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1 Introduction

The Efficient Markets Hypothesis (Samuelson, 1965; Fama, 1970) maintains that market

prices fully reflect all publicly available information. It is based upon the premise that there

are market participants who will take advantage of any mispricing, and that investors with

correct beliefs will grow richer at the expense of agents with incorrect beliefs (Fama, 1965).

In consequence, markets will be dominated by agents with accurate beliefs about prices

(Alchian, 1950; Friedman, 1953).

However, an accumulation of evidence from psychology, cognitive science, behavioral

economics, and finance has documented significant violations of individual rationality and

the Efficient Markets Hypothesis. In particular, there is evidence of social contagion of

investment behavior in financial markets that is not always explained by rational information

processing.1 To better understand these new dynamics of market contagion, the Efficient

Markets Hypothesis can be complemented by the Darwinian perspective of natural selection.

The application of natural selection to economic thought extends back to the 1950s (Alchian,

1950; Penrose, 1952; Friedman, 1953). More recently, the Adaptive Markets Hypothesis (Lo,

2004, 2017) uses an evolutionary perspective to reconcile economic theories based on the

Efficient Markets Hypothesis with behavioral economics.2

In this article, we model the transmission of ideas between investors to analyze the

evolutionary survival of competing investment styles. Motivated by the binary choice model

of Brennan and Lo (2011), we consider a market in which each investor has a propensity

to invest in one of two investment styles. We refer to this propensity as the investor’s

investment philosophy. Investors with higher realized returns produce more “offspring” in the

next period of the model by transmitting their ideas to other investors via social interaction.

Selection results in differential survival of investors’ behavioral traits, i.e., their investment

philosophies.

The distinction between investment style, a specific trading behavior, and investment

philosophy, a general approach to investing, is much like the military distinction between

specific tactics and general strategy. An example of an investment style is holding value

stocks (i.e., stocks with high book-to-market ratios), or holding momentum stocks (i.e.,

1Examples of social contagion include evidence from stock markets (Hong, Kubik, and Stein, 2004; Ivković
and Weisbenner, 2007; Brown et al., 2008; Kaustia and Knüpfer, 2012; Ozsoylev et al., 2014; Ammann and
Schaub, 2021), mutual fund and hedge fund (Hong, Kubik, and Stein, 2005; Cohen, Frazzini, and Malloy,
2008; Boyson, Stahel, and Stulz, 2010; Pool, Stoffman, and Yonker, 2015; Kuchler et al., 2022), and housing
markets (Burnside, Eichenbaum, and Rebelo, 2016; Bailey et al., 2018); see also the review of Hirshleifer and
Teoh (2009), and the discussions of social economics and finance of Shiller (2017) and Hirshleifer (2020).

2See Holtfort (2019), Levin and Lo (2021) and references therein for recent examples of research on the
interplay between evolutionary theory and financial market dynamics.
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stocks that have experienced high returns in the past 12 months).3 An example of an

investment philosophy is the general approach of buying cheap stocks, or buying stocks with

prospects for growth, where the investor uses discretion in defining “cheap” or “prospects

for growth.” An investor with the philosophy of buying cheap stocks might on occasion feel

that a rapidly growing firm such as Amazon is still cheap in price relative to its prospects,

and therefore might sometimes invest in what is usually regarded as a growth stock.4

We demonstrate that heterogeneous investment styles are able to coexist in the long run,

implying the survival of a more diverse set of strategies than occurs in traditional portfolio

theories. For example, under the Capital Asset Pricing Model (Sharpe, 1964), all investors

hold the market, and therefore they all pursue the same investment strategy. Under the

Intertemporal Capital Asset Pricing Model (Merton, 1973), all investors hold the market

and a set of hedge portfolios, usually presumed to be small in number, implying only a

limited amount of diversity.5 In contrast, our results are consistent with the stylized fact

that numerous competing investment styles coexist in the market. Examples of persistent

surviving investment styles include value versus growth, momentum versus contrarianism,

large-cap stocks versus small-cap stocks, diversification versus stock-picking, domestic versus

global, technical versus fundamental, and so on (Cronqvist, Siegel, and Yu, 2015; Cookson

and Niessner, 2020). We show that the survival of diversity is a consequence of general

principles of evolution in the face of risk.

Our model provides a framework for understanding the general multiperiod dynamics of

contagion between a pair of competing investment styles. The bulk of the literature on the

evolutionary survival of financial trading strategies has focused on the accumulation of wealth

by individuals and its interaction with trading impact (e.g., the influence of investors with

different beliefs or preferences on prices). We instead focus on evolution via the contagion of

investment ideas. This focus implies that it is not necessarily the philosophies that promote

investor wealth that survive, but rather, the philosophies that are good at spreading.6 In

contrast to some studies which take this approach (Hirshleifer, 2020; Han, Hirshleifer, and

Walden, 2021), we allow for broadly general probability distributions for the number of

offspring in each generation, instead of assuming, for example, a Moran (1958) process in

3The term “investment style” is also used in a growing literature on style investing; see, for example,
Barberis and Shleifer (2003), Teo and Woo (2004), Froot and Teo (2008), Kumar (2009), Wahal and Yavuz
(2013), and Cronqvist, Siegel, and Yu (2015).

4For example, Lettau, Ludvigson, and Manoel (2018) documented that the so-called “value” mutual funds
seldom are tilted toward high book-to-market stocks, and are often tilted toward low book-to-market stocks.

5This result is an example of so-called K-fund separation, in which the optimal portfolios that any investor
may hold can always be formed by combining a finite set of K investment funds.

6It is true that the financial performance of a philosophy is one important element in determining its
ability to spread, but not the only element.
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which the number of investors of each type changes by exactly one in each generation. This

generality allows us to characterize the survival of investment philosophies in the long run

in relation to the return characteristics of the underlying securities, including their mean

returns, betas, and idiosyncratic volatilities.

The model has several testable implications. In the CAPM, the quality of an investment

style is often measured by its excess return (alpha) above the market’s return at a given

level of risk. This suggests that high-alpha strategies tend to survive (at least to the extent

that alpha persists over time). However, we find that the survival of an investment style is

determined by several elements, including its expected return, beta, and volatility. When

determining a strategy’s survival with respect to these return characteristics, a style’s beta-

scaled expected gross return—defined as the expected gross return of a style divided by its

beta—plays a critical role. We call this return its scaled alpha.

Scaled alpha plays two roles in our model. The first is in determining a non-monotonic

relationship between an investment style’s beta and its popularity and future survival. In

particular, an investment style with low beta is promoted in market evolution only when

its scaled alpha is comparable to that of the alternative style. In contrast, when a style

has a much higher scaled alpha than its alternative, high beta can promote its popularity.

This result implies that a style’s scaled alpha, not the traditional CAPM alpha, is a key

determinant of the popularity of low-beta investment styles in a population.

The second role of scaled alpha is in determining a non-monotonic relationship between

market volatility and the popularity and survival of an investment style. In particular, high

market volatility promotes investment styles with high scaled alphas, and is opposed to

investment styles with low scaled alphas. A high scaled alpha can therefore be understood

as a defensive characteristic of an investment style, in the sense that investors will tend to

allocate to styles with high scaled alpha in volatile markets. This can be empirically tested

by examining shifts in investment style such as value versus growth, momentum versus

contrarian, or fundamental versus quantitative as a function of market volatility.

More generally, our model helps to explain and predict the survival of a diverse range

of investment styles given their return characteristics. For example, there are numerous

categories of hedge funds with widely varying investment styles (Chan et al., 2006). The

hedge fund sector is subject to intense selection pressure, and has been called the “Galápagos

Islands” of finance (Lo, 2008).7 Darwin’s original 1835 observations in the Galápagos Islands

7In biological evolution, this island group is a textbook example of the evolutionary adaptation that occurs
after a species migrates into multiple segmented environments. The islands are distant from the mainland
and have different micro-environments, while migration between the islands is difficult. This phenomenon
of evolutionary diversification is known as adaptive radiation.
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suggested that environmental segmentation was the source of evolutionary diversification. In

fact, our framework suggests that diversity can persist even within a single non-partitioned

environment, a surprising but important distinction in market evolution.

We check the robustness of our model implications by considering several extensions.

First, we allow for very general replication rules that are increasing and concave functions of

realized returns, capturing the intuitions that higher returns benefit the spread of a philos-

ophy and that the marginal benefit diminishes. Second, return distributions are exogenous

in our basic model, which we extend by considering market equilibrium with endogenous

returns in the spirit of Lux’s (1995) classical model. When more investors adopt a philos-

ophy, the demand of the stocks that this investment philosophy calls for buying increases.

This demand is cleared in the market with supplies from a group of fundamentalists trading

based on price deviations from the fundamental value, thereby setting the actual price. We

find that the key implications from our model remain valid under both extensions.

In other model extensions, we allow for important psychological forces that affect in-

vestor receptiveness toward the investment philosophies of others. The first is conformist

transmission (Boyd and Richerson, 1985), the phenomenon that investors view others as be-

ing well-informed and therefore follow the choices of these others. We show that conformist

preference slows down evolutionary convergence, potentially leading to price deviations from

fundamental values and lower degrees of market efficiency, a similar result to Scholl, Cali-

nescu, and Farmer (2021) but through a different channel.

The second psychological force we investigate is attention to novelty, the phenomenon

that investors are more likely to pay attention to a novel investment philosophy if it is very

different from the most popular philosophies. Attention to novelty acts in opposition to

conformist preference, and leads to an even higher degree of diversity among investment

philosophies in the long run. It generates oscillations and bubbles in prices in certain finan-

cial environments, a phenomenon similar to models of herd behavior (Lux, 1995; Chinco,

2022), but again through a different channel. We also propose potential empirical tests for

the survival of investment philosophies in relation to different proxies for attention in the

empirical finance literature.

2 Literature Review

Our model is related to a large literature that uses evolutionary ideas to model the dynamics

of financial markets. In classical models, agents are assumed to maximize expected utility

with rational price expectations, but may disagree on the dividend process. Some studies
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have found that individuals with more accurate beliefs will accumulate more wealth and

dominate the economy (Sandroni, 2000, 2005), while others argue that wealth dynamics

need not lead to rules that maximize expected utility using rational expectations (Blume

and Easley, 1992), and individuals with wrong beliefs may drive out individuals with correct

beliefs owing to different propensities to save (Blume and Easley, 2006). In complete markets,

it is shown that assets are priced by a unique surviving agent. However, heterogeneity

may persist when markets are incomplete (Blume and Easley, 2006), when learning does

not converge (Sandroni, 2005), when non-accurate beliefs and non-optimal rules interact

(Bottazzi, Dindo, and Giachini, 2018), and when agents have recursive preferences (Dindo,

2019). We show that heterogeneity is persistent with return-based contagion dynamics, and

is reinforced by psychological effects such as attention to novelty.

A second strand of this literature differs from the rational expectation paradigm by

studying investment heuristics such as fixed-mix rules and functions of past realized returns.8

Under this more realistic setting, Evstigneev, Hens, and Schenk-Hoppé (2002, 2006, 2008)

show that the Kelly rule that invests according to the proportions of the expected relative

dividends is evolutionarily stable. The investment philosophies in our model is closer to this

second strand in spirit, and we go further to assume that they use no information at all.

A third strand of this literature concerns the performance of rational versus irrational

traders. It has been shown that irrational traders can survive in the long run, resulting in

the divergence of prices from fundamental values.9

In all of the three strands of literature above, market selection is studied from the per-

spective of wealth accumulation. However, our framework focuses on evolution via the social

contagion of investment ideas. The reproducing units are not investors or traders, but

instead are instances of investment philosophies. Our focus on contagion emphasizes the

reproductive success of the investment philosophy, rather than the investor. As a result, it

is not necessarily the philosophies that promote investor wealth or welfare that survive, but

rather, the philosophies that are good at spreading. This is analogous to a disease-causing

virus that spreads at the expense of its hosts. In fact, we consider a very general class of

replication rules of investment philosophies between two generations that are either functions

of realized returns, or are not related to returns and wealth at all.

8Chapters in the handbook of Hens and Schenk-Hoppé (2009) contain an excellent list of classical models.
Other examples include Lensberg (1999), Amir et al. (2005, 2020), Hens and Schenk-Hoppé (2005, 2020),
Lensberg and Schenk-Hoppé (2007), Bottazzi and Dindo (2014), Bottazzi, Dindo, and Giachini (2018). Re-
cent work has focused on risk-free asset as a numeraire (Belkov, Evstigneev, and Hens, 2020), game-theoretic
properties of survival portfolio rules (Belkov et al., 2020), and portfolio insurance strategies (Barucci, Dindo,
and Grassetti, 2021).

9See, for example, De Long et al. (1990, 1991), Kyle and Wang (1997), Biais and Shadur (2000), Hirshleifer
and Luo (2001), Hirshleifer, Subrahmanyam, and Titman (2006), Yan (2008), and Kogan et al. (2006, 2017).
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Other models focus on the evolutionary implication for asset prices. Lux (1995) provides

a model of herd behavior that generates bubbles and shows that equilibrium prices can

deviate from fundamental values. Brock and Hommes (1997, 1998) propose the concept of

adaptively rational equilibrium and show that complicated price dynamics such as chaos can

emerge. More recently, Scholl, Calinescu, and Farmer (2021) show that the convergence to

equilibrium (efficiency) can be very slow in market selection. In general, the dependence of

investment rules on past prices generates feedback, market instability, and asset mispricing

(Hommes, 2006; Anufriev and Bottazzi, 2010; Anufriev and Dindo, 2010).10 One unique

feature of our model is that feedback in the market comes from not only past prices, but

also the behaviors of other investors that are not directly related to prices.

Finally, our model is also related to two recent lines of the behavioral finance literature.

The first concerns how investors subject to cognitive limits form beliefs, and its implications

for asset prices. Barberis, Shleifer, and Vishny (1998) consider agents who learn over a class

of incorrect models about the persistence of the earnings process, which generates under- and

overreaction to earnings news. Hong, Stein, and Yu (2007) develop a model for learning in a

multinomial world in which investors adapt to information on failing models. This generates

a book-to-market effect, elevated conditional volatility, and negative conditional skewness.11

The second line studies how interactions in social networks affect investor behavior and

asset prices, including, for example, Han and Yang (2013), Hirshleifer (2020), Han, Hirsh-

leifer, and Walden (2021), and Kuchler and Stroebel (2021). Chinco (2022) develops a model

for the ex ante likelihood of bubble based on the intensity of social interactions between spec-

ulators, and shows that bubbles occur more often in assets where increases in past returns

make excited-speculators relatively more persuasive to their peers. Pedersen (2022) studies

the recent GameStop event using a DeGroot (1974) model in which investors update beliefs

by listening to other people, and shows how social network spillovers can explain influencers,

thought leaders, momentum, reversal, bubbles, volatility, and volume.

The key difference between our model and this literature is that we explicitly model the

replication process due to social contagion and study its evolutionary implications for the

survival of philosophies. We allow for general distributions for the number of offspring in each

generation, instead of assuming, for example, the normally-distributed dividend processes

as in Hong, Stein, and Yu (2007), the Moran (1958) process as in Han, Hirshleifer, and

Walden (2021), or the DeGroot (1974) model as in Pedersen (2022). This generality allows

10Other examples of agent-based models include LeBaron (2000, 2001, 2006), Hommes and Wagener (2009),
Chiarella, Dieci, and He (2009), and Lux (2009). See Lux and Zwinkels (2018) and Dieci and He (2018) for
computational aspects of agent-based models.

11We model social contagion rather than belief learning, so the underlying mechanism that generates the
price dynamics is different.
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us to derive explicit comparative statics analysis with respect to the mean returns, betas,

and idiosyncratic volatilities of the underlying securities, leading to several useful testable

implications. In addition, our results from the psychological effects—including the reduced

rate of convergence to equilibrium due to conformist preference and the price cycles and

bubbles due to attention to novelty—also add to this literature.

Our model builds upon the analysis of Brennan and Lo (2011), which develops a binary

choice model in order to understand the survival of economic behaviors in stochastic environ-

ments. We extend this model to study the contagion of investment ideas, explicitly modeling

investment styles in relation to their systematic and idiosyncratic return, and treating in-

vestment philosophies as propensities to adopt different styles. We generalize the replication

rules to a class of functions of realized returns. We take into account that in equilibrium,

changes in popularity of styles will affect their expected returns, and we establish that a mix

of investment styles is able to survive in the long run. Finally, we analyze how preferences for

conformity or novelty affect the evolutionary survival of competing investment philosophies.

