Stable and radiocarbon isotopic composition of dissolved organic matter in the Gulf of Mexico

B. D. Walker1, E. R. M. Druffel1, J. Kolasinski2,3,4, B. J. Roberts5, X. Xu1, and B. E. Rosenheim2,3

1Department of Earth System Science, Keck Carbon Cycle AMS Laboratory, Irvine, California, USA, 2College of Marine Science, University of South Florida, St. Petersburg, Florida, USA, 3Earth and Environmental Sciences, Tulane University of Louisiana, New Orleans, Louisiana, USA, 4Now at UMR ENTROPIE, Labex Corail, Université de La Réunion, St Denis, France, 5Defelice Marine Center, Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA

Abstract

Dissolved organic carbon (DOC) is of primary importance to marine ecosystems and the global carbon cycle. Stable (δ13C) and radiocarbon (Δ14C) isotopic measurements are powerful tools for evaluating DOC sources and cycling. However, the isotopic signature of DOC in the Gulf of Mexico (GOM) remains almost completely unknown. Here we present the first DOC Δ14C and δ13C depth profiles from the GOM. Our results suggest the Mississippi River exports large amounts of DOC with an anthropogenic “bomb” Δ14C signature. Riverine DOC is removed and recycled offshore, and some marine production of DOC is observed in the river plume. Offshore profiles show that DOC has higher Δ14C than its Caribbean feed waters, indicative of a modern deep DOC source in the GOM basin. Finally, high DOC with negative δ13C and Δ14C values were observed near the Macondo Wellhead, suggesting a transformation of Deepwater Horizon hydrocarbons into a persistent population of DOC.

1. Introduction

The Gulf of Mexico (GOM) has an ocean surface area of ~1.6 × 106 km² and has an average depth of ~3800 m. Despite its small size, the GOM comprises a globally significant commercial fishery because of its highly productive waters. Water entering the GOM through the Yucatán Channel (~2040 m) is roughly equal to that exiting the GOM in the Florida Current via the Florida Straits (740 m), with current flows of 30.0 ± 5.3 sverdrup (5v) and 30.8 ± 3.2 Sv, respectively [Rouset and Beal, 2010, 2014]. Deep water in the GOM is predominantly North Atlantic Deep Water (NADW) that spills over the Yucatán Sill. The ventilation age of deep waters in the GOM has been estimated to be ~250 years [Rivas et al., 2005].

At the true base of the oceanic food web, dissolved organic carbon (DOC: ~662 GtC) is of primary importance to marine ecosystems and the global carbon cycle [Hansell et al., 2009]. Stable (δ13C) and radiocarbon (Δ14C) isotopic measurements are powerful tools for evaluating DOC sources and cycling in aquatic environments [Beaufre, 2015; Canuel and Hardison, 2016; McNichol and Aluwihare, 2007]. However, the biogeochemistry of DOC in the broader Gulf of Mexico (GOM) basin remains largely unconstrained. In particular, the Δ14C and δ13C isotopic signature of DOC in the GOM is almost completely unknown.

The northern GOM is one of the world’s most productive ocean margin regions and is an especially dynamic region for organic matter cycling. The Mississippi-Atchafalaya River system (MARS) drains approximately 41% of the lower 48 states and delivers approximately 91% of the estimated annual nitrogen load to the northern Gulf of Mexico [Dunn, 1996]. Previous work evaluating the isotopic composition and biological reactivity of high molecular weight (HMW; >1 kDa) DOC in the MARS and northern GOM found that HMW DOC is an important C source (polysaccharides) fueling bacterial production and is rapidly recycled...
[Gardner et al., 1996; Guo et al., 2009; Santschi et al., 1995]. The MARS also delivers significant quantities of dissolved organic matter (DOM) to the northern GOM [Bianchi et al., 2004; Shen et al., 2012]. This large, episodic delivery of terrestrial DOC (tDOC) from this river system is rapidly removed in the northern GOM [Bianchi et al., 2004; Fichot et al., 2014]. It is estimated that ~40% of this tDOC is remineralized to CO2 on the Louisiana shelf [Fichot and Benner, 2014]. Recent work has also observed that phytoplankton and microbial communities produce “hot spots” of labile DOM at intermediate salinities along the northern GOM shelf regions, which is subsequently exported offshore as semilabile DOM. Microbial alteration of this DOM can result in the seasonal accumulation of 0.11–0.23 Tg DOC [Shen et al., 2016]. Slope regions in the northern GOM are also populated with many methane and hydrocarbon seeps, which can be observed in the surface as “slicks” and have been associated with high phytoplankton biomass [D’Souza et al., 2016; MacDonald et al., 2015]. Natural seeps may comprise a source of ancient DOC to the deep GOM [Pohlman et al., 2011; Pohlman et al., 2009]; however, the long-term persistence of natural hydrocarbon seep DOC in the GOM is unknown. The Deepwater Horizon (DWH) spill event in 2010 has also complicated our knowledge of DOM cycling in the GOM, because baseline measurements of DOC prior to the spill are scarce. In addition, the long-term geochemical impact of DWH on the deep DOC reservoir remains largely unknown.

