the expectation.)

This application of the Price Equation (Eq. reveals that, even though there is selection
bias on project payoffs that affects the evolution of the adopt/reject trait, there is no selection in
the evolutionary sense. Selection bias induces cultural evolution by inducing mutation pressure in
the trait value between ancestors and their descendants, rather than through selection on survival
of ancestors.

This may seem counterintuitive, since a key driver of evolution here is that agents with low
payoffs are “selected out.” However, all ancestral agents have the same trait, ¢ = 1. There is

5This is consistent with versions of the Price Equation in which a descendant can have multiple ancestors. In the
biological context, the number of ancestors is usually one or two for asexual or sexual reproduction, but in cultural
contexts an agent can have many influencers.
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no variance for evolutionary selection to act upon. In contrast, censorship is based on whether
the agents who adopted and experienced high versus low payoffs. That censorship decreases the
tendency for 1,11 to switch to reject.

The mutation pressure that drives expected trait change in Eq.[13|is negative, meaning there
is always a chance that the descendant of an A agent will reject. Mutation pressure here is caused
by cognitive reasoning, as later agents assess state based on the payoffs received by earlier agents.
Notably, stronger selection bias weakens the pressure toward R. Moreover, the form of mutation
pressure here differs from mutation pressure in genetic settings, in that its strength depends on
the number of (uncensored) type-A agents in the ancestral generation. In genetic inheritance a
mutation bias has a fixed strength and it applies to a single parent-offspring replication event.
In our context, all the uncensored type-A ancestors are collectively the causal parents of a single
offspring. Furthermore, the greater their number, the greater the chance the offspring will convert
to type R.

Case 2: A past reject has occurred

We now consider trait evolution conditional on at least one past reject. There is also at least
one past adopt, since I; always adopts. Since the a generation has a mixture of adopt and reject
alleles, there may be selection in the evolutionary sense.

Since there has been a past reject, all subsequent agents reject, so in the d generation agent
I,4+1 always rejects. In fact, with no additional complexity, we now generalize trivially so that the
d generation includes any number of agents I, 11, I,+2 and so forth.

Since a reject does not generate informative payoffs, and therefore has no causal effect on
later agents, the reject type (i = 0) has no cultural descendants. In contrast, when an a agent
adopts and is not censored, payoff information is transmitted to descendants and can influence
behavior. Collectively, a sufficiently high number of low payoffs derived from uncensored past
adopts causes the d agent(s) to reject. So as before, each agent in the d generation descends from
all the agents of type ¢ = 1, and only type i = 1 has descendants. So by definition, the descendant
frequencies are ¢° =0, ¢'' = 1.

Since, under Case 2 conditioning, the descendants of type z! = 1 always reject, we have
2’ = 0. In other words, trait i = 1 has perfect negative heritability. This is reflected in the mutation
pressure component of the Price Equation. Substituting these values into the expectation of the
Price Equation, Eqn. 12, conditional on at least one past reject and at least one uncensored adopt,
gives __

Az = ~1 + 1-4'. (14)
~—~ N——
mutation pressure selection

(The overline notation leaves implicit the conditioning of the expectation.)

The initial mean value of 2* in a is ¢°(0) + (1 — ¢°)1 = 1 — ¢°. The initial @ mean and
the change in mean are negatives of each others, which reflects the fact that all descendants reject
(mean trait value of zero).

The decomposition shows that evolution toward the reject allele derives from the opposition
of two strong effects: evolutionary selection and mutation pressure. There is strong selection for
A, since only A types leave descendants. However, this is overwhelmed by even stronger mutation
pressure toward R. Specifically, evolutionary selection results in no descendants of the i = 0 type,
yielding a positive selection term. But mutation pressure in the descendants of the i = 1 type is
overwhelming; all of them shift from z' = 1 to 2’ = 0. This generates the —1 term. So the R allele
becomes fixed in the d generation.

The mutation pressure in this setting is more extreme than in the previous case (Eq ,
because this setting is deterministic: the descendent generation definitively rejects, and the rejection
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assuredly arose by mutation from an ancestor who had adopted.

Case 3: Without conditioning on whether past rejects

In the SI, we also perform a Price Equation decomposition in a case with minimal conditioning—
only on the presence of at least one uncensored ancestor. This allows for the cases of All Past Adopt
(Case 1) or Some Past Reject (Case 2) as possible realizations. The insights from Cases 1 and 2 carry
through to this minimal-conditioning case. There is still opposition between the effects of selection
and mutation pressure, with selection favoring adopt and mutation pressure favoring reject.