3 A Model of Competing Investment Philosophies

Consider two investment styles a and b in discrete time, each generating gross returns Xa ∈
(0,∞) and Xb ∈ (0,∞) per period. The returns realized in the t-th period are denoted by

(Xat, Xbt). We assume that:

Assumption 1. The returns (Xat, Xbt) are independently and identically distributed (IID)

over time t = 1, 2, · · · , and described by the probability distribution function Φ(Xa, Xb).

Assumption 2. (Xa, Xb) and log(fXa + (1− f)Xb) have finite moments up to order 2 for

all f ∈ [0, 1].

Consider a population of investors, each of whom lives for only one period and makes only

one decision: to invest in either style a or b. For example, a could be a high-variance invest-

ment style and strategy b could be a low-variance one. Other investment style dichotomies

include value versus growth, aggressive versus defensive, momentum versus contrarian, and

stock-picking versus diversifying. Each investor’s propensity to invest in style a is denoted

by f ∈ [0, 1]. This means that the investor chooses style a with probability f , and style b

with probability 1− f . We will refer to f as the investor’s investment philosophy.

The investment philosophy is a general approach to investing, whereas an investment style

represents the actual trading behavior that the investor follows in some specific context. For

example, the value philosophy refers in general to buying stocks that the investor regards
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as a good bargain—relatively cheap compared to their “value,” which might be defined in

many ways in different contexts. The value style is something much more specific, such

as trading based on book-to-market or P/E ratio. The probability f in this example is the

probability that the value philosophy investor actually follows the specific strategy of trading

based upon, e.g., the high book-to-market characteristic, and 1− f that the investor follows

a strategy with a low book-to-market characteristic.

Depending on their choices, each investor obtains gross returns Xa or Xb. We assume

that investors with higher realized returns are emulated more often in their behavior by

other investors than investors with low realized returns. This is payoff-biased transmission,

a common assumption in the literature on cultural evolution.12 One reason that this may

occur is that investors who experience high payoffs may tend to talk more about their returns

with other investors, a phenomenon that Han, Hirshleifer, and Walden (2021) refer to as self-

enhancing transmission bias. In any case, investors with higher realized returns will produce

more offspring with the same philosophy (f) as themselves in the next period. We therefore

make the following simple assumption.13

Assumption 3. Xa or Xb is also the number of offspring generated by the investment style

a or b, respectively.

Hence, the number of offspring of individual i, Xf
i is given by:

Xf
i = Ifi Xa + (1− Ifi )Xb, Ifi ≡

1 with probability f

0 with probability 1− f.
(1)

We assume that the trait value f is passed on without modification to newly infected individ-

uals. As a result, the population may be viewed as being composed of “types” of individuals

indexed by values of f that range from 0 to 1.

Equation (1) provides the model with its critical insight into the evolution of investor

types over many generations, since it represents the dynamics between periods. In focusing

on the evolution of the distribution of types in the population, it differs from the large body

12The mechanism that agents replicate based on past realized returns is also adopted by, for example, Lux
(1995) and Brock and Hommes (1997, 1998). One subtle but important difference between our model and
these classical models is that we deliberately avoid making assumptions about investor preferences over past
returns. In fact, in our framework, the investor’s preference itself can be determined by forces of evolution
endogenously (Zhang, Brennan, and Lo, 2014b).

13Some models assume a monotonic mapping from the gross returns Xa and Xb to the number of offspring
(see Robson (1996), for example). Here we essentially assume that this mapping is an identity function for
simplicity of our analytical results. Nonetheless, we generalize Assumption 3 in Section 5 and show that our
results remain robust under a very general class of replication rules.
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of literature that focuses on evolution of the distribution of wealth across investors.14

Equation (1) also emphasizes that the reproducing units in our framework are not in-

vestors or traders, but instead instances of investment philosophies. As a result, it is not

necessarily the philosophies that promote investor wealth or welfare that survive, but rather,

the philosophies that are good at spreading. From this perspective, our model can be modi-

fied to describe the switching of philosophies in a population of long-lived investors, as long

as Xf
i is normalized by the total number of investors in the population. With this inter-

pretation, investors’ behaviors may depend on historical information beyond the returns in

the current period. We provide such an example in Section 7.2, and see also Lo and Zhang

(2021) for an extension of the model in which agents have variable degrees of memory.

3.1 Population Dynamics

Investors in a given generation t are indexed by i, and generations are indexed by t =

1, · · · , T . We occasionally omit the subscript t since the randomness across time is IID.

Finally, a superscript f denotes the particular type of investor as defined by the decision

rule in (1).

Let nft be the total number of type-f investors in period t, which is simply the sum of

all the offspring from the type-f investors of the previous period:

nft =

nf
t−1∑
i=1

Xf
i,t =

nf
t−1∑
i=1

Ifi,t

Xat +

nf
t−1∑
i=1

(1− Ifi,t)

Xbt. (2)

Applying Kolmogorov’s law of large numbers to
∑

i I
f
i,t/n

f
t−1 as nft−1 increases without bound,

we derive the following almost sure population growth relationship from period t−1 to period

t:

nft = nft−1 [fXat + (1− f)Xbt] .

Through backward recursion, the population size of type-f investors in period T is

nfT =
T∏
t=1

[fXat + (1− f)Xbt] = exp

{
T∑
t=1

log [fXat + (1− f)Xbt]

}
, (3)

14Nevertheless, our approach is broadly compatible with an interpretation based upon wealth accumula-
tion. When investors with higher realized returns accumulate more wealth, they tend to have more resources,
and therefore may become more influential in the population. This influence is directly analogous to spread-
ing investment ideas to more individuals, which justifies the alternative perspective of Equation (1). However,
evolution toward dominance in the wealth distribution is not always equivalent to dominance in price-setting
(Kogan et al., 2006, 2017).
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where we have assumed that nf0 = 1 without loss of generality. Taking the logarithm of the

number of offspring, and once again applying Kolmogorov’s law of large numbers, we have:

1

T
log nfT

a.s.−→ E[log (fXa + (1− f)Xb)] (4)

as T increases without bound, where “
a.s.−→” in (4) denotes almost sure convergence.

Expression (4) is simply the expectation of the log-geometric average growth rate of the

population, which we will call α(f) henceforth:

α(f) ≡ E[log (fXa + (1− f)Xb)]. (5)

The optimal f that maximizes (5) is given by Brennan and Lo (2011):

Proposition 1. Under Assumptions 1–3, the growth-optimal type f ∗ that maximizes (5) is:

f ∗ =


1 if E[Xb/Xa] < 1

solution to (7) if E[Xa/Xb] ≥ 1 and E[Xb/Xa] ≥ 1

0 if E[Xa/Xb] < 1,

(6)

where f ∗ is defined implicitly in the second case of (6) by:

E
[

Xa −Xb

f ∗Xa + (1− f ∗)Xb

]
= 0 (7)

and the expectations in (6)-(7) are with respect to the joint distribution Φ(Xa, Xb).

The growth-optimal type f ∗ is a function of the financial environment Φ(Xa, Xb). The

role of Φ is critical in our framework, as it completely characterizes the effect of an investor’s

actions upon the type’s reproductive success. The growth-optimal type f ∗ dominates the

population in the long run because it grows exponentially faster than any other type. We

will refer to f ∗ as the evolutionary equilibrium philosophy. It emerges through the forces

of natural selection quite differently from the neoclassical economic framework of expected

utility optimization, which implies deterministic choice except in special cases of exact indif-

ference. The random behavior in (6) is closely related to “bet hedging” in the evolutionary

biology literature (Cooper and Kaplan, 1982; Frank and Slatkin, 1990; Frank, 2011).15

15See Lo, Marlowe, and Zhang (2021) for experimental evidence in the context of financial decision making.
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3.2 Style Returns

Proposition 1 holds for any return distribution Φ(Xa, Xb) that satisfies Assumptions 1–2.

However, it is interesting to give (Xa, Xb) a factor structure, and study how the contagion

of investment ideas across investors affects the equilibrium investment philosophy f ∗.

Let r be the common component of returns shared by styles a and b, εa and εb the

style-specific components, and µa and µb the mean returns of styles a and b.

Assumption 4. The gross returns to the two styles are

Xa = µa + βar + εa

Xb = µb + βbr + εb,

where βa > 0 and βb > 0 are the sensitivity of style returns to the common return component;

r, εa and εb are independent and bounded random variables such that Xa and Xb are always

positive; and E[r] = E[εa] = E[εb] = 0.

Assumption 4 allows for a very wide set of possible investment styles. For instance, the

two styles could be active versus passive investments, value versus growth stocks, funda-

mental versus quantitative strategies, domestic versus global investment, large firm versus

small firm, long-only versus long-short, single-factor vs. multi-factor, and so forth. Different

assumptions about the characteristics of µi, βi, εi (where i = a, b), and r imply different

cases of interest.

4 Evolutionary Survival of Investment Styles

We next ask the question: how does the evolutionary equilibrium investment philosophy

depend on the style return characteristics (including the expected returns, return betas, and

return variances)? We first identify the conditions for an equilibrium to consist solely of the

choice of a single style, and then study the case where the long-run equilibrium population

consists of investors who adopt both styles with positive probability. We briefly refer to

empirical testing, but this topic is covered more extensively in Section 8.

4.1 Single Dominant Style

By Proposition 1, the expected value of the ratios Xa/Xb and Xb/Xa determines whether

the evolutionary equilibrium investment philosophy involves only one style, or a combination

11



of the two. Let y ≡ Xa/Xb, so that

E[y] = E
[
Xa

Xb

]
= E

[
µa + βar + εa
µb + βbr + εb

]
, (8)

E[1/y] = E
[
Xb

Xa

]
= E

[
µb + βbr + εb
µa + βar + εa

]
. (9)

For corner solutions, we focus on the case where style a dominates the population (f ∗ = 1).

The case where style b dominates the population (f ∗ = 0) is similar. It is obvious from (9)

that the following comparative statics on the conditions for f ∗ = 1 apply:

Proposition 2 (Comparative Statics for Mean Return). Under Assumptions 1–4, style a-

investors dominate the population if E[1/y] < 1, which tends to occur (E[1/y] decreases)

if:

(i) the mean return of style a, µa, increases;

(ii) the mean return of style b, µb, decreases.

It is not surprising that a higher expected return of a style will promote its dominance

in the population. To derive results for other return characteristics, we need to better

understand E[y] and E[1/y]. Applying the Taylor approximation of y as a function of r, εa

and εb to estimate (8)-(9) we obtain

y(r, εa, εb) =
Xa

Xb

=
µa + βar + εa
µb + βbr + εb

= y(0, 0, 0) +
∂y0
∂r

r +
∂y0
∂εa

εa +
∂y0
∂εb

εb

+
1

2

(
∂2y0
∂r2

r2 +
∂2y0
∂ε2a

ε2a +
∂2y0
∂ε2b

ε2b + 2
∂2y0
∂r∂εa

rεa + 2
∂2y0
∂r∂εb

rεb + 2
∂2y0
∂εa∂εb

εaεb

)
+ o(r2, ε2a, ε

2
b).

After taking the expected value of y, the linear terms vanish, since E[r] = E[εa] = E[εb] = 0.

The second-order cross terms also vanish because r, εa and εb are independent. Therefore,

E[y] can be approximated by y(0, 0, 0) and the second-order terms Var(r), Var(εa) and

Var(εb). A similar approximation applies for E[1/y], which is summarized in the following:

Lemma 1. Under Assumptions 1–4, the second-order Taylor approximation with respect to

12



r, εa and εb is

E[y] = E
[
Xa

Xb

]
≈ µa
µb

+
βaβ

2
b

µ3
b

(
µa
βa
− µb
βb

)
Var(r) +

µa
µ3
b

Var(εb),

E[1/y] = E
[
Xb

Xa

]
≈ µb
µa

+
β2
aβb
µ3
a

(
µb
βb
− µa
βa

)
Var(r) +

µb
µ3
a

Var(εa).

We define µa/βa and µb/βb as a style’s scaled alpha, which plays a critical role in de-

termining the comparative statics for return beta and volatility, as shown in the next two

propositions.

The scaled alpha has an interesting analogy to the slope of the security market line in

the Capital Asset Pricing Model. In that model, all investor portfolios satisfy the same

security market line slope, (R − RF )/β, where R is the investor’s mean (net) return, RF is

the risk-free rate of return, and β is the portfolio’s sensitivity to the return on the market.

In our model, µa and µb are gross returns, and the scaled alpha can be decomposed into

µ

β
=

1 +R

β
=
R−RF

β
+

1 +RF

β
.

Therefore, if CAPM holds, the scaled alpha for the two investment styles differ only by

(1+RF )/β. In the same market where RF is a constant, this is determined by a style’s beta,

so that beta becomes the key determinant of strategy survival. The importance of scaled

alpha will become clear after the following results.

Proposition 3 (Comparative Statics for Return Beta). Under Assumptions 1–4, style a-

investors dominate the population if E[1/y] < 1. Up to a second-order Taylor approximation

with respect to r, εa and εb, this tends to occur (that is, E[1/y] decreases) if:

(i) the sensitivity of style b to the common component, βb, increases;

(ii) the sensitivity of style a to the common component, βa, increases, conditional on style

a’s scaled alpha being sufficiently greater than style b’s scaled alpha:

µa/βa
µb/βb

> 2;

(iii) the sensitivity of style a to the common component, βa, decreases, conditional on style

a’s scaled alpha being sufficiently small relative to style b’s scaled alpha:

µa/βa
µb/βb

< 2.
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The conditions for style a to dominate in the population are not symmetric with respect to

βa and βb. First of all, a higher βb will always promote the dominance of style a. Intuitively,

this is because the log-geometric average growth rate (5) is nonlinear with respect to returns,

and therefore the upside and downside for style b’s realized returns do not offset. As a result,

the high systematic risk of the competing style b promotes the success of style a because the

risk causes near-extinctions of style b in the market selection process.

However, this is not always the case for βa. For the same reason as described above, the

high systematic risk of style a reduces its own success, but this is only true conditionally

on style a’s scaled alpha being comparable to or smaller than style b’s. If the reverse is

true, that is, if the mean return on style a is sufficiently strong relative to its risk (if style

a’s scaled alpha is sufficiently higher than style b’s), the higher βa actually encourages the

dominance of style a in the population. In other words, style a’s high scaled alpha serves as

protection from its own downside risk.

Proposition 4 (Comparative Statics for Return Variance). Under Assumptions 1–4, style a-

investors dominate the population if E[1/y] < 1. Up to a second-order Taylor approximation

with respect to r, εa and εb, this tends to occur (that is, E[1/y] decreases) if:

(i) the variance of style-specific component for a, V ar(εa), decreases;

(ii) the variance of the common component, V ar(r), increases, conditional on style a’s

scaled alpha being greater than style b’s scaled alpha:

µa
βa

>
µb
βb

(iii) the variance of the common component, V ar(r), decreases, conditional on style a’s

scaled alpha being smaller than style b’s scaled alpha:

µa
βa

<
µb
βb

Investment style a tends to dominate if its idiosyncratic variance is small, for essentially

the same reason discussed earlier for return betas. A high variance tends to work against a

style because of the nonlinearity of the long-term growth, as reflected in (5); the upside and

downside for style a’s realized returns fail to offset.

Again, since we are considering the conditions for style a to dominate in this case, the

results are not symmetric with respect to the idiosyncratic variances of style a and style b.

It is interesting that style b’s idiosyncratic variance does not affect style a’s dominance (up

to a second-order Taylor approximation).
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The directional dependence on the variance of the common component is determined

by the scaled alpha. A higher variance of the common component encourages style a to

be dominant only if its scaled alpha is higher than style b’s. Intuitively, a higher V ar(r)

increases the variance of both investment styles, and the overall effect therefore depends on

the relative sizes of the betas of both styles. However, the effect of risk also depends on the

mean return. A high mean return acts as a buffer that reduces the importance of risk. It is

therefore the scaled alpha that matters, not merely beta.