Here we report DOC Δ14C and δ13C profiles from several regions in the northern GOM: (1) the Mississippi River mouth (MR), (2) its aging river plume (MRP), (3) the shelf/slope near the Macondo Wellhead site (MWS), (4) the offshore Loop Current (LC), and (5) a nearshore mesoscale Loop Current eddy (LCE). We first discuss DOC export and cycling at the Mississippi R. and GOM interface. Second, we discuss the long-term geochemical impact of the DWH spill event on the DOC pool as revealed by profiles taken close to the MWS. Finally, we examine an offshore DOC Δ14C and δ13C profile in the context of Caribbean waters feeding the GOM basin, to evaluate DOC cycling in the deep GOM.

2. Materials and Methods

Samples were obtained from the northern Gulf of Mexico during a Consortium for Advanced Research on Hydrocarbon Transport in the Environment (CARTHE) pelagic sampling and observation expedition aboard the R/V Pelican (PE1501; July 2014) and also during a Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) Repeat Hydrography cruise in the North Atlantic (A20, Station 27, April 2012; 12.75°N, 52.33°W). Samples from the northern GOM were taken from six stations: P1 = MR, P2 = MRP, P3 = MWS, S4 = MWS/LC, P4 = LC, and P5 = LCE (Figure 1).

All glassware used in this study was acid cleaned (10% HCl), rinsed with 18.2 MΩ Milli-Q water, and combusted at 540°C for 2 h prior to sample collection. Seawater DOC samples were collected into 1 L Amber Boston Round bottles with acid cleaned Teflon® lined caps from the Niskin bottle rosette and stored frozen at −20°C prior to analysis. Samples were filtered (0.8 μm QMA, 70 mm diameter) using an acid cleaned stainless steel manifold and silicone tubing only for depths shallower than 400 m. For details pertaining to ancillary nutrient and dissolved inorganic carbon (DIC) isotopic analysis, we refer the reader to the supporting information (see section S3).

We use the dilution method for UV photo-oxidation (UVox) isolation of seawater DOC [Beaupre et al., 2007; Griffin et al., 2010]. DOC samples (~800 mL) are diluted to a final volume of ~1000 mL with 18.2 MΩ Milli-Q water (MQ DOC = 0.5–1.0 μM) prior to oxidation. The volumes of sample and MQ water are measured using a calibrated cathetometer in a quartz reactor and acidified with 1 mL 85% phosphoric acid. Dissolved inorganic carbon (DIC) is sparged from the sample using ultra high purity (5.0) helium, then the DOC is oxidized to CO2 using a 1200 W medium-pressure, mercury arc UV lamp for 4 h. The CO2 evolved is then sparged with ultrahigh purity (5.0) helium, purified cryogenically, and manometrically quantified. Two DOC sample replicates (Station P3 at 1000 m and Station P4 at 1500 m) yielded concentrations within 0.7 μM and 1.25 μM (Table S1). This is consistent with previous work [Druffel et al., 2013; Walker et al., 2016a] demonstrating average procedural reproducibility of UVox DOC concentrations using this system to be ±1.1 μM. Separate aliquots of the CO2 are analyzed for δ13C and Δ14C using standard techniques [Southon et al., 2004; Vogel et al., 1987]. Following production of CO2, carbon yields were measured manometrically and aliquots taken for Δ14C and δ13C analyses. CO2 was converted to graphite using either the H2 or Zn method [Vogel et al., 1987; Xu et al., 2007]. Radiocarbon measurements for all samples are reported as Δ14C in per mil (‰) and are
corrected for extraneous C introduced during processing using small standards and backgrounds of known 14C content. The 14C analyses of DOC samples (~50–800 μgC) recovered from these procedures were performed at the Keck Carbon Cycle AMS (KCCAMS) Laboratory at UCI. Samples are reported with a total uncertainty of ±4‰.

Equilibrated splits of DOC CO$_2$ gas were also cryogenically transferred to 3 mm diameter, 60 mm length Pyrex tubes using liquid N$_2$ and sealed under vacuum for δ^{13}C analysis. These 3 mm Pyrex tubes were then scored with a glass cutter, placed into Exetainer® vials with two 8 mm solid glass marbles, inverted and purged for 20 s in a glove bag, flushed with ultrahigh purity (5.0) helium and capped. CO$_2$ in the Pyrex tube was released into the Exetainer vial when the tube was broken by shaking the marbles. DOC δ^{13}C values were then measured at the KCCAMS Laboratory using a Gas Bench II and a Finnigan Delta Plus isotope ratio mass spectrometer at UCI, with an analytical uncertainty of ±0.2‰.