Taken together, the three applications of the Price Equation above provide a notable contrast
between cultural and genetic evolution. Moreover, evolution in our context also differs from trait
dynamics in other behavioral settings, such as in evolutionary game theory where inheritance
is determined by direct copying (Nowak 2006). Accurate copying leads only to selection, i.e.,
differential reproduction of traits. In contrast, agents here process information thoughtfully, which
enriches the causality of trait transmission. Information transmission from parent to offspring
results in mutation pressure, which can even overwhelm selection.

This application of the Price Equation offers two lessons. The first is that the Price Equation
decomposition can apply to many social economic models, so long as some agents are influenced
by other agents, and a causal linkage between actions is used to specify inheritance.

The second lesson is that mutation pressure is just as important as selection in the cultural
transmission process. In evolutionary economics and other applications, cultural transmission is
often presented as simply a matter of differential survival of traits that compete to be copied. This
is indeed part of the evolutionary process, even in settings with complex strategic interactions.
However, As we have seen, there is also often systematic, endogenous mutation pressure arising
from cognition. Such pressure can operate even when there is no selection, and it can overwhelm
selection when the two forces are opposed.

7 Discussion

Biased information about others can profoundly influence the dynamics of investment risk-taking,
which we have studied as a cultural trait transmitted among firms. We have shown that when
low-payoff outcomes are censored with higher probability than high-payoff outcomes, firms that do
not account for this censorship bias become overly optimistic and undertake projects too often.
This causes booms of overadoption, followed either by a eventual bust or by permanent long-run
adoption even in a state where complete information would assuredly lead to (rational) rejection
of a risky project.

These dynamics are a form of cultural evolution in which parentage reflects causality. This
is a richer form of cultural evolution than simple copying of successful traits, because it allows
for cognitive reasoning about which traits are more likely to yield high payoff based on (biased)
observations of prior outcomes.

Even for given size of project, some types of firms (such as large firms) tend to receive more
attention than others (e.g., greater coverage by financial and media analysts). Since attention
probabilities are bounded above by one, the upside salience of high-profile firms is necessarily
limited; even their failures are noticed.

Specifically, when attention is high, censorship of low outcomes is less likely, which reduces
overadoption. For example, if a huge moon-shot initiative by a large established firm (e.g., self-
driving cars) were to fail, this could be as conspicuous as a success. So the model implies that
overadoption will be more pronounced among startups and small firms than among large established
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enterprises. The extreme difference in visibility of success versus failure among startups provides a
new explanation for the overoptimistic expectations of entrepreneurs, and for the empirical anomaly
of low returns to private equity (Moskowitz and Vissing-Jorgensen 2002).

Some firms receive higher attention for reasons other than sheer size. For example, as a
creator of innovative consumer products, Apple has long been a magnet for attention, starting even
before it became a giant. Firms in consumer product businesses tend to attract greater attention
than infrastructure firms. A failure of a project by a firm in a high-attention sector may be more
salient than failure in a sector that receives little attention.

When a firm’s decision making is influenced by observations of other firms, adopting or
rejecting a project is a cultural trait transmitted with bias between firms. We use the Price
Equation to decompose such transmission into a selection component and a mutation component.
Notably, even though misperceptions of managers are driven by selection bias in what they observe,
the Price Equation reveals that behavioral evolution is driven by the opposing effects of mutation
pressure and evolutionary selection, and that in some conditions there is only mutation pressure,
without evolutionary selection. This contrasts sharply with a large domain of cultural evolutionary
models with accurate copying, in which there is only selection.

The result of excessive adoption in our model is relative to a rational firm-level optimum.
However, there are, in general, positive externalities to research and innovation. So excessive adop-
tion that is unprofitable at the firm level, may be welfare-increasing at the social level. Innovative
and moonshot projects may generate especially high externalities. On the other hand, there are
also undesirable innovations such as patent trolling and the use of hijacked airplanes as weapons.

We assume upside salience: that the probability that a high payoff is observed by others
be greater than the probability that a low payoff is observed, but less than one. We expect
moonshots to have high upside-salience, because a rare, very high payoff is especially noticeable. In
consequence, the model implies that overadoption will be more severe for moonshot projects. We
also expect ‘sexy’ projects (project that are innovative, fun and exciting, such as self-driving cars)
to have high upside-salience. For given upside cash flow, we expect upside outcomes to be reported
and remembered especially often when people feel the innovation has changed how people lives in
exciting ways. And so there may be a tendency to overinvest in such sexy projects.