Proposition 2–4 together give a complete picture of the comparative effects on the condi-

tions of f ∗ = 1 (that is, always choosing style a) for mean returns, return betas, and return

variances. Parallel results can also be derived for f ∗ = 0 (always choosing style b) using

approximations for E[y] in Lemma 1 instead. In the next section, we discuss mixed survival

of investment styles.

4.2 The Evolution of Diversity

In general, if the evolutionary equilibrium philosophy involves both investment styles, f ∗ is

given by (7). With Assumption 4, the first-order condition becomes:

E
[

(µa − µb) + (βa − βb)r + εa − εb
[fµa + (1− f)µb] + [fβa + (1− f)βb]r + [fεa + (1− f)εb]

]
= 0. (10)

Taking derivatives of (10) to µa and µb, we immediately have the following comparative

statics for the philosophy f ∗.

Proposition 5 (Comparative Statics for Mean Return). Under Assumptions 1–4, when the

evolutionary equilibrium philosophy has mixed investment styles, the equilibrium philosophy

f ∗ increases when:

(i) the mean return of style a, µa, increases;

(ii) the mean return of style b, µb, decreases.

Not surprisingly, Proposition 5 is similar to Proposition 2; they both assert that a higher

expected return encourages investment in that style. To empirically test Propositions 2

and 5, one can estimate historical mean returns of value versus growth stocks, and see if a

change in their realized returns over time corresponds to change in the frequencies of value

versus growth investors. These can be estimated, e.g., from mutual fund holdings or social

media data. In the context of hedge funds, one can look at the average return of different

investment styles, such as fundamental versus quantitative in a certain period, and correlate
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that with attrition rates in different hedge fund categories. Section 8 discusses directions for

empirical tests in more detail.

To derive further comparative statics, we again use a Taylor expansion to approximate

the first-order condition (10).

Lemma 2. Under Assumptions 1–4, up to a second-order Taylor approximation with respect

to r, εa and εb, the first-order condition (10) is

0 = (µa − µb) [fµa + (1− f)µb]
2 + βaβb [fβa + (1− f)βb]

(
µa
βa
− µb
βb

)
V ar(r)

+ (1− f)µaV ar(εb)− fµbV ar(εa).

When E[Xa/Xb] ≥ 1 and E[Xb/Xa] ≥ 1, the evolutionary equilibrium philosophy in-

volves mixed investment styles, and f ∗ is given by Lemma 2, up to a second-order Taylor

approximation.

Proposition 6 (Comparative Statics for Return Beta). Under Assumptions 1–4, when the

evolutionary equilibrium philosophy has mixed investment styles, up to a second-order Taylor

approximation with respect to r, εa and εb, the equilibrium philosophy f ∗ increases when:

(i) βa increases, if µa/βa
µb/βb

> 2 + 1−f∗
f∗

(
βb
βa

)
;

(ii) βa decreases, if µa/βa
µb/βb

< 2 + 1−f∗
f∗

(
βb
βa

)
;16

(iii) βb decreases, if µb/βb
µa/βa

> 2 + f∗

1−f∗

(
βa
βb

)
;

(iv) βb increases, if µb/βb
µa/βa

< 2 + f∗

1−f∗

(
βa
βb

)
.17

The relationship between the evolutionary equilibrium philosophy f ∗ and return beta

is determined by three components: the ratio of scaled alphas, the ratio of betas, and the

philosophy f ∗. Figure 1 shows the regions in which the return beta promotes or opposes the

investment style, as a function of the ratio of the scaled alpha and the philosophy f ∗.

Proposition 6 generalizes Proposition 3 from the case of a single dominant style to the

case of mixed styles. To see this, suppose style a is dominant and f ∗ = 1. The condition in

the fourth item of Proposition 6 is always true, and therefore the dominance tends to occur

when βb increases, which corresponds to the first item of Proposition 3, and f ∗ = 1 in Figure

1b. Similarly, the condition in the first two items of Proposition 6 reduces to the second

16This is always true when f∗ ≤ µb

µa+µb
because the right hand side reduces to 2 + µa/βa

µb/βb
.

17This is always true when f∗ ≥ µb

µa+µb
, since the right hand side reduces to 2 + µb/βb

µa/βa
.
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(a) Comparative statics for βa (b) Comparative statics for βb

Figure 1: Comparative Statics for Return Beta: βa (1a) and βb (1b). In the case of βa
(1a), the vertical axis represents the ratio of the scaled alpha, µa/βa

µb/βb
, and the horizontal

axis represents the evolutionary equilibrium philosophy, f ∗. Three lines of different colors
represent the boundaries between promoting and demoting style a for three different ratios
of beta, βa/βb. The upper region represents when βa promotes style a, while the lower region
represents when βa opposes style a. The case of βb (1b) is symmetrical.

and third item of Proposition 3 trivially, and this corresponds to f ∗ = 1 in Figure 1a. Once

again, the scaled alphas µa/βa and µb/βb play a critical role in determining the direction of

beta’s impact on the philosophy f ∗. Instead of threshold 2 in Proposition 3, the threshold

here is adjusted by a positive amount, the adjustment depending on f ∗ and βa/βb, as shown

in Figure 1.

Factor sensitivity βa always opposes style a when f ∗ ≤ µb
µa+µb

. Intuitively, this means that

when the equilibrium frequency of style a-investors is small relative to the proportion of style

b’s expected return µb
µa+µb

, it promotes the survival of a philosophy to decrease the weight

of style a as style a’s beta increases. On the other hand, when f ∗ ≥ µb
µa+µb

, it promotes the

survival of a philosophy to decrease the weight of style b as style b’s beta increases, symmetric

to the case for βa.

When two investment styles have comparable scaled alphas (µa/βa
µb/βb

≈ 1), βa opposes style

a and βb opposes style b. In other words, a lower beta investment style is preferred if its

scaled alpha is comparable to other styles in the market. In the context of hedge funds, a

testable implication is that a low beta strategy should attract more investors after controlling
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for other factors such as expected return and volatility, especially when the scaled alpha is

comparable with alternative investment styles.

This result is derived using exogenous returns (Assumption 4). However, if investors are

attracted to the low-beta style, they may drive up its price and drive down its expected

return, which tends to have a negative feedback effect on the survival of the low-beta style.

Nevertheless, we show that these results hold in a market equilibrium setting with endogenous

returns in Section 6.

In contrast, if one investment style has a much higher scaled alpha than the other style

(corresponding to the upper regions in Figure 1), a higher beta actually promotes the pop-

ularity of that style. This is because the scaled alpha is so large that it gives substantial

downside protection against any increase in variance brought by a higher beta. More vari-

ance becomes good for survival in this case. For alternative investments such as hedge funds,

private equity and venture capital, the expected return can be very high and beta can be

very low. Therefore, the scaled alpha for these investments can be much higher than that of

traditional investment styles. Our model predicts that high-beta styles are favored in this

case. In the context of the stock market, this implies that investment styles in high beta

stocks will gain popularity if their scaled alphas are sufficiently high, leading to a decrease in

returns. In contrast, investment styles in low beta stocks lose popularity, leading to higher

returns. This outcome is consistent with the empirical anomaly that low beta stocks earn

high expected returns, as contrasted with the traditional risk premium theory that they

should earn low expected returns. Our result can therefore justify the use of a common

defensive (low-risk) “smart beta” strategy (Frazzini and Pedersen, 2014).

Proposition 7 (Comparative Statics for Return Variance). Under Assumptions 1–4, when

the evolutionary equilibrium philosophy has mixed investment styles, up to a second-order

Taylor approximation with respect to r, εa and εb, the equilibrium philosophy f ∗ increases

when:

(i) the variance of style-specific component for a, V ar(εa), decreases;

(ii) the variance of style-specific component for b, V ar(εb), increases;

(iii) the variance of the common component, V ar(r), increases, conditional on style a’s

scaled alpha being greater than style b’s scaled alpha: µa
βa
> µb

βb
;

(iv) the variance of the common component, V ar(r), decreases, conditional on style a’s

scaled alpha being smaller than style b’s scaled alpha: µa
βa
< µb

βb
.
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There will be more style a-investors if style a’s idiosyncratic variance is small, and if

style b’s idiosyncratic variance is large. This also generalizes Proposition 4 from the case of a

single dominant style to the case of mixed styles. Intuitively, a higher style-specific variance

discourages investment in that style,18 because of the nonlinearity of the long-term growth

as reflected in (5). In other words, the possibility of near-wipeouts of an investment style is

disproportionately important, opposing the survival of more volatile investment styles.

The directional dependence of the equilibrium philosophy on the variance of the common

component is again determined by the scaled alpha. A higher variance of the common

component encourages investment in the style with a higher scaled alpha. The reason is

similar to that in our previous discussions. A higher V ar(r) increases the variance of both

investment styles, and the overall effect therefore depends on the relative sizes of the betas

of both styles. However, the effect of risk also depends on the mean return. A high mean

return acts as a buffer that reduces the importance of risk. It is therefore the scaled alpha

that matters, not only a comparison of betas.

Proposition 4 and 7 offer interesting new possibilities for the empirical consequences of

return variance. In the context of hedge funds, one can test whether high idiosyncratic vari-

ance in returns opposes the survival of that investment style, or even specific fund managers

with allocations in that style. Industry practitioners often use the Sharpe ratio to select fund

managers. If hedge funds truly deliver returns with low correlation to the broader markets, a

high Sharpe ratio would directly correspond to low idiosyncratic return variance, consistent

with the implications of our model.

Moreover, the effect of the variance of the common component depends on each strategy’s

scaled alpha. The variance of the common component of two investment styles in general

corresponds to the volatility of broader factors such as the market portfolio. This implies that

during volatile times, investors with higher scaled alpha tend to flourish. This is directly

testable in both individual investment strategies and hedge funds. For example, one can

compare the frequency of investors in value versus growth strategies, momentum versus

defensive, and so on, during periods of high and low market volatility, and test whether

high market volatility promotes survival of those types that invest heavily in styles with

high scaled alpha. With hedge fund data, one can study the attrition rates of different

investment styles through different market cycles, testing the similar hypothesis that high

market volatility promotes hedge fund categories with high scaled alpha.

18In Han, Hirshleifer, and Walden (2021) the opposite is true: variance promotes survival. In Han,
Hirshleifer, and Walden (2021), this effect is driven by a selection bias whereby high returns are more likely
to be reported, which is intensified by high variances. The model here allows for a more general distribution
in the number of offspring, which results in a distinct intertemporal dynamic effect: a long-run “evolutionary
hedging” benefit to avoid very low reproduction outcomes.
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Propositions 5–7 together thus give a complete picture of the comparative statics of the

equilibrium philosophy f ∗, with respect to mean returns, return betas, and return variances.

4.3 A Special Case

We now apply the results derived above to study a few common competing investment styles.

In particular, we consider a special case in which returns are further specified by:

Assumption 5. Investment styles a and b have the same mean return, and style a has a

higher beta and a higher style-specific variance than style b:

µa = µb; βa > βb; V ar(εa) > V ar(εb).

Style a has higher systematic risk and higher volatility than style b. This specification is

suggestive of several possible real-world applications, such as active versus passive investing,

or investing by high versus low income (high versus low dividend yield). Another application

is the so-called defensive investing aimed at stocks with low volatility, a common smart beta

strategy. For example, AQR offers funds marketed as “defensive” that are designed to focus

on low volatility stocks. We will call a the “riskier” style and b the “safer” style.

It immediately follows that the scaled alpha is higher for style b:

µa
βa

<
µb
βb
,

and Lemma 1 reduces to:

E[y] = E
[
Xa

Xb

]
≈ 1 +

(
βaβ

2
b

µ3
b

)(
µa
βa
− µb
βb

)
Var(r) +

(
µa
µ3
b

)
Var(εb),

E[1/y] = E
[
Xb

Xa

]
≈ 1 +

(
β2
aβb
µ3
a

)(
µb
βb
− µa
βa

)
Var(r) +

(
µb
µ3
a

)
Var(εa) > 1.

Up to a second-order Taylor approximation, E[1/y] is always greater than 1, which implies

that style a alone is never an equilibrium. The long-run equilibrium philosophy is either

purely style b (with a higher scaled alpha), or a combination of both investment styles, in

which case the first-order condition for f in Lemma 2 reduces to:

0 = [fβa + (1− f)βb] (βb − βa)V ar(r) + (1− f)V ar(εb)− fV ar(εa),

from which the evolutionary equilibrium philosophy f ∗ can be solved. We summarize these

observations as follows:
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Proposition 8. Under Assumptions 1–5, up to a second-order Taylor approximation with

respect to r, εa and εb, style a alone is never an evolutionary equilibrium. Style b alone is

evolutionary equilibrium if

V ar(εb) < βb(βa − βb)V ar(r). (11)

Otherwise the population consists of investors in both styles in the long run, and the equilib-

rium fraction of investors in style a is given by:

f ∗ =
V ar(εb)− βb(βa − βb)V ar(r)

V ar(εa) + V ar(εb) + (βa − βb)2V ar(r)
. (12)

It is evident from Proposition 8 that the population tends to have only investors in

style b when the common component has a high volatility (V ar(r)), the safer style has a low

volatility (V ar(εb)), and the riskier style has a high beta (βa). In the case that the population

consists of investors in both styles, the fraction of investors in style a increases as the variance

of the a-specific component (V ar(εa)) decreases, the variance of the b-specific component

(V ar(εb)) increases, and the variance of the common component (V ar(r)) decreases. This is

consistent with our earlier discussions indicating that risk tends to reduce the evolutionary

success of a style.

When comparing the riskier style and the safer style, Proposition 8 implies that the

riskier style alone is never optimal. A certain amount of allocation in the safer style is

always desirable. It also implies that allocation in the riskier style tend to increase in stable

environments and decrease in volatile markets.

5 General Replication Rules

In our basic model, we have assumed that the replication rule, i.e., the mapping from the

gross returns Xa and Xb to the number of offspring is an identity function (see Assumption

3). Here we consider a general class of replication rules and assess the robustness of the

results we derived so far.

5.1 General Replication Function and Equilibrium Philosophy

We first generalize Assumption 3 to allow for a much more general class of replication rules.

Assumption 6. The number of offspring generated by the investment style a or b is given by

ψ(Xa) or ψ(Xb), where ψ(·) is a replication function that is twice differentiable, non-negative,
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non-decreasing, and concave:

ψ ≥ 0, ψ′ ≥ 0, ψ′′ ≤ 0.

Assumption 6 reflects a few natural conditions for any reasonable evolutionary process.

ψ ≥ 0 guarantees that the number of offspring is non-negative. ψ′ ≥ 0 guarantees that

higher returns are preferred and therefore do not lead to fewer followers. ψ′′ ≤ 0 corresponds

to a diminishing marginal effect of return-biased transmission—an increase in returns from

1% to 2% is more influential than that from 10% to 11%.

By following the same derivations in (2)–(4), it is easy to show that the average log

population for philosophy f satisfies:

1

T
log nfT

a.s.−→ E[log (fψ(Xa) + (1− f)ψ(Xb))] ≡ αψ(f) (13)

as T increases without bound. We add the subscript “ψ” to the population growth rate

αψ(f), which emphasizes the fact that ψ determines the growth rate, and therefore, the

optimal investment philosophy. The optimal f that maximizes (13) is given by:

Proposition 9. Under Assumptions 1, 2, and 6, the growth-optimal type f ∗ψ that maximizes

(13) is:

f ∗ψ =


1 if E [ψ(Xb)/ψ(Xa)] < 1

solution to (15) if E [ψ(Xa)/ψ(Xb)] ≥ 1 and E [ψ(Xb)/ψ(Xa)] ≥ 1

0 if E [ψ(Xa)/ψ(Xb)] < 1,

(14)

where f ∗ψ is defined implicitly in the second case of (14) by:

E

[
ψ(Xa)− ψ(Xb)

f ∗ψψ(Xa) + (1− f ∗ψ)ψ(Xb)

]
= 0 (15)

and the expectations in (14)-(15) are with respect to the joint distribution Φ(Xa, Xb).

We can derive a parallel set of comparative statics results for the growth-optimal philos-

ophy f ∗ψ with respect to return characteristics. In general, the results in Propositions 2–7 are

robust to general replication functions ψ, though in certain cases, explicit characterizations

of boundary conditions are no longer possible in terms of simple expressions of µ and β. The

derivations are quite complicated analytically, so we summarize the key conclusions here and

leave the mathematical details to the proofs in Appendix C.
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5.2 Single Dominant Style

We first provide comparative statics results for single dominant rules, i.e., when f ∗ψ is either

0 or 1.