We use two simple modeling approaches for evaluating DOC cycling, as revealed by Δ^{14}C and δ^{13}C values, in the GOM. First, we use conservative two-end-member salinity (S) mixing of riverine (r = P1, 1 m) versus seawater (sw = P3, 26 m) end-members to constrain their contributions (f) to both deep MR and surface MRP samples:

$$f_{\text{sample}} S_{\text{sample}} = f_r S_r + f_{sw} S_{sw}$$

where $f_r + f_{sw} = 1$. A set of equations ((2)–(4)) were then used to predict expected DOC concentrations, Δ^{14}C, and δ^{13}C values based on conservative salinity mixing (Figure S10), again where $f_r + f_{sw} = 1$.

$$\text{DOC}_{\text{expected}} = f_r \text{DOC}_r + f_{sw} \text{DOC}_sw$$

$$\Delta^{14}C_{\text{expected}} = f_r \Delta^{14}C_r + f_{sw} \Delta^{14}C_{sw}$$

$$\delta^{13}C_{\text{expected}} = f_r \delta^{13}C_r + f_{sw} \delta^{13}C_{sw}$$

Figure 1. Site map of all sample locations for CARTHE Pelagic Sampling Cruise (PE15-01, R/V Pelican, July 2014). Outlined by the rectangle are GOM sampling stations (upper right). DOC concentration, Δ^{14}C, and δ^{13}C samples were taken from stations P3, S4, and P4; ancillary hydrographic data and nutrients were taken from all stations (supporting information). The location of the Macondo Well head is indicated by a red star. Colors indicate surface salinity values measured along the cruise track and indicate the Mississippi River plume (P1 and S1) and high salinity Loop Current waters (P4). The Caribbean Sea station is indicated by a red circle (GO-SHIP A20, R/V Atlantis, May 2012, Station 27; 13°N, 52°W). Italicized station descriptors (see text) are also indicated in parentheses.
Second, we use an isotopic mass balance for determining the isotopic composition of the DOC “added” causing a deviation from conservative mixing:

$$\Delta \text{DOC} = \frac{\text{DOC}_{\text{measured}}}{C_0} - \frac{\text{DOC}_{\text{expected}}}{C_0}$$ (5)

where $$\Delta \text{DOC}$$ is the amount of DOC added (μM) and $$\text{DOC}_{\text{measured}}$$ and $$\text{DOC}_{\text{expected}}$$ are our actual measured values and expected values based on salinity mixing, respectively. We then assume our measured $$\Delta^{14} \text{C}$$ values comprise a mixture of this added DOC and that expected via salinity mixing:

$$\frac{\text{DOC}_{\text{measured}}}{\Delta^{14} \text{C}_{\text{measured}}}{\text{DOC}_{\text{expected}}}{\Delta^{14} \text{C}_{\text{expected}}} = \frac{\text{DOC}_{\text{added}}}{\Delta^{14} \text{C}_{\text{added}}}$$ (6)

and solving for $$\Delta^{14} \text{C}_{\text{added}}$$:

$$\Delta^{14} \text{C}_{\text{added}} = \left(\frac{\text{DOC}_{\text{measured}}}{\Delta^{14} \text{C}_{\text{measured}}} - \frac{\text{DOC}_{\text{expected}}}{\Delta^{14} \text{C}_{\text{expected}}} \right) / \text{DOC}_{\text{added}}$$ (7)

Figure 2. Dissolved organic carbon (DOC) concentrations together with stable carbon ($$\delta^{13} \text{C}$$) and radiocarbon ($$\Delta^{14} \text{C}$$) isotopic values clearly indicate the presence of excess petrocarbon DOC at the Macondo wellhead site (P3; 28.65°N) and offshore (P4; 27.53°N) values similar to the Caribbean Sea (A20). Plots are divided into nearshore (left: P1, P2, and P5) and offshore (P3, S4, P4, and A20) columns. (a, d) DOC concentrations (μM); (b, e) $$\Delta^{14} \text{C}$$ and (c, f) $$\delta^{13} \text{C}$$ values. For all plots, measurement uncertainties are smaller than the symbols. Please note DOC and $$\Delta^{14} \text{C}$$ x axis scales differ for nearshore and offshore plots.
For δ[^13]C[^add], an analogous expression was used. Below, we describe any changes in DOC concentrations, Δ[^14]C, and δ[^13]C isotopic values (either between two measured values or isotopic mass balance versus measured values) as ΔDOC, ΔΔ[^14]C, and Δδ[^13]C, respectively. All errors were propagated using known measurement uncertainties [Taylor, 1997]. For more detail on these calculations, see supporting information section S3.3.

3. Results and Discussion

A summary of measured northern GOM DOC concentrations, Δ[^14]C, and δ[^13]C values is provided in Table S1 and is also shown as station depth profiles in Figures 2a–2f. Here we discuss these results in the context of DOC cycling within (1) the MR, (2) the aging MRP, (3) the long-term geochemical impacts of DWH on the MR, and (4) DOC cycling within the broader GOM basin by comparing LC and LCE profiles to previously measured values from the Caribbean.