We have shown that upside salience causes managers to overvalue moonshot projects, re-
sulting in over-adoption and boom/bust patterns. For similar reasons, security market investors
may overvalue “lottery stocks” (stocks with positive skewness), consistent with evidence from stock
returns as summarized in (Han, Hirshleifer, and Walden 2020)).

Our main focus has been investment at the firm level, but our approach can also be applied at
larger scales to explain industry-level or aggregate-level investment boom /bust patterns. Industries
may differ in upside salience of payoff outcomes, in part owing to differences in average firm size.
So our model suggests that boom /bust patterns can be much more pronounced in some industries
than in others. This is an interesting direction for empirical testing.

Stepping beyond the model somewhat, our approach also has organizational implications,
including an advantage to managers of recruiting team members who are less heavily censored in
observing others. Examples would include directors and venture capitalists who have broader direct
experience, rather than observation through the media, than the manager or entrepreneur in past
projects, especially for small startups.
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1 Updating under full observation: additional details

In the main text we claim that d* is negative. The reasoning is as follows. Under the prior belief,

adopting is profitable. Since ¢(2p—1)(V +1) > 0, we have 1 —q < %. The numerators and

denominator in these two expressions are positive, so dividing gives Iog(%) — log(%ﬂq) <0,
which is the numerator of our expression for d*.

2 Derivation of the outcome of the random walk in beliefs

Conditional on state, so long as agents adopt their beliefs, expressed as log likelihood ratios, follow
a random walk with drift as given in Eqn. [3]. We derive Eqn. [3] explicitly here.

To see this, let d; be the difference between the number of high payoff realizations (V') and
the number of low realizations (—1) observed by agent I; (i.e., through the payoff of I;_1), where by
convention, d; = 0. Then by Bayes’ rule, since v realizations are conditionally independent given
state 0 = H or L,

P(H|d;,vi) _ P(vi,di|H) P(H) _ P(v|H) P(H|d;) (1)
P(Lldv)  PlodilL) P(L)  P(lL) P(LId,)

where we drop the subscripts from v since P(v;|H) and P(v;|L) are independent of i. Taking logs,
and recognizing that the information content of (d;,v;) is the same as d;;1,

v = (piziacay ) = (i) + (e )

or
P(v|H)

Aig1 =1 A 2

i+1 Og <P(U|L) + 7 ( )

So the LLR changes at each step adding the update increment log(%), which is positive when

v = V and negative when v = —1, and which has the same absolute value in both cases. In state

0 = H, the probabilities of these increments are p for v =V and 1 — p for v = —1. In state L, the
probabilities are 1 — p for v =V and p for v = —1.

The LLR (belief state) increases by log(p/(1 —p)) > 0 or log((1 — p)/p) < 0 at each step,
by Eq. 2. It follows by simple induction that the LLR conditional upon all payoff observations is
Eqn. [3] of the main text.



3 Updating under full observation: Additional details

In the main text we claim that d* is negative. The reasoning is as follows. Under the prior belief,

adopting is profitable. Since ¢(2p—1)(V +1) > 0, we have 1 —¢ < % The numerators and

gi( p)v) log(7£ )<O

denominator in these two expressions are positive, so dividing gives log( - T=p)

which is the numerator of our expression for d*.

4 Updating under biased censorship: derivations

Rational updating under biased censorship: derivations

Let v; =V or —1 be the realized payoff outcome of agent I; if j adopts. Let O;; denote the event
that I; observes I;, where i > j, and 6ij denote the event that I; does not observe I;. Bearing in
mind that the sheer fact of observation, Os1, contains no information about state incremental to
the information in vy, since I; adopts, observation by rational Is of I’s payoff updates Io’s belief
about state to

PO=HV=V) qp 1
P(O=H =V) = = =
( O, V1 = V) Py =V p+(1-g)1-p 141912
PO =H,v =-1) q(1 —p)
PO=H =-1) = =
(0 = H|O2, Vi = —1) P(or = —1) ¢(1—p)+(1—qp
1
- = (3)
1+ =4

By contrast, if I» does not observe I7, the rational inference from no observation is:

P(0=H|0xn) = 7P(9P:é ’1?21)