Proposition 10 (Comparative Statics for Single Dominant Rules under General Replica-

tion Functions). Under Assumptions 1, 2, 4, and 6, style a-investors tend to dominate the

population if:

(i) (a) the mean return of style a, µa, increases;

(b) the mean return of style b, µb, decreases.

(ii) (a) βb increases;

(b) βa increases, conditional on style a’s ψ-scaled alpha being sufficiently greater than

style b’s ψ-scaled alpha:
ψ(µa)/βa
ψ(µb)/βb

> C1;

(c) βa decreases, conditional on style a’s ψ-scaled alpha being sufficiently small relative

to style b’s ψ-scaled alpha:
ψ(µa)/βa
ψ(µb)/βb

< C1;

(iii) (a) the variance of style-specific component for a, V ar(εa), decreases;

(b) the variance of the common component, V ar(r), increases, conditional on style

a’s ψ-scaled alpha being sufficiently greater than style b’s ψ-scaled alpha:

ψ(µa)/βa
ψ(µb)/βb

> C2;

(c) the variance of the common component, V ar(r), decreases, conditional on style

a’s ψ-scaled alpha being sufficiently small relative to style b’s ψ-scaled alpha:

ψ(µa)/βa
ψ(µb)/βb

< C2.

The conditions in (ii)–(iii) hold up to second-order Taylor approximation with respect to r,

εa and εb. C1 and C2 are given in the proof in Appendix C.

In Proposition 10, case (i) generalizes Proposition 2, case (ii) generalizes Proposition 3,

and case (iii) generalizes Proposition 4.
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5.3 Diverse Investment Styles

The next result provides comparative statics when the evolutionary equilibrium philosophy

involves both investment styles.

Proposition 11 (Comparative Statics for Diversity under General Replication Functions).

Under Assumptions 1, 2, 4, and 6, when the evolutionary equilibrium philosophy has mixed

investment styles, the equilibrium philosophy f ∗ increases when:

(i) (a) the mean return of style a, µa, increases;

(b) the mean return of style b, µb, decreases.

(ii) (a) βa increases, if ψ(µa)/βa
ψ(µb)/βb

> C3;

(b) βa decreases, if ψ(µa)/βa
ψ(µb)/βb

< C3;

(c) βb decreases, if ψ(µa)/βa
ψ(µb)/βb

> C ′3;

(d) βb increases, if ψ(µa)/βa
ψ(µb)/βb

< C ′3.

(iii) (a) the variance of style-specific component for a, V ar(εa), decreases;

(b) the variance of style-specific component for b, V ar(εb), increases;

(c) the variance of the common component, V ar(r), increases, conditional on style

a’s ψ-scaled alpha being sufficiently greater than style b’s ψ-scaled alpha:

ψ(µa)/βa
ψ(µb)/βb

> C4;

(d) the variance of the common component, V ar(r), decreases, conditional on style

a’s ψ-scaled alpha being sufficiently small relative to style b’s ψ-scaled alpha:

ψ(µa)/βa
ψ(µb)/βb

< C4.

The conditions in (ii)–(iii) hold up to second-order Taylor approximation with respect to r,

εa and εb. C3, C
′
3, and C4 are given in the proof in Appendix C.

In Proposition 11, case (i) generalizes Proposition 5, case (ii) generalizes Proposition 6,

and case (iii) generalizes Proposition 7. Overall, Propositions 10–11 show that the equilib-

rium philosophy f ∗ψ has the same set of dependencies on return characteristics as those for

f ∗, with just a different notion of ψ-scaled alpha and a different set of constants specifying

boundary conditions. These results confirm that our key conclusions in Section 4 are robust

to a very general class of replication rules.
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6 Diversity in Market Equilibrium

So far, we have viewed the returns on investment style as exogenous (Assumption 4). How-

ever, in market equilibrium, stock returns reflect shifts in supply and demand as the frequen-

cies of different investment styles shift. Here we extend the model to reflect the fact that

the imbalance between supply and demand for the securities traded by styles a and b affects

their expected returns. In particular, we build a general equilibrium model with endogenous

returns and study its implications for the equilibrium investment philosophy.

6.1 A General Equilibrium Model

Fundamental value vs actual price. We start by making a distinction between the

fundamental value and the actual price of style a and b. We interpret Xat and Xbt defined

in Assumption 4 as gross returns to the fundamental value processes of style a and b. We

use P̃a,t and P̃b,t to denote the corresponding fundamental values, which are given by:

P̃a,t = Xat · P̃a,t−1,

P̃b,t = Xbt · P̃b,t−1.
(16)

On the other hand, the actual prices, Pa,t and Pb,t, may deviate from fundamental values

due to forces of supply and demand in the market. They are related to the actual returns,

Rat and Rbt, by:

Pa,t = Rat · Pa,t−1,

Pb,t = Rbt · Pb,t−1.
(17)

The distinction between fundamental value and actual price follows the classical work of Lux

(1995), who built a model of herd behavior in speculative markets in which the demand for

a single asset is determined by deviations of its price from the fundamental value.19

19It is worth noting that many models in this literature start with an exogenous stochastic dividend process,
and solve for equilibrium prices given a certain class of beliefs or investment strategies. See, for example,
Brock and Hommes (1997, 1998), Hong, Stein, and Yu (2007), Evstigneev, Hens, and Schenk-Hoppé (2006,
2008), Bottazzi and Dindo (2014), Bottazzi, Dindo, and Giachini (2018). In our model, we are particularly
interested in the relationship between survival and asset return characteristics such as mean returns, betas,
systematic risk, and idiosyncratic volatility. Therefore, it is more appropriate in our case to start with a factor
model of the value (or return) rather than the cashflow (or dividend). After all, the cashflow determines the
value and the two approaches are similar in this sense. Therefore, it is not surprising that these models share
certain common elements. For example, in Brock and Hommes (1998), heterogeneous beliefs are assumed to
be functions of past deviations from the fundamental.
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Demand, supply, and market clearing. Let U =
{

0, 1
K
, 2
K
, · · · , 1

}
= {f1, f2, · · · , fK+1}

be a discrete universe that consists of K + 1 types of investors. Let qft be the frequency of

type-f investors in the population in period t:

qft =
nft∑
g∈U n

g
t

, (18)

so that the frequencies of all types of investors sum to one. Let the aggregate demand in style

a in period t be the frequency-weighted average investment philosophy in the population:

λt =
∑
f∈U

fqft . (19)

By definition, the aggregate demand begins at 0.5, and evolves to a value between zero and

one as the two investment styles generate different returns.

Following the literature on heterogeneous agent models and noise traders (Lux, 1995,

2009; Chiarella, Dieci, and He, 2009; Hommes and Wagener, 2009), we make a distinction

between speculators and fundamentalists in the market. Speculators refer to investors we

have considered so far, and their intertemporal dynamics follow the return-biased transmis-

sion. Given actual prices, the dollar demand from speculators in the market for asset a and

asset b are WSλt and WS(1−λt), where WS is the total wealth of all speculators. Therefore,

the demand in shares is:

Da,t =
WSλt
Pa,t

, Db,t =
WS(1− λt)

Pb,t
. (20)

On the other hand, a second group of traders, the fundamentalists, offer supply in the

market. Their supply is determined by the difference between the fundamental value and

actual price:20

Sa,t =
WF

(
Pa,t/P̃a,t

)k
Pa,t

, Sb,t =
WF

(
Pb,t/P̃b,t

)k
Pb,t

, (21)

where WF represents the total wealth from the fundamentalists,
(
Pa,t/P̃a,t

)k
and

(
Pb,t/P̃b,t

)k
represent the dollar supply for asset a and b, and k > 0 is a constant measuring the elas-

ticity/sensitivity of supply with respect to deviations from the fundamental value. A higher

20In this sense, the fundamentalists can also be regarded as market makers to meet the demand. An
alternative interpretation is that the fundamentalists are also generating demand in the market together
with the speculators. The aggregate demand is met by a constant one unit of supply. This is the actual
specification by Lux (1995) which is equivalent to our specification here.
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value of k corresponds to a higher sensitivity from fundamentalists in response to such de-

viations.21

When the market clears, supply must equal demand. Therefore we have:

Da,t = Sa,t =⇒ WSλt
Pa,t

=
WF

(
Pa,t/P̃a,t

)k
Pa,t

,

Db,t = Sb,t =⇒ WS(1− λt)
Pb,t

=
WF

(
Pb,t/P̃b,t

)k
Pb,t

.

(22)

Price fluctuations are caused by the endogenous mechanism relating the fraction of investors

choosing style a to the distance between the fundamental value and actual price.22

6.2 Price, Return, and Philosophy in Equilibrium

Equilibrium prices and returns. Solving for market clearing conditions, (22), we have

the following result for the equilibrium prices and returns.

Proposition 12. In the market equilibrium model, the endogenous equilibrium prices are

given by:

Pa,t = P̃a,t

(
WSλt
WF

) 1
k

,

Pb,t = P̃b,t

(
WS(1− λt)

WF

) 1
k

,

(23)

and the endogenous equilibrium returns are given by:

Ra,t = Xa,t

(
λt
λt−1

) 1
k

,

Rb,t = Xb,t

(
1− λt

1− λt−1

) 1
k

.

(24)

21We choose the specification in (21) because it allows us to derive analytical results explicitly. Alternative
specifications are possible as long as the supply depends on deviations from the fundamental value.

22In addition, the relative wealth between the speculators and fundamentalists, WS and WF , can also be
modeled, and one can study the survival of speculators (noise traders) versus fundamentalists, and their
impact on asset prices. However, the survival of noise traders has been extensively studied and is not the
focus of our paper (see, for example, De Long et al. (1990, 1991), Kyle and Wang (1997), Hirshleifer and Luo
(2001), Hirshleifer, Subrahmanyam, and Titman (2006), Yan (2008), Kogan et al. (2006, 2017)). Therefore
we take a simpler route to hold the fraction of speculators versus fundamentalists constant, which is enough
to model the dependence of endogenous prices on demand fluctuations for style a and b.
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There are several interesting observations that can be made from Proposition 12. First,

the aggregate demand (λt) determines the equilibrium prices and their deviations from the

fundamental value, while it is the change in aggregate demand between two periods (λt/λt−1)

that determines the equilibrium returns. For example, as style a generates higher returns,

investors with higher f will generate more offspring in the next period, driving the aggregate

demand in style a higher. As a result, we expect the cost of purchasing style a securities to

increase, which reduces the return for buying and holding style a.

Second, the equilibrium prices are affected by the fraction of speculators versus funda-

mentalists in the market (WF/WS). Because our model does not focus on how this fraction

changes over time, the price dynamics is mainly driven by the relative demand (λt).

Third, the exponent 1/k describes the shape of a power-law market impact from trading,

which is the reciprocal of the sensitivity to price deviations by the fundamentalists. Higher

sensitivities lead to milder price impact and lower sensitivities lead to stronger price impact.

This is closely related to Kyle’s (1985) market microstructure model in which liquidity is

measured by an estimate of the log-volume required to move the price by one dollar.23

Finally, if we consider price deviations from the fundamental value:

Pa,t

P̃a,t
=

(
WSλt
WF

) 1
k

,

Pb,t

P̃b,t
=

(
WS(1− λt)

WF

) 1
k

,

(25)

our model implies that higher demand in a style (λt) leads to a higher degree of price deviation

(bubble), and a higher level of supply sensitivity (k) makes it harder to substantially deviate

from the fundamental values, or less likely to form bubble.

Equilibrium philosophy with endogenous returns. Given the endogenous returns in

Proposition 12, we denote an equilibrium philosophy by f e, with superscript e indicating

endogenous returns.

Proposition 13. Under Assumptions 1, 2, and 4 and the endogenous returns given by

the market clearing conditions, (22)–(24), the equilibrium philosophy f e that maximizes the

investor’s growth as T increases without bound is identical to f ∗ in Proposition 1 under the

simple replication rule given by Assumption 3, and to f ∗ψ in Proposition 9 under the general

replication rule given by Assumption 6.

23See also Bertsimas and Lo (1998), Lillo, Farmer, and Mantegna (2003), and Almgren et al. (2005) for
more detailed explorations of the power law of price impact in equity markets.
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Proposition 13 shows that though asset prices are affected in the long run by the relative

demand in style a to style b, the equilibrium philosophy remains the same. In other words,

our results in Propositions 2–11 remain robust in a model of market equilibrium. This is not

surprising given our remarks after Proposition 12. Indeed, equilibrium prices are affected

by the aggregate demand in the long run. However, the equilibrium returns, (24), are

determined by two terms—the returns on the fundamental value, and an adjustment term

that depends on the change in demand between two periods. In equilibrium, the second

term vanishes to a constant one.

Next, we provide two simulation examples to further demonstrate the effect of market

equilibrium.

6.3 Simulation Examples

We consider a log-linear specification for the fundamental value process in simulation, which

is slightly different from the linear specification in Assumption 4. The linear specification

allows us to derive simple closed-form results that highlight the central economic implications

in our theory. On the other hand, the log-linear specification is convenient in practice because

it models Xa and Xb as lognormal distributions, and therefore guarantees that the prices

(cumulative returns) do not go negative. The same strategy is also used by Hong, Stein, and

Yu (2007). The fundamental values of the two styles are given by:

Xa = exp (µa + βar + εa − 1) ,

Xb = exp (µb + βbr + εb − 1) ,
(26)

where

µa = µb = 1, βa = 2, βb = 0.1,

r ∼ N(0, 0.12), εa ∼ N(0, 0.32), εb ∼ N(0, 0.12),
(27)

and N denotes the normal distribution. We also set k = 1, WS = 2, and WF = 1 without

loss of generality.

Figure 2 demonstrates a market in which prices are determined endogenously, with five

philosophies (f = 0, 0.25, 0.5, 0.75, 1) over 5,000 generations. Figures 2a–2b focuses on the

first 50 generations, and show the (log)-endogenous price, the (log)-fundamental value, and

the price-to-fundamental ratio, respectively. Prices fluctuate around the fundamental value.

Style a is over-priced in this period due to its high demand initially. Figure 2c shows the

evolution of five philosophies (f = 0, 0.25, 0.5, 0.75, 1) over 5,000 generations, in which the
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vertical axis denotes the frequency of each type of investor in the population. f = 1.0 is

popular for a short period of time in the very beginning, consistent with the fact that style

a is over-priced in Figures 2a–2b. After that, the equilibrium philosophy f ∗ = 0.5 quickly

dominates the population. Finally, Figure 2d shows the price-to-fundamental ratio over the

entire course of the evolution. After an extended period of fluctuations, the ratio eventually

converges to one. In reality, the market conditions are constantly changing. Instead of the

long-run limit, the short-term oscillation shown here may be typical of the market.

(a) Price and Fundamental (First 50 Gen) (b) Price-to-Fundamental (First 50 Gen)

(c) Philosophy Evolution (d) Price-to-Fundamental

Figure 2: A demonstration of market equilibrium in which prices and returns are determined
endogenously. (2a) and (2b) show the fundamental value, price, and price-to-fundamental
ratio over the first 50 generations in evolution. (2c) and (2d) show the equilibrium philosophy
f e and the price-to-fundamental ratio over 5,000 generations.

In a slightly different simulation experiment, we increase the mean return of style a so

that in equilibrium f e = 1 is the dominant behavior:

µa = 1.1, µb = 1, βa = 2, βb = 0.1,

r ∼ N(0, 0.12), εa ∼ N(0, 0.32), εb ∼ N(0, 0.12),
(28)
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where N denotes the normal distribution. We also set k = 0.3, WS = 1.2, and WF = 1.

Figure 3 shows that market equilibrium prices may speed up the rate of convergence, by

comparing the evolution of the same five philosophies (f = 0, 0.25, 0.5, 0.75, 1) when returns

are exogenously determined by the fundamental value (Figure 3a), and when returns are

endogenously determined by market equilibrium (Figure 3b). In the former, the market still

contains multiple philosophies after 100 generations, while in the latter, f e = 1.0 dominates

the population after around 50 generations.