3.1. Terrestrial DOC Export From the Mississippi River

Previous work has characterized the variability of DOC concentrations and δ[^13]C values in the Mississippi River [e.g., Bianchi et al., 2004; Duan et al., 2007] and the isotopic composition (Δ[^14]C, δ[^13]C, and δ[^15]N) of HMW DOM in the Mississippi River and Northern GOM [Guo et al., 2009]. However, to the best of our knowledge, total seawater DOC Δ[^14]C values for the MR have not been reported. We measured total DOC concentration, Δ[^14]C, and δ[^13]C from the MR (Station P1) at two depths (1 and 15 m). The two depths correspond to the freshwater/saltwater end-members above and below the sharp halocline of the estuarine salt wedge. Surface MR water (S = 1.48) contained high DOC (350 µM), high Δ[^14]C (+5‰), and low δ[^13]C (−26.7‰) values (Table S1 and Figures 2a–2c). In contrast, deep MR water (S = 34.9) had lower DOC (96 µM), a lower Δ[^14]C value (−183‰), and a higher δ[^13]C value (−23.5‰).

We observe a large DOC offset (ΔDOC = 254 µM) between surface and deep MR. This DOC offset is not due to simple vertical mixing across the halocline but instead is primarily caused by the intrusion of offshore seawater with some minor input of surface MR water. Based on conservative salinity mixing (equation (1)) of surface MR (S = 1.48) with offshore seawater beyond the river plume influence (P3 26 m, S = 36.07), we determine that deep MR (S = 34.92) is composed of 3.3 ± 0.1% freshwater and 96.7 ± 0.1% seawater. Using these contributions, a simple DOC and isotopic mass balance of surface MR and surface offshore water (P3 26 m) suggests deep MR should have DOC = 87.6 ± 1.1 µM, Δ[^14]C = −205 ± 4‰, and δ[^13]C = −22.3 ± 0.2‰ (Figure S10 and supporting information section S3.3). These mass balance deep MR values are generally similar to our measured values, suggesting that the sharp change in DOC and its isotopic composition below the halocline is primarily attributed to estuarine mixing with offshore seawater. However, this simple mixing model (equations (2)–(4)) slightly underestimates deep MR DOC (ΔDOC = 9.1 µM) and yields a lower Δ[^14]C (ΔΔ[^14]C = 22‰) value and higher δ[^13]C (Δδ[^13]C = 1.3‰) value, possibly indicating a small benthic MR contribution of negative Δ[^14]C and δ[^13]C DOC.

The difference between our mixing model and observed deep MR values may result from some production of DOC in the salt wedge, possibly at the halocline. A DOC isotopic mass of our salinity-based mixing estimate versus measured deep MR values (equations (5)–(7)) determines an additional 8.2 ± 1.0 µM DOC is added to the deep MR with Δ[^14]C = +47 ± 66‰ and δ[^13]C = −37 ± 4‰. It is interesting to note that these δ[^13]C values are consistent with an in situ biogenic (modern) methanogenic source of DOC below the MR halocline. More work is needed to precisely quantify the processes shaping DOC isotopic signatures within the Mississippi River and differences observed between conservative mixing calculations and measured deep MR values.

Overall, high MR DOC concentrations, low δ[^13]C values, and high Δ[^14]C values are consistent with the export of tDOC with an anthropogenic “bomb” Δ[^14]C signature to the GOM. We only have MR samples from one time and location. However, given previous observations of high DOC concentration variability in the Mississippi River [e.g., Bianchi et al., 2004], we hypothesize that DOC Δ[^14]C and δ[^13]C values will also be temporally variable based on physical processes in the river (i.e., flow stage and tides). Our MR DOC samples were taken during high tide on 7 July 2014, during a period of climatologically average river flow (Figure S1). Thus, our DOC, Δ[^14]C, and δ[^13]C values can only be interpreted to represent the Mississippi River during similar river seasonal flow and tidal conditions.
3.2. DOC Isotopic Signature of the Aged Mississippi River Plume

The predominant direction of the MRP in the northern GOM is to the southwest, however, during our cruise the MRP was observed to the northeast via satellite and compiled buoy observations used by the Navy Coastal Ocean Salinity Model (F. E. Muller-Karger, personal communication, 2014). Here we discuss a shallow DOC Δ^{14}C and δ^{13}C depth profile (66 m) located at the oceanic front of the aged MRP (Station P2). As for the MR, the two surface MRP samples (2 and 26 m; $S = 31.53$ and 36.29) contained both high DOC (150 μM, 126 μM; Figure 2a) and high Δ^{14}C values (-82‰ and -97‰; Figure 2b). These surface MRP samples had nearly identical δ^{13}C values (-22.8‰, -22.7‰; Figure 2c) that are only slightly negative with respect to the offshore marine δ^{13}C end-member (Stations P3 and P4, δ^{13}C = -22.1‰ and -20.7‰, respectively). In contrast, the deepest MRP sample (66 m) had DOC (64 μM) and isotopic values (Δ^{14}C = -254‰ and δ^{13}C = -21.2‰) more consistent with those observed at similar depths offshore (Stations P3 and P4), suggesting that only the surface <30 m of Station P2 were influenced by tDOC within the MRP.