P(H,v1 =V)(1 - )+P(H v =-1)(1-m)
P(H,v1=V)1—-0)+PH,vi =-1)(1—7)+ P(L,v1 =V)(1-6)+ P(L,vi = —-1)(1 —7)
_ ap1-6)+ (1 —p)(1 —m)

qlp(1=6)+ (1 =p)(1 —m)]+ (1 - g1 —p)
1

1—q A—-p)(A=8)+p(1—m) "~ (
I+ = s ra-pa—m

]
(1=20)+p(1 —m)]

Neglect of biased censorship and adoption dynamics: derivations

Let a B superscript denote an imperfectly rational (biased) expectation. A biased agent mistakenly
drops the conditioning on observation versus non-observation of payoffs in forming expectations.



So for I,

PB(O =H, v, =V)

PB(U1 = V)

PB(O=H,v =V)

qPB(vy =V|0=H)+ (1 —q)PB(v; =V|0 =1L)
B qp _ 1
p+(1-q)(1-p) 141
PB( =H,v; = 1)

PB(Ul = —1)

q(1 —p) _ 1 (5)

g1-p)+(1—-gp 14192

PB(O = H|Oy,v, =V) =

1—

*|
IS}

PB(6 = H|Og,0, =—1) =

In the random walk for the uncensored subsequence, conditional on state § = H the proba-
bilities of an up move, p*, and of a down move, 1 — pf*, are

P(vy =V, H,02)
P(’Ul = V,H,Ogl) +P(v1 = —1,H,021)
qP(vl :M021’H)
q[P(v1 =V,091|H) + P(v1 = —1,091|H)]
pd
ps+ (1 —p)w
= —p >Dp
p+(1-p)/B
Hx 1-p

l-p = m<1—pa (6)

where the inequalities follow because upside salience § = §/7 > 1.

pf* = P(vy =VI|H,09) =

5 Evolutionary dynamics of adoption, with and without biased
censorship of past payoffs

We next provide a more detailed statement of Proposition 1, which we call Proposition 1’. and
provide the proof.

Proposition 1’ With observation of all past actions and payoffs we have the following results:

1. In state L:
(a) With probability 1 there exists an i such that for all j > i, agent I; rejects.
(b) The probability that agent I,, rejects is (=) — =1 /(1 — ™= Y), forn > —|d*] +1,
where d* is given by Eq. 5 of the main text, and pu = %.

2. In state H:
(a) The probability that all agents adopt is 1 — v which is strictly between 0 and 1,
where v = =2

(b) If not all agents adopt, then there exists an i such that for all j > i, agent I; rejects.
(c) The probability that agent I, rejects is (1141 —v=1) /(1 — v for n > —|d*| + 1.



Proof: Part 1la: In state L the LLR and d follow random walks with negative drift. It follows from
standard properties of such walks that the lower absorbing barrier is reached with probability one.
Part 1b: This follows from a standard result for random walks through step n — 1, bearing in mind
that agent I,, only observes payoffs through agent I,,_1. Part 2a: In state H the random walk on d
has positive drift. The first agent, I;, adopts. A standard property of such a random walk is that
there are strictly positive probabilities that such a walk ever or never hits a lower barrier. Part 2b:
if the lower barrier is hit for some agent I;, no further payoff information is generated, so all later
agents also reject. Part 2c: This follows from a standard property of walks through step n — 1,
bearing in mind that agent I,, only observes payoffs through agent I,,_;. ||

We next provide a more detailed statement of Proposition 2, which we call Proposition 2/,
and provide the proof.

Proposition 2’ Under biased censorship we have

1. In state L:

(a) (Weak upside salience) If 8 < p/(1 — p), then there exists i such that for all j > i agent
I; rejects.

(b) (Strong upside salience) If > p/(1 —p), then: (i) The probability that all agents adopt
is 1—¢ 9" where d* is given by Eq. 5 of the main text, and ¢ = ﬁ. This probability
is strictly between 0 and 1, and is decreasing in w. (i) If not all agents adopt, there
exists i such that for all j > i agent I; rejects. (i) The probability that I, rejects is
(T ¢/ = ¢ forn > —[d] + 1.

2. In state H:
(a) The probability that all agents adopt is 1 — n~ 4" where n = (lﬁ;p), which is strictly
between 0 and 1 and is increasing in § and decreasing in m.

(b) If not all agents adopt, then there exists an i such that for all j > i, agents I; rejects.