This phenomenon can be understood by the expression of equilibrium returns in (24).

When the aggregate demand is, for example, increasing for style a, market equilibrium

forces further enhance the returns for that style. In this sense, market equilibrium serves

as momentum for style returns, thereby helping the dominant style to dominate faster. The

same mechanism is also adopted in the computer science literature for optimizing the loss

function of deep neural networks.24

(a) Philosophy Evolution (Exogenous Returns) (b) Philosophy Evolution (Endogenous Returns)

Figure 3: Market equilibrium speeds up the rate of convergence. The evolution of the
equilibrium philosophy f ∗ with exogenous returns (3a) and the equilibrium philosophy f e

with endogenous returns (3b) are shown over 100 generations.

7 Psychological Bias and Investment Philosophies

We have assumed so far that investors are only influenced by the observed payoffs. In reality,

investors may also be persuaded to adopt an investment philosophy based upon whether

someone else has adopted it. In this section, we discuss two such psychological effects: the

conformist preference and attention to novelty.25

24See, for example, the adaptive momentum (Adam) algorithm (Kingma and Ba, 2015).
25Similar psychological factors in which investors’ choices depend mainly on the behavior and expectation

of others have been considered in the literature (see, for example, Lux (1995) and Pedersen (2022)). The key
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7.1 Conformist Preference

Investors may have conformist preferences (Klick and Parisi, 2008), perhaps through a mech-

anism of viewing other investors as being better informed, and therefore will be influenced

by the choices of others. We generalize the population dynamics between two generations in

(1) to capture this effect:

Xf
i,t =

[
Ifi,tXat + (1− Ifi,t)Xbt

]
exp

[
τ(f − λt−1)2

]
, (29)

where λt−1 is the average philosophy in the population in the previous generation t− 1, and

τ <= 0 is the intensity of conformity pressure. When τ = 0, (29) reduces to (1). When

τ < 0, the further f is away from the average philosophy λt−1, the more intense is the

conformity pressure.

By a similar derivation as (3), the population size of type-f investors in period T is:

nfT =
T∏
t=1

[fXat + (1− f)Xbt] exp
[
τ(f − λt−1)2

]
= exp

{
T∑
t=1

log [fXat + (1− f)Xbt] + τ
T∑
t=1

(f − λt−1)2
}
.

Taking the logarithm of the number of offspring, we have:

lim
T→∞

1

T
log nfT = E[log (fXa + (1− f)Xb)] + τ lim

T→∞

1

T

T∑
t=1

(f − λt−1)2, (30)

where the first term is simply the log-geometric average growth rate of the population without

conformity pressure, α(f), in (4). From (29) and (30), we can see that the magnitude of the

conformity pressure τ acts roughly as a multiplicative factor in the fitness, or an additive

factor in the population growth rate.26

Suppose a long time has passed, and the evolutionary equilibrium philosophy f ∗ that

maximizes α(f) without conformity pressure has dominated the population. The investment

philosophy f ∗ is evolutionarily stable because any other philosophy grows even more slowly

than f ∗ with a negative conformity pressure term. However, if f ∗ is not initially popular, it

may never grow. We verify this implication in the simulation below.

mechanism is similar to Kirman’s (1993) formalisation of recruitment in ant populations and Topol’s (1991)
theory of mimetic contagion.

26However, we cannot apply the Law of Large Numbers to the second term of (30) in general to get an
explicit solution in the limit because λt−1 is nonstationary.
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Conformist pressure reduces the rate of convergence. We show through a simulated

experiment that conformist preference acts as an inertial term that slows down convergence,

and in some extreme cases, is even able to change the survival philosophy. We simulate

the evolution of 11 philosophies in {0, 0.1, · · · , 1} in a market in which investment returns

are given by the same specification, (26)–(28), as the simulation example of the market

equilibrium. Without any conformity pressure, the evolutionary equilibrium philosophy is

f e = 0.5 for endogenous returns.

Figure 4 shows the evolution of philosophies f ∈ {0, 0.1, · · · , 1} over 20,000 generations.

The initial population is composed of 90% f = 0, and 1% of each f ∈ {0.1, 0.2, · · · , 1}.
Figures 4a–4b represent the case of no conformity pressure, showing that f = 0.5 quickly

dominates the population. The price-to-fundamental ratio stays fairly close to one after an

initial period of fluctuations.

On the other hand, Figures (4c)–4f use different levels of conformity pressure. In the

process of convergence to f = 0.5, other philosophies are popular for extended periods

of time. This process may appear as cycles of different popular investment philosophies.

Within each period, a certain philosophy is so prevalent in the population that the price-to-

fundamental ratios are materially affected, resulting in over-pricing for style a and under-

pricing for style b. In fact, the popular philosophy in one period could potentially create a

long streak of high returns as more investors adopt it, but as the popular philosophy changes,

investors holding the previously popular philosophy will quickly be wiped out.

In this example, the initial average philosophy in the population is close to 0, and there-

fore, philosophies with low f will grow more quickly due to the conformity effect. Over time,

as the average philosophy λt grows larger, other philosophies start to grow in response. The

conformity pressure enhances the survival of the popular philosophy at the time, and inhibits

the growth of other philosophies.

In our example, the ultimately dominant philosophy has the chance to grow because our

simulation begins with a large enough population such that it is never wiped out completely.

In reality, philosophies like f = 0.5 might be eliminated quickly due to conformity pressure.

From the evolutionary perspective, mutation would act as insurance for all philosophies to

have a chance to grow (see Appendix B).

Empirical tests for conformist preference could be performed by examining groups with

different degrees of conformity pressure, and correlating them with the degree of market

efficiency or the speed of convergence after large market shocks. The degree of conformity

pressure is likely to be difficult and noisy to measure, but in principle, it can be inferred from

textual analysis of social media, or proxies such as the level of adoption of financial innovation

(a low amount of innovation might suggest a high degree of conformist preference).
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(a) Philosophy Evolution (τ = 0) (b) Price-to-Fundamental (τ = 0)

(c) Philosophy Evolution (τ = −0.1) (d) Price-to-Fundamental (τ = −0.1)

(e) Philosophy Evolution (τ = −0.2) (f) Price-to-Fundamental (τ = −0.2)

Figure 4: Conformist pressure slows down the rate of convergence. Evolution of philosophies
f ∈ {0, 0.1, · · · , 1} and its corresponding price-to-fundamental ratio over 5000 generations
with the environment (style payoffs) specified in (26)–(28). (4a)–(4b) represent no conformity
pressure. (4c)–(4f) represent conformity pressures with τ = −0.1 and τ = −0.2.
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7.2 Attention to Novelty

Opposite in effect to conformist preference is attention to novelty. In attention to novelty,

investors are more likely to pay attention to an investment philosophy if it is substantially

different from the most popular ones. We modify the population dynamics between two

generations in (29) in the following way:27

Xf
i,t =

[
Ifi,tXat + (1− Ifi,t)Xbt

]
· exp

[
ρ(1− qft−1)

]
, (31)

where qft−1 is the population frequency of type-f investors in generation t − 1, defined in

(18). Here, ρ >= 0 represents the degree of attention to novelty. A higher qft−1 leads to a

greater fitness boost due to the attention to novelty.

Similar to the case of conformity, the logarithm of the population size is:

lim
T→∞

1

T
log nfT = E[log (fXa + (1− f)Xb)] + ρ lim

T→∞

1

T

T∑
t=1

(1− qft−1), (32)

where the first term is again the log-geometric average growth rate of the population without

attention to novelty, α(f), in (4).28 Suppose a long time has passed, and that a philosophy

almost dominates the population. The second term in (32) is close to 0 for that philosophy,

while other philosophies receive a fitness boost due to the attention to novelty, and may tend

to outgrow the currently popular philosophy. Therefore, it is hard for any single philosophy

to dominate in the long run. We show this effect in the following simulation experiments.

Attention to novelty adds diversity and leads to “bubbles”. We next show that

attention to novelty can both add diversity and induce bubbles in market evolution. The

existence of bubbles, the mechanism through which they form, and the predictability of their

formation and collapse have been an active area of research in recent years (Shiller, 2000;

Fama, 2014; Greenwood, Shleifer, and You, 2019). Our simulation below provides a potential

mechanism for the formation of bubbles within our model.

We again simulate the evolution of 11 philosophies in {0, 0.1, · · · , 1} in a market in which

27One way to model attention to novelty is simply to set τ to be positive in (29). However, it is not
satisfactory in some corner cases. For example, imagine the population consists mostly of investors with
f = 0 (e.g. a growth philosophy) and f = 1 (e.g. a value philosophy). A specification as in (29) would imply
that the average philosophy in the population is f = 0.5, and any philosophy far from 0.5 is novel. However,
f = 0.5 (a mix of growth and value) is actually novel in this example because everyone in the population
only employs either a pure growth or a pure value philosophy.

28We cannot apply the Law of Large Numbers to the second term in general to get an explicit solution in
the limit because qft−1 is nonstationary.
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investment returns are given by the same specification, (26)–(28), as the simulation example

of the market equilibrium. Without any attention to novelty, the evolutionary equilibrium

philosophy is f e = 0.5 for endogenous returns.

Figure 5 shows the simulation paths for different degrees of attention to novelty. Figures

(5a)–(5b) shows the case ρ = 0, which corresponds to no attention to novelty, and we can

see that f = 0.5 eventually dominates the population. As the degree of attention to novelty

increases to 0.1 in Figure (5c), f = 0.5 no longer dominates the population. Higher degrees of

attention to novelty lead to a greater mix in investment philosophies. In the long run, there

does not exist a single dominant philosophy, because other philosophies are novel compared

to the most popular current philosophy, despite their lower fitness (i.e., payoff), and therefore

receive a disproportionate conversion in evolution.

In addition, Figure 5d shows the price-to-fundamental ratio when attention to novelty

is set to 0.1. The two investment styles experience repeated episodes of over-pricing and

under-pricing. These patterns of investor composition and asset price dynamics are similar

to the bubbles and crashes generated from models of herding (e.g. Lux (1995); Chinco

(2022)), as well as return cycles and volatilities generated from learning in markets with

multivariate models (e.g. Hong, Stein, and Yu (2007)). Our results provide an alternative

channel—attention to novelty—through which such phenomenon can occur.

Finally, we consider a variation of the mechanism specified in (31), by allowing the

definition of novelty to include memory. In particular, we replace the term qft−1 in (31) by:

q̄ft−1 = q̄ft−2 × decay + qft−1 × (1− decay).

This modified specification captures the fact that investors may view a particular philosophy

as novel not just because it has not appeared in the last period, but because it has not

appeared for a long time. Here decay is a parameter controlling the length of the memory,

which we set to 0.9999 in our simulation.

Figures 5e–5f demonstrate the evolution of philosophies as well as the price-to-fundamental

ratios. With memory, it is even more clear that the population experienced multiple cycles in

which popular philosophies alternate. In terms of the equilibrium prices, style b experienced

a sharp increase in price in the beginning, leading to a bubble, which slowly bursts over the

course of the evolution. Towards the end of our simulation, it appears that style b is quickly

picking up on another potential bubble again. This example further demonstrates that the

speed of bubble formation and bursts can be affected by the length of investors’ memory.

Empirical tests for the effects of attention to novelty are possible using proxies for at-

tention that have been applied in the empirical finance literature (see, for example, Barber
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(a) Philosophy Evolution (ρ = 0) (b) Price-to-Fundamental (ρ = 0)

(c) Philosophy Evolution (ρ = 0.1) (d) Price-to-Fundamental (ρ = 0.1)

(e) Philosophy Evolution (ρ = 0.1, de-
cay=0.9999)

(f) Price-to-Fundamental (ρ = 0.1, decay=0.9999)

Figure 5: Evolution of philosophies f ∈ {0, 0.1, · · · , 1} over 5000 generations with the envi-
ronment (style payoffs) specified in Section 6.3. (5a)-(5b) represent no attention to novelty.
(5c)-(5f) represents different degrees of attention to novelty.
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and Odean (2007), Da, Engelberg, and Gao (2011), and Li and Yu (2012)). Henderson and

Pearson (2011) find evidence that firms issue certain retail structured equity products with

negative expected returns, potentially shrouding some aspects of securities innovation or

introducing complexity to attract attention, therefore exploiting uninformed investors. This

suggests that some investors do invest based on attention to novelty even if the financial

security might not deliver desirable returns, which is consistent with our assumptions.

7.3 Tradeoffs in Social Learning

Conformist preference and attention to novelty have opposite effects in social learning: one

promotes learning from other people and bets on the “wisdom of crowds”, while the other

encourages novel and contrarian ideas.

When the degree of conformist preference is extreme, we have seen that the convergence

to the long-run equilibrium investment philosophy can be greatly delayed (see Figure 4).

This is not surprising, as the “wisdom of crowds” only works under the assumption that

individuals have different information sources and relatively independent decision-making

processes. If this condition is violated, the “effective population size” (to borrow a term

from population genetics) is greatly reduced, and crowds may have little wisdom.

On the other extreme, when the degree of attention to novelty is high, investment philoso-

phies that work well in the current environment have a weaker influence on the adoption

of philosophies in the future. Investors no longer use the information from past returns

embedded in the population frequencies. As a result, no one benefits from the “wisdom of

crowds”, which can lead to bubbles and bursts (see Figure 5).

In practice, an intermediate amount of social learning is probably most desirable from

the perspective of adopting the fittest philosophy in the current environment. For example,

studies on interactions between financial traders have documented a large range of rates of

idea flow, from isolated individual traders at one end to traders trapped in an echo chamber

at the other end, finding that the best investment performance is achieved between the two

extremes (Altshuler, Pan, and Pentland, 2012; Pan, Altshuler, and Pentland, 2012).

8 Directions for Empirical Testing

We have discussed several empirically testable implications of our analysis. For example,

Propositions 2–13 provide relationships between the evolutionary equilibrium investment

philosophy f ∗ and the return characteristics of investment styles a and b, including their

mean, variance, and beta.
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8.1 Summary of Empirical Implications

Here we summarize the key empirical implications of our model. The survival of an invest-

ment style or a fund is jointly determined by several elements, including its expected return,

beta, and volatility. In particular, the scaled alpha—defined as the expected gross return of

a style divided by its beta—plays a critical role.

Expected return-related implications.

Prediction 1. A fund with higher expected return tends to attract more investors after

controlling for other factors such as beta and volatility.

See Propositions 2 and 5.

Beta-related implications.

Prediction 2. A fund with lower beta tends to attract more investors when its scaled alpha is

comparable with alternative funds, and a fund with higher beta tends to attract more investors

when its scaled alpha is much higher than alternative funds, both after controlling for other

factors such as expected return and volatility.

See Propositions 3 and 6.

Prediction 3. The “beta puzzle”29 (stocks with high beta earn low expected return) tends to

occur when market volatility is low.

According to Propositions 4 and 7, stocks with high beta and low expected return have low

scaled alphas, which gains popularity when the variance of the common component, V ar(r),

decreases. This drives down the returns for stocks with high beta relative to stocks with low

beta.

Variance-related implications.

Prediction 4. A fund with higher idiosyncratic volatility tends to lose investors, and a fund

with lower idiosyncratic volatility tends to attract investors, both after controlling for other

factors such as expected return, beta, and market volatility.

See Propositions 4 and 7.

29See Baker, Bradley, and Wurgler (2011) and Frazzini and Pedersen (2014).
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Prediction 5. In volatile markets, investors tend to allocate to stocks and funds with higher

scaled alphas. A high scaled alpha can therefore be understood as a defensive characteristic

of a fund.

See Propositions 4 and 7.

Prediction 6. The “idiosyncratic volatility puzzle”30 (stocks with high idiosyncratic volatil-

ity earn low expected return) tends to occur for stocks with high scaled alpha when market

volatility is high, and for stocks with low scaled alpha when market volatility is low.

Because the survival of stocks with high idiosyncratic volatility and low expected return is

determined by their betas and the market volatility jointly (see Lemmas 1 and 2), an increase

in market volatility for stocks with high scaled alpha makes their survival more likely (see

Propositions 4 and 7). The same is true when a decrease in market volatility occurs for

stocks with low scaled alpha.

Psychological effects-related implications.

Prediction 7. When the degree of conformity pressure in the population is high, asset prices

are more likely to deviate from their fundamental values, market efficiency tends to be lower,

and the speed of convergence after large market shocks tends to be slower.