A simple salinity mixing model (equation (1)), suggests that the 2 m MRP sample is composed of $13.1 \pm 0.1\%$ MR water and $86.9 \pm 0.1\%$ seawater. Using the DOC abundance and Δ^{14}C and δ^{13}C isotopic signatures of these end-members (equations (2)–(4)), a $S = 31.53$ predicts MRP 2 m DOC = 114.2 ± 1.0 μM with Δ^{14}C = -184 ± 4‰ and δ^{13}C = -22.7 ± 0.2‰. The salinity mixing calculation accurately predicts the δ^{13}C signature but predicts lower DOC (ΔDOC = 36.1 μM) and a lower Δ^{14}C value ($\Delta\Delta^{14}$C = -94‰). This simple mixing model does not account for known major DOC removal mechanisms occurring in the MRP (e.g., flocculation, microbial remineralization, and photo-oxidation). Thus, an isotopic mass balance of the salinity mixing estimate versus our measured DOC values (equations (5)–(7)) indicates there must be substantial excess DOC production (36.2 ± 1.0 μM) with anthropogenic bomb C (Δ^{14}C = 206 ± 14‰) within the aged MRP, presumably via marine primary production. Interestingly, the 26 m sample at P2 has a salinity similar to that of P3 ($S = 36.29$ versus 36.07). Thus, the ΔDOC = 48 μM between P2, 26 m and offshore P3 waters at the same depth (79 μM) likely results from the accumulation marine DOC (as opposed to a removal of tDOC) with low Δ^{14}C signatures during microbial alteration of DOC in biological “hot spots” on the shelf [Shen et al., 2016].

3.3. Long-Term Geochemical Impact of Deepwater Horizon on the GOM DOC Reservoir

Along the offshore surface transect (Stations P3, S4, and P4) DOC concentrations ranged from 71 to 79 μM (−25 m) and Δ^{14}C values ranged from -212‰ to -274‰ at depths <100 m (Figures 2d and 2e). Typical marine DOC δ^{13}C values (−20 to −22‰) were also observed in the surface (Figure 2f), with Station P3 δ^{13}C values slightly lower (−22.5‰ SD ± 0.6‰, $n = 3$) than those at Station P4 (−21.2‰, SD ± 0.5‰, $n = 4$). Deep DOC concentrations, Δ^{14}C and δ^{13}C values for Stations S4 and P4 were similar below 1000 m, averaging 39.2 ± 1.1 μM, Δ^{14}C = −449 ± 11‰, and δ^{13}C = −21.6 ± 0.2‰ ($n = 7$). In contrast, Station P3 (−20 km southwest of the MWS) showed a wider range in DOC concentrations (40.0 to 49.7 μM), Δ^{14}C (−449‰ to −566‰) and δ^{13}C (−22.1 to −26.3‰) values. The two deepest Station P3 samples, at 1000 m and 1250 m, had large DOC concentration and isotopic offsets in comparison to “background” deep Station P4 sample values (ΔDOC = $+7.9$ to $+9.7$ μM, $\Delta\Delta^{14}$C = −75 to −120‰, and $\Delta\delta^{13}$C = −2.2 to −4.4‰).

These large DOC concentration and carbon isotopic offsets at Station P3, in the mesopelagic depths southwest of the MWS, are both striking and unexpected (Figures 2d–2f and S2). The -9 ± 1 μM increase in DOC between 750 m and 1000–1250 m with low Δ^{14}C and δ^{13}C values was not observed further offshore (P4). Filtered versus nonfiltered 1000 m duplicates at P3 have similar DOC concentrations and isotopic values, suggesting that P3 isotopic offsets cannot be attributed to particles. To the best of our knowledge, deep DOC increases of this nature have never been observed in the deep ocean. Together with the low Δ^{14}C and δ^{13}C values, these results suggest either that a 1000–1250 m northern GOM DOC anomaly persists as the result from incorporation of mesopelagic DWH plume petroleum carbon (petrocarbon) into DOC, or possibly an advection of benthic hydrocarbon seep DOC from the northern GOM slope. Using a simple Δ^{14}C and δ^{13}C isotopic mass balance, we estimate that at 1000 m there is an addition of 7.9 μM DOC with Δ^{14}C = -965 ± 85‰ and δ^{13}C = -44.6 ± 4.6‰ (above background DOC; DOC = 40 μM, Δ^{14}C = -449‰, and δ^{13}C = -22.1‰ at 750 m). Similarly, at 1250 m we estimate a DOC addition of 9.7 μM with Δ^{14}C = -1000‰ and δ^{13}C = -30.8 ± 3.6‰. Together, these results indicate a 19–24% increase in DOC as petrocarbon in the mesopelagic GOM at Station P3. Our Δ^{14}C isotopic mass balance suggests DOC petrocarbon (DOC$_{pc}$) added with similar Δ^{14}C value at each depth. In contrast, our δ^{13}C isotopic mass balance indicates
two distinct petrocarbon sources: At 1000 m, the added DOC\textsubscript{pc} has a lower δ^{13}C signature, indicative of a predominantly fossil methane source (δ^{13}C = -60‰), and at 1250 m, added DOC\textsubscript{pc} has a higher δ^{13}C value indicative of a predominantly fossil oil source (δ^{13}C = -27‰) [Cherrier et al., 2014; Graham et al., 2010].