(¢c) The probability of a reject within the first n agents is (n~ 41 — 1) /(1 = n™= 1) for
n>—|d*] +1.

Proof:

Part la: The proof is essentially the same as Proposition 1/, Part 1. The random walk has an
equal up or down move, where in the L state, owing to selection bias, the up move and down move
have respective probabilities 1 — p™* and p™* as in Eq. [7] of the main text. So the random walk
conditional on L has positive drift when 1 — p* > %, or 3 > ﬁ. If instead 8 < p/(1 — p), the
drift is negative or zero, so that the absorbing state, reject, is reached with probability 1.

Part 1b: When upside salience is sufficiently strong (8 > p/(1 — p)), by (6) the LLR follows a
random walk with positive drift, so the conclusions follow by the same reasoning as in Proposition
1/, Part 2. The expression for the probability of reject within the first n agents follows by a standard
result for random walks, where the probability of an up move in the subsequence random walk is
given by Eq. [7] of the main text.

Parts 2a and 2b: For the H state, since § > 1 and p > 1/2, the LLR follows a random walk with
positive drift. So conclusions similar to those of Part 1b about the probability of adopting forever
follow by similar reasoning, where the probability of an up move conditional on the H state in the
subsequence random walk is given by Eq. 6.

Part 2c: The result follows by a standard result for random walks, where again the probability of
an up move is given by Eq. 6. ||



6 Derivation of comparative statics

In the main text we derived the inequality

We can show several simple conclusions. For state H, a—v < 0 and % < 0. In other
words, as the upside reward V of the project increases, or the prior likelihood of state H increases,
the probability of long-run adoption increases. Specifically, differentiating the expression for R¥

from the main text gives

ORH B log ( i )
dg  q(1—q)log(s2)

The numerator is negative, because p > % and 8 > 1, and the denominator is positive, because

(8)

D> 2, so 287 . Similarly,
ORH (2p —1)log (16;5)
v N (9)
p(1+ V) = V]p(1 + V) —1]log (q)

The numerator is negative, again, Whereas each term in the denominator is positive (because
p>1+LVandV>1andp> )andso 7 <o.

Likewise, for state L, when RL < 1, we have 28" > 0, 2 av < 0, and 8R < 0. Specifically,

ORL log (B(l p))
04 q(1 —q)log (ﬁ)
The nurnerator is negative for 5 > p/(1 — p) and the denominator positive because p > 1/2, and

SO aq < 0.
Likewise

(10)

oRt (2p = 1) 1og (55 ' (11)

W I+ V) = VIp(L+V) - 1log (1)
In this case the denomina‘cor is again positive, and numerator again negative, under the condition
B> p/(1—p), so that V < 0.
Likewise,

(1+V)=V
ORL  oRM log (125) — log (V=)
o3 08 1 P '
B B 5 log ((1—1)))
Here the denominator is positive, because p > 1/2, and the second term in the numerator is also

positive because V' > 1. Although the sign of the numerator in general depends on ¢, ghe restrictions
on ¢ imposed by (2) assure that the numerator is positive by Eq. (7). So aaR = BR < 0.

Likewise
CIOg(ﬁ(lpfp)> 1 p (V271)10g<ﬁ) ¢
ORL o-Dp 98 (ﬁ) [(p—1)V+pl(pV+p—1) - (»—Dp
— 1
op 2 >0 (13)
og” (15

5

(12)




where

¢ =log <1fq> _log (W) >0 (14)

by Eq. 7. In other words, higher p promotes rejection because payoffs become more accurate
indicators of the actual state, L. Agents also understand that payoffs are more accurate, and
therefore update more strongly to payoff outcomes. This increases the sizes of up- and down-moves
in the LLR random walk, reducing the mean number of steps required to reach the absorbing
barrier. This effect also promotes rejection in the long run.!

Some less obvious comparative statics are obtained by examining interactive effects of param-
eters by inspecting mixed partial derivatives. These provide more distinctive empirical implications
of the model. When we vary both upside salience and upside payoff, we obtain

9*REL 2p — 1

- 0. 15
obovV ﬂ[P(1+V)—V][p(1+v)_1]10g<l%p> < (15)

Since 8 = §/7, and 8 and 7 enter into the expression for R* only through f, it follows immediately
that 92R*/(060V) < 0 and 92R*/(0m0V) > 0.