See Section 7.1.

Prediction 8. Asset bubbles and bursts are more likely to occur when the degree of attention

to novelty in the population is high.

See Section 7.2.

8.2 Strategy for Empirical Testing

Empirical testing requires estimating the investment philosophy f ∗ and the characteristics

of its style returns. In this section, we will discuss several possible ways to perform empirical

tests on these predictions, including estimation methods and the use of large-scale datasets.

Style Returns. The evolutionary model can be applied to various types of investment

styles, taken in pairs a and b, value versus growth styles being an example. Following the

notation in Assumption 4, it is straightforward using market data to estimate the expected

30See Ang et al. (2006, 2009)
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returns, µa and µb, and the market loadings, βa and βb, by regressing the time series of

observed style returns on market returns. In addition, one can estimate the variance of the

common return component through the sample variance of the market, and estimate the

variance of the idiosyncratic return component through the sample variance of the residuals

from the regression.

Population Style Proportions. If the financial environment is stable, the investment

philosophy f ∗ corresponds to the proportion of style-a investors in the population. In the

example of value versus growth styles, this would correspond to the proportion of value

versus growth investors in the population, which can be estimated by textual analysis of

investing social media or blogging sites such as SeekingAlpha and StockTwits.31 For exam-

ple, Cookson and Niessner (2020) studies disagreement among investors on a social media

investing platform, in which users regularly express their opinions about the same stocks,

and where user profile information explicitly conveys the user’s broad investment approach

(such as value versus growth, or fundamental versus technical).

Another possible data source for estimating the frequencies of investors using different

styles is the exchange-traded fund (ETF) market. The ETF market has grown at a feverish

pace, and there are now thousands of different ETFs, each focusing on a unique investment

style (Ferri, 2011; Lettau and Madhavan, 2018). This includes regional or industry-specific

ETFs, such as ETFs holding stocks in developed versus developing countries, or style-specific

ETFs, such as value versus momentum ETFs, or fundamentals-driven versus AI-powered

ETFs. The assets under management of these ETFs provide a possible proxy for the aggre-

gate investor frequencies in those investment styles, with inflow and outflow of assets as a

proxy for change over time.

Hedge Funds. Hedge funds are a very fast-growing sector of the financial services industry.

One of its attractions for investors is generating returns with a relatively low correlation

with traditional investment asset classes. Hedge funds are also perceived by many to draw

the smartest and most innovative money managers, owing to the investment flexibility and

low level of regulation relative to other financial management vehicles. With relatively low

barriers to entry and exit, the hedge fund sector is a highly competitive industry. Based on

these unique characteristics, hedge funds are particularly suitable for the empirical study of

market selection.

31Trading data alone is not fully informative about population frequencies, owing to market clearing. For
example, in the case in which all investors are identical growth investors or identical value investors, there
will be no trade, and the identical trading outcome is impossible to distinguish.
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Two data sources are available for empirical tests in the hedge fund industry, the Credit

Suisse Hedge Fund Index and the Lipper/TASS Hedge Fund database. The first of these

tracks approximately 9,000 funds, and reflects the monthly net performance in several fund

categories, such as Convertible Arbitrage, Event Driven, Long/Short Equity, Global Macro,

and Managed Futures. The Lipper/TASS Hedge Fund database contains performance data

on over 18,000 actively reporting and “graveyard” hedge funds, including their investment

styles, returns, births and deaths, and assets under management.

To test the implications of Proposition 2–13, style returns can be estimated, either di-

rectly from the Credit Suisse Hedge Fund Index, or by sampling individual hedge funds from

the Lipper/TASS Hedge Fund database following a particular investment style. The common

and idiosyncratic components of the style returns can be decomposed by regressing them

against common financial and macroeconomic factors (see Fung and Hsieh (2004), Hasan-

hodzic and Lo (2006), and Bali, Brown, and Caglayan (2011) for examples). Furthermore,

the proportion of hedge funds engaged in each style can be tracked over time from the Lip-

per/TASS Hedge Fund database. Together this data would provide the information needed

to test the predicted relationships between the proportion of investors who are attracted to

each investment style, and return characteristics such as mean, beta, common variance, and

idiosyncratic variance.

Social Networks and Psychology. With the collection of “Big Data” in the digital

era, another promising financial data source is social media.32 Modern digital data includes

information about call records, credit card transactions, and social network usage, among

other recorded interactions. This data is particularly useful to measure social transmission

effects such as conformist preference and attention to novelty in our model.

9 Discussion

In a cultural evolutionary model with competing investment philosophies that place differ-

ent probability weights on two investment styles, we have shown that in equilibrium, the

market consists of a mixed population that invests in both investment styles. This implies a

wider variation of coexisting strategies than in traditional models such as the mutual fund

separation theorems associated with versions of the CAPM (Sharpe, 1964; Merton, 1972).

32Some examples of such social media services include SeekingAlpha, StockTwits (used in Cookson and
Niessner (2020) and Argarwal et al. (2018)), eToro (used in Altshuler, Pan, and Pentland (2012), Pan,
Altshuler, and Pentland (2012), and Pentland (2015)), and an unnamed European social trading platform
used in Ammann and Schaub (2021).
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The survival of investment philosophies is jointly determined by several elements, in-

cluding the asset’s mean return, beta, idiosyncratic volatility, and market volatility. We

also derive the evolutionary equilibrium investment philosophy with respect to these return

characteristics. In general, higher mean returns promote the survival of the investment style,

while higher idiosyncratic volatility opposes the survival of the style, and higher common

factor volatility promotes the survival of the style with higher scaled alpha, defined as the

ratio of the style’s alpha to its market beta. These results are similar for both exogenous

and endogenous returns.

We extend our model to allow for general replication rules between two consecutive

periods, and to incorporate the impact of supply and demand on asset prices in a market

equilibrium model. We find that the key implications in terms of the survival of investment

philosophies with respect to return characteristics remain robust under these extensions.

Our results provide one explanation for the long-run evolutionary survival of a wide

range of investment styles. For example, there is a variety of investment styles employed

in the hedge fund industry with heterogeneous return characteristics (Chan et al., 2006).

Specifically, hedge funds are classified into 10 different investment styles in the Dow Jones

Credit Suisse Hedge Fund index, and 11 different investment styles in the Lipper/TASS

Hedge Fund database, and there is considerable variation within each of these styles.

Our model predicts that investments with high scaled alpha tend to flourish during high

volatility periods. In the context of hedge funds, this implies that the popularity and attrition

rates of different investment styles will vary through different market environments, and

specifically, that high market volatility will promote styles with high scaled alpha. These

intuitive implications for the hedge fund industry have been documented empirically by

Getmansky, Lee, and Lo (2015).

Our model also offers some possible explanations for certain puzzles about returns that

are difficult to reconcile within traditional asset pricing models, leading to several directions

for future empirical testing. Our model can partially explain the “beta puzzle” that high

beta stocks underperform and low beta stocks outperform (Baker, Bradley, and Wurgler,

2011; Frazzini and Pedersen, 2014). Our model implies that strategies that invest in stocks

with high beta and low expected return can survive in the long run, especially when the

market volatility is low. A further testable implication is that investment styles with low

betas will gain popularity only when the scaled alpha of the available styles are comparable.

These, and other implications of the model, can be empirically tested.

Our model also offers a partial explanation for the “idiosyncratic volatility puzzle,” that

stocks with high idiosyncratic risk earn low returns (Ang et al., 2006, 2009). In particular,

in our framework investment styles that allocate to these stocks can survive in the long run,
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provided they have low betas—and therefore high scaled alpha—when market volatility is

high.

Finally, we extend our evolutionary model to include two types of psychological effects

that affect investor receptiveness toward the investment philosophies of others. This rein-

forces our prediction that many competing investment styles and philosophies are able to

coexist. The conformist preference slows down convergence in evolution and therefore re-

duces market efficiency. Attention to novelty leads to diversity in investment philosophies

in the long run, and potentially may lead to oscillations and bubbles in certain financial

environments. On the one hand, this suggests interesting possible empirical tests of whether

higher attention metrics, as utilized in the empirical finance literature, lead to greater diver-

sity in investment philosophies. On the other hand, because the level of investor attention is

stochastically variable over time (Barber and Odean, 2007; Da, Engelberg, and Gao, 2011;

Li and Yu, 2012), this suggests that the level of diversity in the market is unlikely to be

static over time.

To further explore social contagion and its implications for investment styles and investor

behaviors, our model can be extended to include resource constraints (which may generate

strategic interactions), autocorrelated environments (which may generate intelligent behav-

iors with memory), and overlapping investors operating at different frequencies, resembling

high-frequency and long-term investors (which may further generate price momentum and

bubbles). Our model, and more generally, the evolutionary finance approach, offers a possible

framework for modeling how social contagion causes these behaviors and market phenomena.
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Appendix

A Generalization for Multiple Assets with Multiple

Factors

Our main model in Section 3 considers two competing investment styles whose returns share

a common factor. The simplicity of this specification allows us to derive closed-form expres-

sions that highlight many key economic insights. However, our model can be substantially

generalized to include not only multiple investment choices but also multiple pricing factors,

which is closer to reality. We describe this extension here.33

Consider investors who choose from m investment styles (or assets), {1, · · · ,m}, and this

results in one of m corresponding random payoffs, (X1, · · · , Xm). Suppose each individual

chooses style i with probability pi, for i = 1, 2, · · · ,m. Let p = (p1, · · · , pm) be the probabil-

ity vector that characterizes an individual’s investment philosophy. p satisfies the following

conditions:

0 ≤ pi ≤ 1, ∀i = 1, · · · ,m
m∑
i=1

pi = 1.

The style returns are determined by k pricing factors, λ = (λ1, · · · , λk). Let B = (βij)m×k

be the matrix of betas that satisfies the following conditions:

0 ≤ βij ≤ 1, ∀i = 1, · · · ,m; j = 1, · · · , k
k∑
j=1

βij = 1, ∀i = 1, · · · ,m.

These restrictions can be relaxed to different bounds and we use one for simplicity and

tractability of the analytical results below.

In the multinomial choice model, the population growth rate is determined by both p

and B. Therefore, it is convenient to consider the number of offspring for individual i with

type f = (p,B):

Xp,B
i = Ip1,ix

B
1,i + · · ·+ Ipm,ix

B
m,i

33See Zhang, Brennan, and Lo (2014a) for a discussion of the influence of common environmental factors
in group selection using a similar model, and Lo and Zhang (2022) for an application in deriving the source
of bias and discrimination.
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where (Ip1 , · · · , Ipm) is the multinomial indicator variable with probability p = (p1, · · · , pm):

(Ip1 , · · · , Ipm) =



(1, 0, · · · , 0) with probability p1

(0, 1, · · · , 0) with probability p2

· · ·

(0, 0, · · · , 1) with probability pm,

and the number of offspring produced by taking each action is given by:
xB1,i = β11λ1 + · · ·+ β1kλk

· · ·

xBm,i = βm1λ1 + · · ·+ βmkλk.

We assume that

(A1) λ1, · · · , λk are independent random variables with some well-behaved distribution func-

tions, such that (X1, · · · , Xm) and log(p1X1 + · · ·+ pmXm) have finite moments up to

order 2 for all p = (p1, · · · , pm) and B = (βij)m×k, and

(A2) (λ1, · · · , λk) is IID over time and identical for all individuals in a given generation.

Similar to the binary choice model, it is convenient to define factor loadings of type

f = (p,B) individuals. Define α = (α1, · · · , αk) = pB:

(α1, · · · , αk) = (p1, · · · , pm)


β11 · · · β1k
...

. . .
...

βm1 · · · βmk

 . (A.1)

Note that α1 + · · ·+ αk = 1 by definition.

We denote the total number of type f individuals in generation T by nfT . The following

result characterizes the log-geometric-average growth rate of type f in the general m-choice

k-factor setting.

Proposition A.1. Under assumptions (A1)-(A2), as the number of generations and the

number of individuals in each generation increases without bound, T−1 log nfT converges in

probability to the log-geometric-average growth rate

µ(p,B) = E [log (pBλ′)] = E [log (αλ′)] . (A.2)
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The next result gives a necessary and sufficient condition for factor loadings to be optimal.

Proposition A.2. (α∗1, · · · , α∗k) maximizes (A.2) if and only if

E
[
α1λ1 + · · ·+ αkλk
α∗1λ1 + · · ·+ α∗kλk

]
≤ 1, ∀(α1, · · · , αk). (A.3)

The next result characterizes the optimal type f ∗ that maximizes (A.2).

Proposition A.3. Under assumptions (A1)-(A2), the optimal factor loading α∗ = (α∗1, · · · , α∗k)
that maximizes (A.2) is given by:

α∗ =



(1, 0, · · · , 0) if E
[
λ2
λ1

]
< 1,E

[
λ3
λ1

]
< 1, · · · ,E

[
λk
λ1

]
< 1

(0, 1, · · · , 0) if E
[
λ1
λ2

]
< 1,E

[
λ3
λ2

]
< 1, · · · ,E

[
λk
λ2

]
< 1

· · ·

(0, 0, · · · , 1) if E
[
λ1
λk

]
< 1,E

[
λ2
λk

]
< 1, · · · ,E

[
λk−1

λk

]
< 1

solution to (A.5) otherwise.

(A.4)

In the last case, suppose without loss of generality that α∗ = (α∗1, · · · , α∗l , 0, · · · , 0). In other

words, only the first l alphas are zero. Then α∗ in the last case of (A.4) is defined implicitly

by:

E
[

λ1
α∗1λ1 + · · ·+ α∗l λl

]
= · · · = E

[
λl

α∗1λ1 + · · ·+ α∗l λl

]
= 1, (A.5)

and α∗ satisfies: 
E
[

λl+1

α∗
1λ1+···+α∗

l λl

]
< 1

· · ·

E
[

λk
α∗
1λ1+···+α∗

l λl

]
< 1.

(A.6)

As a result, the growth-optimal investment philosophy solves the following systems of equa-

tions:

p∗B = α∗.

Note that in Proposition A.3, it is not possible to fully characterize α∗ simply by the

ratios E [λi/λj]. However, there is still a natural analog to the binary choice model based on

(A.5) and (A.6). α∗ = (α∗1, · · · , α∗l , 0, · · · , 0) is optimal if and only if the expectation of any

irrelevant factor divided by the optimal combination of factors is less than 1, and any factor

in the optimal combination divided by the optimal combination is equal to 1.

In typical financial markets, the number of investment styles or assets is greater than the

number of factors: m > k. The actual optimization happens in the k dimensional space,
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(α1, · · · , αk). As a result, there might be multiple philosophies (p1, · · · , pm) that correspond

to the same factor combinations (α1, · · · , αk), and therefore they coexist in the long run.

Proposition A.3 generalizes the main Proposition 1 in the binary choice model. Com-

parative statics results with respect to mean return, beta, and volatilities can therefore be

carried out in principle.

B Diverse Investment Philosophies via Mutation

In our main model, we have derived the evolutionary equilibrium investment philosophy and

demonstrated the survival of diverse investment styles in the long run, using both endogenous

and exogenous style returns. Diverse investment philosophies can coexist in the long run with

psychological effects such as attention to novelty. In the model, the investment philosophy

f is assumed to be perfectly heritable across agents. We note here that by introducing

mutation in investment philosophy f between two periods, as modeled by Brennan, Lo,

and Zhang (2018) in a different context, our framework can achieve diversity in investment

philosophies in equilibrium with only return-based replication rules.

Positive mutation rates lead to the survival of a mix of investment philosophies f , which

in unstable financial environments is important to rescue unpopular philosophies from extinc-

tion. In fact, depending on the degree of environmental instability, there is an evolutionary

equilibrium mutation rate found by maximizing the population growth as a whole in the

long run, as shown in the model of Brennan, Lo, and Zhang (2018). Thus, in highly unstable

financial environments, the mutation rate should be higher, and a high degree of diversity

in investment philosophies will be evolutionarily desirable for higher growth rates of the to-

tal population. In relatively stable financial environments, the mutation rate will be lower,

which implies a low degree of diversity in investment philosophies. The diversity in invest-

ment philosophies is determined by market selection to match the degree of environmental

instability.