Using an analogous approach to that of Cherrier and coworkers, we prescribe two petrocarbon δ^{13}C end-members in order to constrain the relative contributions of methane (δ^{13}C = -59 ± 2‰) versus Louisiana light crude oil (δ^{13}C = -27 ± 0.4‰) [Cherrier et al., 2014; Graham et al., 2010] to DOC\textsubscript{pc} using the following relationship:

\[
f_{pc} \delta^{13}C_{pc} = f_{oil} \delta^{13}C_{oil} + f_{methane} \delta^{13}C_{methane}
\]

where f is the percent contribution of each end-member, $f_{oil} + f_{methane} = f_{pc} = 100\%$, and $\delta^{13}C_{pc}$ represents the δ^{13}C of DOC petrocarbon added. Using equation (8), we determine f_{oil} and $f_{methane}$ at 1000 m to account for 42% and 58% (±1% propagated error) of excess DOC\textsubscript{pc}, respectively. In contrast, f_{oil} and $f_{methane}$ at 1250 m comprise 89% and 11% (±2%), respectively. These results highlight the contribution of both methane and crude oil to the DOC\textsubscript{pc} plume at 1000 m. In contrast, at 1250 m only a minor methane and large oil DOC\textsubscript{pc} contribution is observed. The disparate contribution of oil versus methane DOC\textsubscript{pc} may be related to the physical partitioning of dispersed DWH hydrocarbons as a function of droplet size, chemistry, or phase [Paris et al., 2012]. The relative distributions of oil and methane petrocarbon we observe are consistent with previous work evaluating the predominance of hydrocarbon gas (i.e., methane) at 800–1200 m and aromatic hydrocarbons (i.e., benzene) >1200 m immediately following the spill [Camilli et al., 2010; Kessler et al., 2011; Reddy et al., 2012; Valentine et al., 2010]. We note that the dispersant Corexit and other gases (<12% ethane and propane) were present in the water column [e.g., Reddy et al., 2012] and are not included in the above contribution estimates.

In considering the physical mechanisms responsible for the DOC\textsubscript{pc} anomalies we observe (i.e., degradation of a subsurface DWH plume versus natural seeps), it is important to consider all ancillary data and published research. For example, methane concentrations at P3 were negligible (Figure S3) and hydrocarbons (e.g., PAHs) from the DWH event are no longer present in the water column. In addition, our UV\textsubscript{ox} DOC analysis does not isolate volatiles (e.g., methane). Thus, our low observed DOC\textsubscript{pc} contribution estimates.

We cannot completely rule out horizontal advection of benthic/sedimented oil and methane seep DOC to the midwater column at P3. However, this physical mechanism is difficult to reconcile with available data. Published work demonstrating such a mechanism is also lacking. Most studies focused on methane seep DOC have not observed significant seep-derived DOC beyond a few meters of the seep point source [Pohlman et al., 2011; Pohlman et al., 2009], suggesting that seep DOC is highly labile and rapidly recycled in the deep ocean. Station P3 is also not in the immediate vicinity of any vigorous hydrocarbon or methane seeps. An advection of benthic sediment/seep material is also not supported by our filtered versus nonfiltered 1000 m duplicates at P3 that yielded similar DOC concentrations and isotopic values. This comparison would seemingly preclude concurrent turbidity flows and/or sediment resuspension of DOC\textsubscript{pc} sources. Our ancillary hydrographic data do not indicate sedimentary contributions at 1000 m and 1250 m at P3. We do not observe anomalously high methane, particulate organic carbon (POC), O\textsubscript{2}, NO\textsubscript{3}, NH\textsubscript{4}, PO\textsubscript{4}, and SiO\textsubscript{2} at P3 (see supporting information section S2.1).

We hypothesize that this mesopelagic DOC\textsubscript{pc} is biologically recalcitrant and may persist for many years. Previous work observed a rapid microbial metabolism and removal of methane and hydrocarbons from the subsurface DWH plume [Camilli et al., 2010; Crespo-Medina et al., 2014; Joye et al., 2014; Joye et al., 2011b; Kessler et al., 2011; Kleindienst et al., 2016; Valentine et al., 2010]. However, no change in water mass properties, nutrients, and apparent oxygen utilization (AOU) along the transect (Figures S4–S6), in
combination with no correlation between deep DOC and either nutrients or AOU, suggests that rapid remineralization of this DOC_{pc} is no longer occurring. It is important to note that a change in AOU at these depths should not necessarily be expected given the decrease in observed dissolved oxygen anomalies within months following the microbial response to the spill [Kessler et al., 2011]. If active remineralization of DOC_{pc} is no longer occurring, we hypothesize that physical dispersion (as opposed to biological remineralization) will be primarily responsible for future changes in elevated DOC concentrations in the mesopelagic GOM associated with the DWH event (see supporting information Figure S7). To date, not all of the 0.46–0.60 Tg of petrocarbon that was injected into the GOM from DWH [Chanton et al., 2015; Joye et al., 2011a] has been accounted for. Future work should focus on the role DOC_{pc} may play in closing the “missing” DWH oil spill budget. Our preliminary first-order estimate suggests that DOC_{pc} may comprise between 0.06 and 0.08 TgC, or ~10–16% of the oil spill budget (see supporting information section S2.2). We propose that this isotopically “labeled” DOC_{pc} may constitute a new tracer for the long-term geochemical impact of DWH in the GOM basin, and perhaps in the North Atlantic.