To understand this, first consider the effects of V' and # on the chance of ever rejecting
individually. Rejection occurs when the random walk d}, (the net count of up versus down steps
observed by agent Ij) hits the lower boundary d* < 0. Increasing the upside payoff V' decreases d*,
making rejection less likely (OR*/OV < 0). Increasing 7 (reducing censorship) increases the chance
of a downward step, making rejection more likely (OR"/Om > 0). However, if V is already very
large, the chance of ever reaching the lower boundary d* < 0 is almost zero, and so the marginal
effect of an increase in 7 is small. So the cross partial on R’ is positive. A similar intuition applies
with opposite sign for the cross partials with respect to 5 or 4.

Likewise,
O’RE 1

030 ~ Bq(1 — q)log (%)

The intuition here is essentially the same as that for the cross partial of 8 with V' discussed above.?

> 0. (16)

7 Motivating conceptual experiment for comparative statics on
excess log reject probabilities

The conceptual experiment underlying the comparative statics on the excess log reject probabilities
is a differences-in-differences comparison. The starting point is a pair of projects with the same
q and V values but different 8 values,  and 3. Taking the partial derivative with respect to
B involves a comparison with another pair of projects with beta values of 8’ > 3 and 3, where
B — B approaches zero. This pair of projects has values ¢ and V', which are consistent with
higher moonshotness. The result of this experiment therefore answers the question of how much
a small increase in § that derives from a change in moonshotness changes the reject probability,
after adjusting for the direct effect of the shift in ¢ and V' values from (q,V) to (¢’, V') (“direct”

'In contrast, in the H state the two effects are opposing, so the comparative statics on p is ambiguous.

2Higher ¢, the probability of the good state, increases the absorption buffer (decreases d* < 0), reducing RE.
Higher upside salience 8 also reduces R”. Since the probability of a reject is bounded below by zero, a higher buffer
weakens the negative marginal effect of upside salience on the probability of ever rejecting. So the cross partial
between ¢ and 8 on R is positive.



Table 1: Comparative Statics on Moonshotness

Levels of moonshotness

Benchmark vs. Focal project | Initial Level | Increased Level
Benchmark project (B,q,V) (B,q', V")
Focal project (8,q,V) (B, q, V')

meaning other than through their effect on £). Specifically, since e?(3, ) is independent of the
g and V values, this comparison accommodates the second pair of projects having any arbitrary
different common set of ¢ and V values, ¢’ and V.

This can be seen in more detail from Table 1, which shows the four projects involved.
Specifically, this adjustment is reflected in the fact that when we compare a project with (3, ¢, V)
to a project with (8’,¢', V'), the normalization benchmark factor in the denominator shifts at the
same time from a project with (3, ¢, V) to a project with (5,¢’,V’).

We apply this general experiment to the specific values of 3, ¢’ and V' implied by varying
moonshotness. We have argued that 3 is increasing with moonshotness, so that if we increase V'
while decreasing ¢ parametrically to hold expected payoff constant, 3 decreases. In other words, we
can define the function g, (V;p, v) for the relation between § and moonshotness as parameterized by
V', and assume that 08,(V)/0V > 0. As discussed earlier, we also have the parametric relationship
0qx(V)/0V < 0. So in the experiment above, ¢’ = q,(V + AV;p,v), and ' = B,(V + AV;p,v).

8 The Price Equation

8.1 The expected change in the average population trait value

We apply the Price Equation in expectations form, conditioning upon observed payoff information
JF and in some cases other information as well. We denote the conditioning information as 7. We
define 2% = E[2'|F] = 3. E[¢'"2""|F).
—F
We define the conditional expected change in trait value as Az = E[Z/|F] — Z.

Let qu = 7"/ — ¢' be the expected frequency change conditional upon information F. Let

the expected trait value change conditional upon information F be AT =71F 24]]
Taking the conditional expectation of Eqn. 12 in the main text gives

5 = YRl (- ) 1A+ Bl - )27 (17

mutation pressure selection

Why the censorship parameter does not enter Eq. 14

The censorship parameter m does not enter Eq. 14 of the main text. Intuitively, censorship
affects who becomes an A or R in the a generation, but once we condition on an R being present
in the a generation, this determines that R will be fixed in the d generation. So in Case 2, biased
censorship does not affect the strength of evolutionary selection.