There are several possible ways to estimate environmental instability empirically. For

example, one can track the time variation in volatility using the VIX index as a proxy,

or different interest rate environments using the US federal funds rate as a proxy. Future

research should find it of interest to test whether a higher frequency of environmental change

is associated with a higher degree of diversity in investment philosophies.
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C Proofs

Proof of Proposition 1. This is first proved by Brennan and Lo (2011) and we reproduce
the proof here for completeness. This follows from the first and second derivatives of Equation
(5). Because the second derivative is strictly negative, there is exactly one maximum value
obtained in the interval [0, 1]. The values of the first-order derivative of α(f) at the endpoints
are given by:

α′(0) = E[Xa/Xb] − 1 , α′(1) = 1 − E[Xb/Xa] .

If both are positive or both are negative, then α(f) increases or decreases, respectively,
throughout the interval and the maximum value is attained at f = 1 or f = 0, respectively.
Otherwise, f=f ∗ is the unique point in the interval for which α′(f)=0, where f ∗ is defined
in Equation (7), and it is at this point that α(f) attains its maximum value. The expression
in Equation (6) summarizes the results of these observations for the various possible values
of E[a/Xb] and E[Xb/Xa]. Note that the case E[Xa/Xb] ≤ 1 and E[Xb/Xa] ≤ 1 is not
considered because this set of inequalities implies that α′(0) ≤ 0 and α′(1) ≥ 0, which is
impossible since α′′(f) is strictly negative.

Proof of Proposition 2. E[1/y] as given in (9) is a decreasing function of µa and an
increasing function of µb.

Proof of Lemma 1. According to the discussion leading to Lemma 1, calculations of
second-order derivatives of y(r, εa, εb) suffice. For simplicity, we use (0, 0, 0) to represent
r = εa = εb = 0.

∂y

∂r
=
βa(µb + βbr + εb)− βb(µa + βar + εa)

(µb + βbr + εb)2
=
βaµb − βbµa + βaεb − βbεa

(µb + βbr + εb)2

∂2y

∂r2
=
−2βb(βaµb − βbµa + βaεb − βbεa)

(µb + βbr + εb)3
(0,0,0)
===

2βb(βbµa − βaµb)
µ3
b

∂y

∂εa
=

1

µb + βbr + εb
,

∂2y

∂ε2a
= 0

∂y

∂εb
= − µa + βar + εa

(µb + βbr + εb)2

∂2y

∂ε2b
=

2(µa + βar + εa)

(µb + βbr + εb)3
(0,0,0)
===

2µa
µ3
b

.

Therefore,

E[y] ≈ µa
µb

+
βb(βbµa − βaµb)

µ3
b

E[r2] +
µa
µ3
b

E[ε2b ] =
µa
µb

+
βaβ

2
b

µ3
b

(
µa
βa
− µb
βb

)
Var(r) +

µa
µ3
b

Var(εb),

which completes the proof of the first part. The approximation for E[1/y] follows from
similar calculations.
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Proof of Proposition 3. According to Lemma 1, E[1/y] is a decreasing function of βb; it
is a quadratic function of βa and therefore turns at its vertex.

Proof of Proposition 4. It follows directly from Lemma 1.

Proof of Proposition 5. The first-order condition as given in (10) is a decreasing function
of f , an increasing function of µa, and a decreasing function of µb. Therefore, as µa increases,
the solution f ∗ has to increase. Similarly, as µb decreases, the solution f ∗ has to increase.

Proof of Lemma 2. For notational convenience, we let:

F (r, εa, εb) ≡
(µa − µb) + (βa − βb)r + (εa − εb)

[fµa + (1− f)µb] + [fβa + (1− f)βb]r + [fεa + (1− f)εb]
.

The first-order condition reduces to E [F (r, εa, εb)] = 0, and it suffices to calculate the second-

order derivatives of F (r, εa, εb):

∂F

∂r
=

(βa − βb) {[fµa + (1− f)µb] + [fεa + (1− f)εb]} − [fβa + (1− f)βb][(µa − µb) + (εa − εb)]
{[fµa + (1− f)µb] + [fβa + (1− f)βb]r + [fεa + (1− f)εb]}2

∂2F

∂r2
(0,0,0)
===

−2[fβa + (1− f)βb] {(βa − βb)[fµa + (1− f)µb]− [fβa + (1− f)βb](µa − µb)}
[fµa + (1− f)µb]

3

∂F

∂εa
=

µb + βbr + εb

{[fµa + (1− f)µb] + [fβa + (1− f)βb]r + [fεa + (1− f)εb]}2

∂2F

∂ε2a
=

−2f(µb + βbr + εb)

{[fµa + (1− f)µb] + [fβa + (1− f)βb]r + [fεa + (1− f)εb]}3
(0,0,0)
===

−2fµb

[fµa + (1− f)µb]
3

∂F

∂εb
= − µa + βar + εa

{[fµa + (1− f)µb] + [fβa + (1− f)βb]r + [fεa + (1− f)εb]}2

∂2F

∂ε2b
=

2(1− f)(µa + βar + εa)

{[fµa + (1− f)µb] + [fβa + (1− f)βb]r + [fεa + (1− f)εb]}3
(0,0,0)
===

2(1− f)µa

[fµa + (1− f)µb]
3 .

Therefore,

E [F (r, εa, εb)] ≈
µa − µb

fµa + (1− f)µb
+

1

2

∂2F0

∂r2
E(r2)− fµbE[ε2a]

[fµa + (1− f)µb]
3 +

(1− f)µaE[ε2b ]

[fµa + (1− f)µb]
3 .

Rearranging terms gives the result.

Proof of Proposition 6. The condition described in Lemma 2 is a quadratic function of
both βa and βb. Simple calculations of the vertex suffice to prove the result.

Proof of Proposition 7. This follows directly from Lemma 2.

Proof of Proposition 8. This follows directly from Lemmas 1–2 and Assumption 5.

Proof of Proposition 9. This follows from the same derivations in the proof of Proposi-
tion 1, with Xa replaced by ψ(Xa) and Xb replaced by ψ(Xb).
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Proof of Proposition 10. In general, the proof follows the same derivations as Lemma 1
and the proofs of Propositions 2–4, though replacing Xa by ψ(Xa) and Xb by ψ(Xb) added
substantial analytical complexity.

Let z ≡ ψ(Xa)/ψ(Xb), so that

E[z] = E
[
ψ(Xa)

ψ(Xb)

]
= E

[
ψ(µa + βar + εa)

ψ(µb + βbr + εb)

]
, (A.7)

E[1/z] = E
[
ψ(Xb)

ψ(Xa)

]
= E

[
ψ(µb + βbr + εb)

ψ(µa + βar + εa)

]
. (A.8)

We focus on the case where style b dominates the population (f ∗ψ = 0), which happens when
E[z] < 1. In other words, we need to identify conditions for which E[z] tends to decrease.
The case where style b dominates the population (f ∗ψ = 1) is completely symmetric.

First, it is easy to see that E[z] is an increasing function of µa and a decreasing function
of µb. Similarly, E[1/z] is a decreasing function of µa and an increasing function of µb, which
proves case (i) of Proposition 10.

To prove case (ii) and (iii), we apply the Taylor approximation of z as a function of r, εa
and εb to obtain

z(r, εa, εb) =
ψ(Xa)

ψ(Xb)
=
ψ(µa + βar + εa)

ψ(µb + βbr + εb)

= z(0, 0, 0) +
∂z0
∂r

r +
∂z0
∂εa

εa +
∂z0
∂εb

εb

+
1

2

(
∂2z0
∂r2

r2 +
∂2z0
∂ε2a

ε2a +
∂2z0
∂ε2b

ε2b + 2
∂2z0
∂r∂εa

rεa + 2
∂2z0
∂r∂εb

rεb + 2
∂2z0
∂εa∂εb

εaεb

)
+ o(r2, ε2a, ε

2
b).

After taking the expected value of z, the linear terms vanish, because E[r] = E[εa] = E[εb] =
0. The second-order cross terms also vanish because r, εa and εb are independent. Therefore,
E[z] can be approximated by z(0, 0, 0) and the second-order terms:

E[z] = E
[
ψ(Xa)

ψ(Xb)

]
≈ ψ(µa)

ψ(µb)
+

1

2

(
∂2z0
∂r2

Var(r) +
∂2z0
∂ε2a

Var(εa) +
∂2z0
∂ε2b

Var(εb)

)
.

We then calculate second-order derivatives of z(r, εa, εb). For simplicity, we use (0, 0, 0) to
represent r = εa = εb = 0.

∂z

∂r
=
βaψ

′(Xa)ψ(Xb)− βbψ′(Xb)ψ(Xa)

ψ2(Xb)

∂2z

∂r2
=

[β2
aψ
′′(Xa)ψ(Xb)− β2

bψ
′′(Xb)ψ(Xa)]ψ(Xb)− 2βb [βaψ

′(Xa)ψ(Xb)− βbψ′(Xb)ψ(Xa)]ψ
′(Xb)

ψ3(Xb)

(0,0,0)
===

[β2
aψ
′′(µa)ψ(µb)− β2

bψ
′′(µb)ψ(µa)]ψ(µb)− 2βb [βaψ

′(µa)ψ(µb)− βbψ′(µb)ψ(µa)]ψ
′(µb)

ψ3(µb)
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∂z

∂εa
=
ψ′(Xa)

ψ(Xb)

∂2z

∂ε2a
=
ψ′′(Xa)

ψ(Xb)

(0,0,0)
===

ψ′′(µa)

ψ(µb)

∂z

∂εb
= −ψ(Xa)ψ

′(Xb)

ψ2(Xb)

∂2z

∂ε2b
=
ψ(Xa)

[
2 (ψ′(Xb))

2 − ψ′′(Xb)ψ(Xb)
]

ψ(Xb)3
(0,0,0)
===

ψ(µa)
[
2 (ψ′(µb))

2 − ψ′′(µb)ψ(µb)
]

ψ(µb)3
.

We note that the derivations above reduces to our results in Section 4 when ψ is the identity
function. For general ψ that satisfies Assumption 6, it is easy to see that ∂2z

∂ε2a
≤ 0 and

∂2z
∂ε2b
≥ 0, which proves case (iii)(a) of Proposition 10.

Next, we analyze ∂2z
∂r2

to prove the remaining part of Proposition 10. First,

∂2z

∂r2
> 0

=⇒
[
β2
aψ
′′(µa)ψ(µb)− β2

bψ
′′(µb)ψ(µa)

]
ψ(µb)− 2βb [βaψ

′(µa)ψ(µb)− βbψ′(µb)ψ(µa)]ψ
′(µb) > 0

=⇒ β2
bψ(µa)

[
2 (ψ′(µb))

2 − ψ(µb)ψ
′′(µb)

]
+ βaψ(µb) [βaψ(µb)ψ

′′(µa)− 2βbψ
′(µa)ψ

′(µb)] > 0

=⇒ ψ(µa)

βa

[
2 (ψ′(µb))

2 − ψ(µb)ψ
′′(µb)

]
>
ψ(µb)

βb

[
2ψ′(µa)ψ

′(µb)−
βa
βb
ψ(µb)ψ

′′(µa)

]
=⇒ ψ(µa)/βa

ψ(µb)/βb
>

2 (ψ′(µb))
2 − ψ(µb)ψ

′′(µb)

2ψ′(µa)ψ′(µb)− βa
βb
ψ(µb)ψ′′(µa)

.

When we consider the symmetric case of E[1/z], style a and style b are exchanged, so the
last inequality becomes:

ψ(µa)/βa
ψ(µb)/βb

<
2ψ′(µb)ψ

′(µa)− βb
βa
ψ(µa)ψ

′′(µb)

2 (ψ′(µa))
2 − ψ(µa)ψ′′(µa)

≡ C2.

Note that C2 reduces to 1 when ψ is the identity function. This proves case (iii)(b–c) of
Proposition 10.

Second, we note that ∂2z
∂r2

, and therefore E[z], is a quadratic function of both βa and βb.
With respect to βa, the coefficient of the quadratic term is

ψ′′(µa)ψ
2(µb) ≤ 0,

and the coefficient of the linear term is

−2βbψ
′(µa)ψ

′(µb)ψ(µb) ≤ 0.
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Therefore, E[z] is a decreasing function of βa when βa is non-negative. This proves case
(ii)(a) of Proposition 10 (when we consider the symmetric case of E[1/z]).

With respect to βb, the coefficient of the quadratic term is

−ψ′′(µb)ψ(µa)ψ(µb) + 2 (ψ′(µb))
2
ψ(µa) ≥ 0,

and the coefficient of the linear term is

−2βaψ
′(µa)ψ

′(µb)ψ(µb) ≤ 0.

Therefore, E[z] achieves its minimum at its vertex:

βb =
βaψ

′(µa)ψ
′(µb)ψ(µb)[

2 (ψ′(µb))
2 − ψ′′(µb)ψ(µb)

]
ψ(µa)

=⇒ ψ(µa)/βa
ψ(µb)/βb

=
ψ′(µa)ψ

′(µb)

2 (ψ′(µb))
2 − ψ′′(µb)ψ(µb)

.

When we consider the symmetric case of E[1/z], style a and style b are exchanged, so the
last equality becomes:

ψ(µa)/βa
ψ(µb)/βb

=
2 (ψ′(µa))

2 − ψ′′(µa)ψ(µa)

ψ′(µb)ψ′(µa)
≡ C1.

Note that C1 reduces to 2 when ψ is the identity function. This proves case (ii)(b-c) of
Proposition 10, and therefore completes the proof of the entire proposition.

Proof of Proposition 11. When the evolutionary equilibrium philosophy involves both
investment styles, f ∗ψ is given by the first-order condition, (15). For notational convenience,
we let:

F (r, εa, εb) ≡
ψ(Xa)− ψ(Xb)

fψ(Xa) + (1− f)ψ(Xb)
=

ψ(µa + βar + εa)− ψ(µb + βbr + εb)

fψ(µa + βar + εa) + (1− f)ψ(µb + βbr + εb)
.

The first-order condition reduces to E [F (r, εa, εb)] = 0. It is easy to verify that F (r, εa, εb)
is a decreasing function of f . Therefore, we need to identify conditions that lead to higher
values of F (r, εa, εb), which then leads to higher values of f ∗ψ holding other factors constant.

We first calculate the partial derivatives of F (r, εa, εb) with respect to µa and µb:

∂F

∂µa
=
ψ′(Xa) [fψ(Xa) + (1− f)ψ(Xb)]− fψ′(Xa) (ψ(Xa)− ψ(Xb))

[fψ(Xa) + (1− f)ψ(Xb)]
2

=
ψ′(Xa)ψ(Xb)

[fψ(Xa) + (1− f)ψ(Xb)]
2 ≥ 0,
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∂F

∂µb
=
−ψ′(Xb) [fψ(Xa) + (1− f)ψ(Xb)] + fψ′(Xb) (ψ(Xa)− ψ(Xb))

[fψ(Xa) + (1− f)ψ(Xb)]
2

= − ψ′(Xb)ψ(Xb)

[fψ(Xa) + (1− f)ψ(Xb)]
2 ≤ 0.

This proves case (i) of Proposition 11.
To derive further comparative statics, we again use a Taylor expansion to approximate

the first-order condition:

E [F (r, εa, εb)] ≈
ψ(µa)− ψ(µb)

fψ(µa) + (1− f)ψ(µb)
+

1

2

(
∂2F0

∂r2
Var(r) +

∂2F0

∂ε2a
Var(εa) +

∂2F0

∂ε2b
Var(εb)

)
.

It suffices to calculate the second-order derivatives of F (r, εa, εb):

∂F

∂r
=
βaψ

′(Xa)ψ(Xb)− βbψ(Xa)ψ
′(Xb)

[fψ(Xa) + (1− f)ψ(Xb)]
2

∂2F

∂r2
(0,0,0)
===

N1

[fψ(µa) + (1− f)ψ(µb)]
2

∂F

∂εa
=

ψ′(Xa)ψ(Xb)

[fψ(Xa) + (1− f)ψ(Xb)]
2

∂2F

∂ε2a

(0,0,0)
===

ψ′′(µa)ψ(µb) [fψ(µa) + (1− f)ψ(µb)]− 2f (ψ′(µa))
2 ψ(µb)

[fψ(µa) + (1− f)ψ(µb)]
2

∂F

∂εb
= − ψ(Xa)ψ

′(Xb)

[fψ(Xa) + (1− f)ψ(Xb)]
2

∂2F

∂ε2b

(0,0,0)
===

−ψ(µa)ψ
′′(µb) [fψ(µa) + (1− f)ψ(µb)] + 2(1− f)ψ(µa) (ψ′(µb))

2

[fψ(µa) + (1− f)ψ(µb)]
2 .