3.4. DOC Cycling in the Gulf of Mexico Basin

Our results represent the first water column total DOC Δ^{14}C measurements in the GOM basin. By comparing our Loop Current profiles (LC and LCE) to a Caribbean profile (A20, Station 27; 13°N, 52°W, Figure 2), we discuss a few implications for DOC cycling in the deep GOM basin. LC (P4) surface DOC Δ^{14}C and δ^{13}C values and Keeling regression intercepts (Figure S8 and Table S2) suggest marine primary production as the primary source of DOC in the GOM and Caribbean. The nearshore mesoscale surface LCE (P5) profile has generally similar DOC concentrations and isotopic signatures, with surface LCE having only slightly higher DOC and Δ^{14}C values than the LC—suggesting some possible modern marine DOC production as the LCE moved onshore (Figures 2a–2f and Table S1). At intermediate LC profile depths (350–1000 m), DOC Δ^{14}C values are higher than A20 values (ΔΔ^{14}C = +44‰; Figure 2e and Table S3) suggesting a modern DOC contribution. These higher DOC Δ^{14}C values may suggest a modern DOC similar to previous work observing higher DIC Δ^{14}C values in the GOM relative to Atlantic waters attributed to biogenic particle dissolution [Matthews et al., 1973; Morrison et al., 1983]. However, in the LC profile intermediate depths, DOC concentrations are nearly identical to A20 (Figure 2d), suggesting that any additional modern DOC source must in turn be balanced by a removal of aged DOC as this water is transported from the Caribbean to the GOM via the Yucatán Channel. Finally, deep LC profile DOC concentrations and Δ^{14}C values were slightly lower than those of A20 by ΔDOC = 1.6 ± 1.0 μM and ΔΔ^{14}C = 11 ± 15‰, respectively (Figures 2d and 2e and Table S3). While the errors are high, given deep GOM waters originate in the Caribbean, entering via the Yucatán Channel (sill depth ~2040 m), there are three possible reasons for this small negative DOC and Δ^{14}C offset in the deep LC profile: (1) deep GOM DOC has a long residence time, (2) prevalent natural hydrocarbon seeps contribute some ^{14}C-depleted DOC to the deep GOM, (3) there is removal of young, semilabile DOC with deep water as it advects from the Caribbean to the GOM basin via the Yucatán Channel, or (4) natural variability in deep GOM DOC and Δ^{14}C.

First, aging of DOC could explain the deep P4 offset. A deep DOC Δ^{14}C offset of ~10‰ suggests an apparent DOC ventilation time of ~150 ^{14}C years. This is ~100 ^{14}C years less than physical advection estimates of GOM basin ventilation of ~250 years [Rivas et al., 2005]. This age offset could indicate a modern DOC source to the deep GOM basin, such as POC solubilization [Druffel et al., 2016; Follett et al., 2014; Smith et al., 1992; Walker et al., 2016b]. This would again be consistent with the above mentioned higher deep GOM DIC Δ^{14}C values versus the Caribbean Sea. However, we note the variability (± standard error) in deep A20 DOC ^{14}C ages is ±103 years (n = 6). Given the ventilation time of the GOM, variability in these ^{14}C ages likely precludes a DOC residence time estimate. It is also difficult to resolve this offset using DIC Δ^{14}C since some bomb ^{14}C and tritium is present in the deep Caribbean (Figure S9). Second, while natural oil seeps in the GOM emit up to 140,000 t of hydrocarbon per year [Kvenvolden and Cooper, 2003; Macdonald et al., 1993; Pohlman et al., 2011], our DOC concentrations, Δ^{14}C and δ^{13}C values, and Keeling regressions (Figure S8) do not indicate a third deep GOM DOC end-member, nor a negative second end-member consistent with hydrocarbon seeps. Although DOC contributions in the immediate vicinity of seeps are possible [Pohlman et al., 2011], our results do not suggest a widespread seep contribution to deep GOM DOC Δ^{14}C values (see supporting information and Figures S1–S4 and S6). Third, it is possible that DOC is being remineralized during deep water transport.
between the Caribbean (40.5 ± 0.6 μM; n = 8) and GOM basin (38.9 ± 0.8 μM; n = 4). An isotopic mass balance of our observed DOC concentration offset of 1.6 ± 1.0 μM suggests a removal of DOC with Δ14C = 215 ± 195‰. While the uncertainty is high, this mass balance, together with a higher AOU in the deep GOM (ΔAOU = 40.1 μMol L−1; data not shown), suggests a removal of semilabile DOC during transport to the GOM is possible. However, we cannot rule out natural variability in DOC Δ14C, or deep POC solubilization as equally plausible explanations of the deep DOC Δ14C data.