8.2 Case 1 of the Price Equation analysis

Using our more formal F notation for conditionings, Eqn. 13 in the main text can be written as

AzF = E[Z —1|z1 = =2,=1,8]
mutatio;lr pressure
= PR'=1lxn==2,=18B)—-1, (18)

mutation pressure

where on the RHS, the selection term of the Price Equation is zero.

8.3 Case 2 of the Price Equation analysis

Using our more formal F notation for conditionings, Eqn. 14 in the main text can be written as

—F
Az = ~1 +1—¢ (19)
~ SN——
mutation pressure  gelection
where F refers in this case to the conditioning on at least one past reject and at least one uncensored

adopt.

8.4 Case 3 of Price Equation: No conditioning on whether there is a past reject

Here we perform a Price equation decomposition with minimal conditioning—only on the presence
of at least one uncensored ancestor (event B). This allows for the cases of All Past Adopt (Case 1)
or Some Past Reject (Case 2) as possible realizations.

From the expectational Price equation, recognizing that 2% = 2/ = 0, 2! = 1,50 Y ¢’z = ¢!,
and Y E[¢"*2!|B] = E[¢"*2!|B], we obtain

Az = E[¢" (212 |Bl+E[(¢" —¢')2YB]

~~

mutation pressure selection

= E[¢" (2" —1)|B]+E[¢" —¢'B]. (20)

mutation pressure selection

We examine the case of n = 2 ancestors. We first calculate E[q'|B]. Let x; denote the
adopt/reject decision of agent I;, coded as 0 and 1. Then since z; = 1, the event (z2 = 1,5)
occurs when (1) v; =V, or (2) vy = —1, I; is censored, and I, is not censored. Also, observe that
q1 = 0.5(1 4 z2). So

El¢'|B] = 0.5+0.5E[z2|B]
= 0.5+ 0.5P(zy = 1|B)
. P(ﬂj‘g = 1,8)
= 0.5+ 0.5W
. P({L‘Q = 1,6)
= OO T T ) (T e )

- 0‘5+0_5{qp+(1—Q)(l—p)+[Q(l—p)+(1—q)p](l—7r)7r}.

1—[g(1 =p)+(1—q)p]*(1 —7)2



Since rejectors have no causal influence on the descendant population, the descendant pop-
ulation comes entirely from type 1, i.e., ¢’* = 1, which is deterministic. So E[¢*|B] = 1.

We also need to calculate E[q'2"t|B] = E[2"*|B]. The descendant of type 1 has type either
Oor1, so

E' B =P'=1B) = —— 2~/ (22)

The event z'! = 1 is just the event that I3 adopts. This occurs iff: (1) both ancestors adopt,
and (2) the sole uncensored ancestor has v = V, or there are two uncensored ancestors and at least
one has v = V. Both ancestors adopt iff I adopts, which occurs iff either (a) v1 =V, or (b) I is
censored. So the pathways for I3 to adopt are: (i) v1 = V (since even if v = —1 is not censored,
I3 adopts); (ii) vi = —1, I; censored, vy = —1, I censored; and (iii) v; = —1, I; censored, vy = V.

The event B rules out pathway (ii). So the numerator is

PET"=1B) = @p+1—q)(1—p)+[a(1—p)+ (1 —qpl(1—m)gp+ (1—q)(1-p)]
= [gp+(1-q)(1-p){1+[¢(1-p)+ (1 —gp](1—-m)}

The denominator is

P(B)=1—[qg(1—p)+ (1—q)p*(1 - 7).
So

lgp+ (1 —q)(1 —p){1 + [g(1 = p) + (1 — ¢)p](1 — )}
1—[q¢(1 —p)+ (1 —q)p*(1 —m)? '

We have now calculated all the ingredients of the Price equation. Substituting them into
(20) gives

P'=1B) =

(23)

0 - et Q-9 -p{1+[gl-p) + A -gpld-m)}

1—[g(1=p)+ (1 —qpl*(1 —7)?
mutation pressure
L 11 {qp+ (1-¢(1-p)+g(t—p) + (1 —gpl1 —TF)W}
2 2 1—[g(1—p)+ (1 —qp*(1 —7)?

selection

(24)

In this context, in which the ancestral agents may or may not contain a rejector, the censorship
rate enters into the decomposition of change from the Price Equation. Since the ratios above are
probabilities less than 1, there is again negative mutation pressure and positive selection. The
positive selection occurs because only adopters have descendants. The negative mutation pressure
occurs because adopters who generate negative payoffs generate descendants who are rejectors.
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