Here

N1 =
[
β2
aψ
′′(µa)ψ(µb)− β2

bψ(µa)ψ
′′(µb)

]
[fψ(µa) + (1− f)ψ(µb)]

− 2 [βaψ
′(µa)ψ(µb)− βbψ(µa)ψ

′(µb)] [fβaψ
′(µa) + (1− f)βbψ

′(µb)] .

We note that the derivations above reduces to our results in Section 4 when ψ is the identity
function. For general ψ that satisfies Assumption 6, it is easy to see that ∂2F

∂ε2a
≤ 0 and

∂2F
∂ε2b
≥ 0, which proves case (iii)(a-b) of Proposition 11.
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Next, we analyze ∂2F
∂r2

to prove the remaining part of Proposition 11. First,

∂2F

∂r2
> 0 =⇒ N1 > 0

=⇒
[
β2
aψ
′′(µa)ψ(µb)− β2

bψ(µa)ψ
′′(µb)

]
[fψ(µa) + (1− f)ψ(µb)]

> 2 [βaψ
′(µa)ψ(µb)− βbψ(µa)ψ

′(µb)] [fβaψ
′(µa) + (1− f)βbψ

′(µb)]

=⇒
[
fβ2

aψ
′′(µa)ψ(µb)− fβ2

bψ(µa)ψ
′′(µb)

]
ψ(µa)

+
[
(1− f)β2

aψ
′′(µa)ψ(µb)− (1− f)β2

bψ(µa)ψ
′′(µb)

]
ψ(µb)

>
[
2fβ2

a (ψ′(µa))
2

+ 2(1− f)βaβbψ
′(µa)ψ

′(µb)
]
ψ(µb)

−
[
2fβaβbψ

′(µa)ψ
′(µb) + 2(1− f)β2

b (ψ′(µb))
2
]
ψ(µa)

=⇒ ψ(µa)

[
fβ2

aψ
′′(µa)ψ(µb)− fβ2

bψ(µa)ψ
′′(µb)

+ 2fβaβbψ
′(µa)ψ

′(µb) + 2(1− f)β2
b (ψ′(µb))

2

]
> ψ(µb)

[
2fβ2

a (ψ′(µa))
2

+ 2(1− f)βaβbψ
′(µa)ψ

′(µb)

− (1− f)β2
aψ
′′(µa)ψ(µb) + (1− f)β2

bψ(µa)ψ
′′(µb)

]
=⇒ ψ(µa)

βa

[
f
βa
βb
ψ′′(µa)ψ(µb)− f

βb
βa
ψ(µa)ψ

′′(µb)

+ 2fψ′(µa)ψ
′(µb) + 2(1− f)

βb
βa

(ψ′(µb))
2

]
>
ψ(µb)

βb

[
2f (ψ′(µa))

2
+ 2(1− f)

βb
βa
ψ′(µa)ψ

′(µb)

− (1− f)ψ′′(µa)ψ(µb) + (1− f)
β2
b

β2
a

ψ(µa)ψ
′′(µb)

]
=⇒ ψ(µa)/βa

ψ(µb)/βb
> C4,

where

C4 ≡
2f (ψ′(µa))

2 + 2(1− f) βb
βa
ψ′(µa)ψ

′(µb)− (1− f)ψ′′(µa)ψ(µb) + (1− f)
β2
b

β2
a
ψ(µa)ψ

′′(µb)

f βa
βb
ψ′′(µa)ψ(µb)− f βbβaψ(µa)ψ′′(µb) + 2fψ′(µa)ψ′(µb) + 2(1− f) βb

βa
(ψ′(µb))

2 .

Note that C4 reduces to 1 when ψ is the identity function. This proves case (iii)(c–d) of
Proposition 11.

Second, we note that ∂2F
∂r2

, and therefore the first order condition F , is a quadratic function
of both βa and βb.
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With respect to βa, the coefficient of the quadratic term is

ψ′′(µa)ψ(µb) [fψ(µa) + (1− f)ψ(µb)]− 2f (ψ′(µa))
2
ψ(µb) ≤ 0,

and the coefficient of the linear term is

2βbψ
′(µa)ψ

′(µb) (fψ(µa)− (1− f)ψ(µb)) .

Therefore, the first order condition achieves its maximum at its vertex:

βa = − βbψ
′(µa)ψ

′(µb) (fψ(µa)− (1− f)ψ(µb))

ψ′′(µa)ψ(µb) [fψ(µa) + (1− f)ψ(µb)]− 2f (ψ′(µa))
2 ψ(µb)

=⇒ βa
ψ(µa)

=
βbψ

′(µa)ψ
′(µb)

(
f − (1− f)ψ(µb)

ψ(µa)

)
ψ(µb)

{
2f (ψ′(µa))

2 − ψ′′(µa) [fψ(µa) + (1− f)ψ(µb)]
}

=⇒ ψ(µa)/βa
ψ(µb)/βb

=
2f (ψ′(µa))

2 − ψ′′(µa) [fψ(µa) + (1− f)ψ(µb)]

ψ′(µa)ψ′(µb)
(
f − (1− f)ψ(µb)

ψ(µa)

) ≡ C3.

The derivation with respect to βb follows similarly, which would yield C ′3 by simply exchang-
ing terms that correspond to style a and style b. We note that the last equation reduces
to the results in Proposition 6 when ψ is the identity function. This proves case (ii) of
Proposition 11, and therefore completes the proof of the entire proposition.

Proof of Proposition 12. The market clearing conditions, (22), yields:

WSλt
WF

=
(
Pa,t/P̃a,t

)k
=⇒ Pa,t = P̃a,t

(
WSλt
WF

) 1
k

,

WS(1− λt)
WF

=
(
Pb,t/P̃b,t

)k
=⇒ Pb,t = P̃b,t

(
WS(1− λt)

WF

) 1
k

.

(A.9)

In addition, the return processes in (16)–(17) yields:

Rat =
Pa,t
Pa,t−1

=
P̃a,t

(
WSλt
WF

) 1
k

P̃a,t−1

(
WSλt−1

WF

) 1
k

= Xa,t

(
λt
λt−1

) 1
k

,

Rbt =
Pb,t
Pb,t−1

=
P̃b,t

(
WS(1−λt)

WF

) 1
k

P̃b,t−1

(
WS(1−λt−1)

WF

) 1
k

= Xb,t

(
1− λt

1− λt−1

) 1
k

,

(A.10)

where we use the convention that 0/0 = 1. This convention is innocuous because in the
boundary cases when the aggregate demand stays as a constant, λt = 0 or 1, there is no
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change in demand from the speculators and therefore fundamentalists will drive the return
to equal the fundamental value. An alternative way to avoid 0/0 is to add a small constant
demand to both styles in the specification (20), so that in the boundary cases the aggregate
demand in either asset does not vanish. This will not change the equilibrium prices and
returns in any essential way.

Proof of Proposition 13. The equilibrium philosophy f e is given by Proposition 1 with
Xa and Xb replaced by Ra and Rb, and λt replaced by f e, because the aggregate demand

must equal the dominant philosophy in equilibrium. The terms
(

λt
λt−1

) 1
k

and
(

1−λt
1−λt−1

) 1
k

in

(24) then vanishes, and the results follow.

Proof of Proposition A.1. The total number of type f = (p,B) individuals in genera-
tion T is:

nfT =

nf
T−1∑
i=1

Xp,B
i =

nf
T−1∑
i=1

Ip1,ix
B
1 + · · ·+ Ipm,ix

B
m = nfT−1

 1

nfT−1

nf
T−1∑
i=1

Ip1,ix
B
1 + · · ·+ Ipm,ix

B
m

 .

As nfT−1 increases without bound, by Law of Large Numbers, it converges in probability to:

nfT−1
(
p1x

B
1 + · · ·+ pmx

B
m

)
= nfT−1 · pBλ′T .

Through backward recursion, we have:

nfT
p
= nf0 ·

T∏
t=1

pBλ′t = exp

(
T∑
t=1

log (pBλ′t)

)
.

Therefore,

1

T
log nfT

p
=

1

T

T∑
t=1

log (pBλ′t)
p→ E [log (pBλ′t)]

as T increases without bound.

Proof of Proposition A.2. Note that (A.2) is a concave function with respect to α1, · · · , αk,
so a local maximum is the global maximum. Now suppose α∗ = (α∗1, · · · , α∗k) is a local max-
imum, then a necessary and sufficient condition is that if we move α∗ toward a direction of
any α = (α1, · · · , αk), the growth rate decreases. Formally, let

αδ = (1− δ)α∗ + δα,

where α is arbitrary and 0 ≤ δ ≤ 1, and

µ(αδ) = E [log (((1− δ)α∗1 + δα1)λ1 + · · ·+ ((1− δ)α∗k + δαk)λk)] .
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Then, α∗ = (α∗1, · · · , α∗k) maximizes (A.2) if and only if:

∂µ(αδ)

∂δ

∣∣∣∣
δ=0

≤ 0, for any α = (α1, · · · , αk),

which further leads to:

E
[

(α1 − α∗1)λ1 + · · ·+ (αk − α∗k)λk
α∗1λ1 + · · ·+ α∗kλk

]
≤ 0, for any α = (α1, · · · , αk)

=⇒ E
[
α1λ1 + · · ·+ αkλk
α∗1λ1 + · · ·+ α∗kλk

]
≤ 1, for any α = (α1, · · · , αk)

which completes the proof.

Proof of Proposition A.3. The first k conditions in (A.4) follow directly from the lemma.
As of the last case, note that α1 = 1− α2 − · · · − αk and we can write µ(·) as a function of
(α2, · · · , αk). Therefore α∗ is given by the following equations:

∂µ(α2,··· ,αk)
∂α2

∣∣
αl+1=···=αk=0

= 0

∂µ(α2,··· ,αk)
∂α3

∣∣
αl+1=···=αk=0

= 0

· · ·
∂µ(α2,··· ,αk)

∂αl

∣∣
αl+1=···=αk=0

= 0.

(A.11)

Also, the following partial derivatives must be negative:
∂µ(α2,··· ,αk)

∂αl+1

∣∣
α∗ < 0

· · ·
∂µ(α2,··· ,αk)

∂αk

∣∣
α∗ < 0.

(A.12)

(A.11) yields

E
[

λ1
α1λ1 + · · ·+ αlλl

]
= · · · = E

[
λl

α1λ1 + · · ·+ αlλl

]
.

Suppose that the value above equals C, then

1 = E
[
α1λ1 + · · ·+ αlλl
α1λ1 + · · ·+ αlλl

]
= (α1 + · · ·+ αl)C = C.

(A.12) yields

E
[

λj
α1λ1 + · · ·+ αlλl

]
< E

[
λ1

α1λ1 + · · ·+ αlλl

]
= 1
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for j = l + 1, l + 2, · · · , k. which completes the proof.
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Hens, T., and K. R. Schenk-Hoppé, 2009, Handbook of Financial Markets: Dynamics and
Evolution (Elsevier).

Hirshleifer, D., 2020, Presidential address: Social transmission bias in economics and finance,
The Journal of Finance .

Hirshleifer, D., and G. Y. Luo, 2001, On the survival of overconfident traders in a competitive
securities market, Journal of Financial Markets 4, 73–84.

Hirshleifer, D., A. Subrahmanyam, and S. Titman, 2006, Feedback and the success of irra-
tional investors, Journal of Financial Economics 81, 311–338.

Hirshleifer, D., and S. H. Teoh, 2009, Thought and behavior contagion in capital markets, in
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and K. R. Schenk-Hoppé, eds., Handbook of Financial Markets: Dynamics and Evolution,
161–215 (Elsevier).

Lux, T., and R. C. Zwinkels, 2018, Empirical validation of agent-based models, in
C. Hommes, and B. LeBaron, eds., Handbook of Computational Economics , volume 4,
437–488 (Elsevier).

Merton, R. C., 1972, An analytic derivation of the efficient portfolio frontier, Journal of
Financial and Quantitative Analysis 7, 1851–1872.

Merton, R. C., 1973, An intertemporal capital asset pricing model, Econometrica: Journal
of the Econometric Society 867–887.

Moran, P. A. P., 1958, Random processes in genetics, in Mathematical Proceedings of the
Cambridge Philosophical Society , volume 54, 60–71, Cambridge University Press.

66



Ozsoylev, H. N., J. Walden, M. D. Yavuz, and R. Bildik, 2014, Investor networks in the
stock market, The Review of Financial Studies 27, 1323–1366.

Pan, W., Y. Altshuler, and A. Pentland, 2012, Decoding social influence and the wisdom of
the crowd in financial trading network, in Privacy, Security, Risk and Trust (PASSAT),
2012 International Conference on and 2012 International Confernece on Social Computing
(SocialCom), 203–209, IEEE.

Pedersen, L. H., 2022, Game on: Social networks and markets, Journal of Financial Eco-
nomics .

Penrose, E. T., 1952, Biological analogies in the theory of the firm, The American Economic
Review 804–819.

Pentland, A., 2015, Social Physics: How social networks can make us smarter (Penguin,
New York, NY).

Pool, V. K., N. Stoffman, and S. E. Yonker, 2015, The people in your neighborhood: Social
interactions and mutual fund portfolios, The Journal of Finance 70, 2679–2732.

Robson, A. J., 1996, A biological basis for expected and non-expected utility, Journal of
Economic Theory 68, 397–424.

Samuelson, P. A., 1965, Proof that properly anticipated prices fluctuate randomly, Industrial
Management Review 6, 41–49.

Sandroni, A., 2000, Do markets favor agents able to make accurate predictions?, Economet-
rica 68, 1303–1341.

Sandroni, A., 2005, Market selection when markets are incomplete, Journal of Mathematical
Economics 41, 91–104.

Scholl, M. P., A. Calinescu, and J. D. Farmer, 2021, How market ecology explains market
malfunction, Proceedings of the National Academy of Sciences 118, e2015574118.

Sharpe, W., 1964, Capital asset prices: A theory of market equilibrium under conditions of
risk, The Journal of Finance 19, 425–442.

Shiller, R. J., 2000, Irrational Exuberance (Princeton University Press, Princeton, New Jer-
sey).

Shiller, R. J., 2017, Narrative economics, American Economic Review 107, 967–1004.

Teo, M., and S.-J. Woo, 2004, Style effects in the cross-section of stock returns, Journal of
Financial Economics 74, 367–398.

Topol, R., 1991, Bubbles and volatility of stock prices: effect of mimetic contagion, The
Economic Journal 101, 786–800.

67



Wahal, S., and M. D. Yavuz, 2013, Style investing, comovement and return predictability,
Journal of Financial Economics 107, 136–154.

Yan, H., 2008, Natural selection in financial markets: Does it work?, Management Science
54, 1935–1950.

Zhang, R., T. J. Brennan, and A. W. Lo, 2014a, Group selection as behavioral adaptation
to systematic risk, PloS One 9, e110848.

Zhang, R., T. J. Brennan, and A. W. Lo, 2014b, The origin of risk aversion, Proceedings of
the National Academy of Sciences 111, 17777–17782.

68


	Introduction
	Literature Review
	A Model of Competing Investment Philosophies
	Population Dynamics
	Style Returns

	Evolutionary Survival of Investment Styles
	Single Dominant Style
	The Evolution of Diversity
	A Special Case

	General Replication Rules
	General Replication Function and Equilibrium Philosophy
	Single Dominant Style
	Diverse Investment Styles

	Diversity in Market Equilibrium
	A General Equilibrium Model
	Price, Return, and Philosophy in Equilibrium
	Simulation Examples

	Psychological Bias and Investment Philosophies
	Conformist Preference
	Attention to Novelty
	Tradeoffs in Social Learning

	Directions for Empirical Testing
	Summary of Empirical Implications
	Strategy for Empirical Testing

	Discussion
	Generalization for Multiple Assets with Multiple Factors
	Diverse Investment Philosophies via Mutation
	Proofs