4. Summary and Implications

These data represent the first total DOC, Δ14C and δ13C water column profiles from the GOM and highlight dynamic cycling of DOC within several diverse northern GOM and deep GOM basin environments (Figure 3). A summary of our mass balance and mixing calculation results for each GOM environment are also provided in Table S3. Our results indicate significant export of high Δ14C tDOC from the Mississippi River. Preliminary Δ14C evidence of DOC in the deep Mississippi River may indicate a benthic biogenic methane source of exported DOC. A growing body of work suggests photo-oxidation and microbial respiration remove significant Δ14C across the Louisiana shelf [Bianchi et al., 2004; Fichot and Benner, 2014; Fichot et al., 2014]. Our DOC Δ14C and δ13C results also suggest that some marine DOC accumulation occurs at the oceanographic front of the aging Mississippi River plume—consistent with previous work showing phytoplankton bloom and microbially mediated accumulation of semilabile DOC on the LA shelf. Offshore, GOM DOC cycling is dominated by primary production of modern DOC in the surface ocean. Near the Macondo wellhead site, we observe a large mesopelagic anomaly of high DOC with low Δ14C and δ13C values. The isotopic presence of a persistent DOCpetrocarbon (DOCpc) plume was observed ~4 years after the Deepwater Horizon spill event. We hypothesize this “preaged,” newly added DOC results from the microbial transformation of mesopelagic DWH oil and methane into a natural population of recalcitrant DOC molecules. In the deep GOM basin, DOC Δ14C values have slightly higher Δ14C values than deep water recharge sources (i.e., Caribbean and NADW), suggesting some modern deep DOC contributions from sinking particles. Very low DOC Δ14C values are not observed in the abyssal GOM, suggesting that deep hydrocarbon seep DOC is labile and does not accumulate in the deep GOM basin [Bianchi et al., 2014; Bracco et al., 2016; Lehr et al., 2015, last accessed February; Mason et al., 2016; McNichol et al., 1994; Strickland, 1972; Zhou et al., 2013; Ziervogel et al., 2012].

Figure 3. Cartoon depicting the DOC cycle within the Gulf of Mexico (GOM). The Mississippi River discharges terrestrial DOC (tDOC) which is rapidly cycled at the marine interface via photo-oxidation (UV), primary production, and microbial remineralization. Offshore the DOC cycle is dominated by primary production in the surface, slow deep water recharge of North Atlantic Deep Water (NADW), and modern deep DOC (and DIC) contributions from sinking particles. DOC from natural seeps in the deep GOM are not prevalent in DOC isotopic profiles. Thus, seep DOC is most likely labile and quickly remineralized at depth. The isotopic presence of a persistent DOCpetrocarbon (DOCpc) plume is observed ~4 years after the Deepwater Horizon spill event at the Macondo wellhead (MWH) site.
Acknowledgments
We gratefully acknowledge the staff of the Louisiana Universities Marine Consortium (LUMCON) and the crew of the R/V Pelican for providing facilities for sampling the Gulf region and seawater DOC collection. We thank Frank Muller-Karger, Daniel Otis, and members of the Institute of Marine Remote Sensing (University of South Florida) for aid in determining the MRP location in near-real time. We also acknowledge Sheila Griffin, Jennifer Walker, Christopher Glynn, and Dachun Zhang (University of California Irvine) for their help with Δ13C and Δδ13C isotopic sample analysis. Matthew Rich (LUMCON) collected and analyzed oxygen and nutrient samples. We thank two anonymous reviewers for their insightful and constructive comments which greatly improved this paper. This work was funded by grants from BP/The Gulf of Mexico Research Initiative (GOMRI) to the Consortium for the Advanced Research of Transport of Hydrocarbon in the Environment (CARTHE, B.E.R.), the Coastal Waters Consortium (CWC; B.J.R.), an American Chemical Society (ACS) Petroleum Research Fund (PRF) New Directions (ND) Grant (E.R.M.D and B.D.W) and a Research Fund (PRF) New Directions Chemical Society (ACS) Petroleum Advanced Research of Transport of Hydrocarbon in the Environment (LUMCON) collected and analyzed isotopic sample analysis. Matthew Rich (LUMCON) collected and analyzed oxygen and nutrient samples. We thank two anonymous reviewers for their insightful and constructive comments which greatly improved this paper. This work was funded by grants from BP/The Gulf of Mexico Research Initiative (GOMRI) to the Consortium for the Advanced Research of Transport of Hydrocarbon in the Environment (CARTHE, B.E.R.), the Coastal Waters Consortium (CWC; B.J.R.), an American Chemical Society (ACS) Petroleum Research Fund (PRF) New Directions (ND) Grant (E.R.M.D and B.D.W) and a UCI Keck Carbon Cycle AMS Laboratory Postdoctoral Scholarship (B.D.W.). The authors declare no financial conflicts or conflicts of interest. The authors declare that (the/all other) data supporting the findings of this study are available within the article and its supporting information files. Data are also publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (DOI: 10.7266/_N78263273) and through contacting B.D. W. The funders had no role in the design, execution, or analyses of this project.

References
Joye, S. B., A. P. Teske, and J. E. Kostka (2014), Microbial dynamics following the Macondo well blowout across Gulf of Mexico environments, Biosience, 64(9), 766–777.
Lehr, W., B.ristol, and A. Pospolo (2015), Federal Intergency Solutions Group, Oil budget calculator science and engineering team, Oil Budget Calculator.