Syntactic categories derived from frequent frames benefit early language processing in English and ASL

Galia Barsever
Lisa Pearl
University of California, Irvine

BUCLD
November 13, 2015
Introduction

Early acquisition strategies likely don’t yield adult knowledge directly, but instead provide a stepping stone to later knowledge (Frank et al. 2009, Phillips & Pearl 2015).
Linking to language processing

How can we link this developing knowledge to processing?

• How are developing knowledge representations used in language processing?

• How do different language modalities (which may be processed differently) affect acquisition strategies?
One way developing knowledge is used

One beneficial effect of preliminary knowledge could be that language input becomes easier for children to process, given their limited cognitive resources.

- more **useful** knowledge = **easier** to process
Different modalities

- Representationally, we think signed languages and spoken languages are represented in the same way (Lillo-Martin & Gajewski 2014)
Different modalities

- Representationally, we think signed languages and spoken languages are represented in the same way (Lillo-Martin & Gajewski 2014)

- Idea: If representations are learned the same way as spoken language, then a strategy that works for spoken language should work for sign language
Roadmap

• Case study: Grammatical categorization
 • focusing on the frequent frames (FFs) learning strategy (Mintz 2003)

• Proposed metric: assesses processing ease for a learner using category knowledge

• Model implementation

• Take-home points:
 • **Strategy works the same way** for a spoken language (English) and a signed language (ASL)
 • **FF-based categories make processing easier** than adult categories at early stage of development
Roadmap

• **Case study: Grammatical categorization**
 • focusing on the frequent frames (FFs) learning strategy (Mintz 2003)

• **Proposed metric:** assesses processing ease for a learner using category knowledge

• **Model implementation**

• **Take-home points:**
 • **Strategy works the same way** for a spoken language (English) and a signed language (ASL)
 • **FF-based categories make processing easier** than adult categories at early stage of development
Grammatical Categorization

– Foundational for syntax

– Basic intuition: If we recognize that different words belong to abstract categories, language becomes easier to predict because of the underlying structure.

This make language easier to process!

• Formalized in surprisal theory of sentence processing (Levy 2008)
Grammatical Categorization

– Foundational for syntax
– Basic intuition: If we recognize that different words belong to abstract categories, language becomes easier to predict because of the underlying structure.

\[\text{high probability} = \text{easier to process} \]

– This makes language easier to process!
 • Formalized in surprisal theory of sentence processing (Levy 2008)
What are you learning in the early stages of categorization?

– Might not know all nouns (adult knowledge)

– Example: you know dog and kitty are the same type of thing but you don’t know dog and idea are, too.
What’s important: How useful is this early knowledge?

One example: Can the information about **nouns** that you learned help you process language faster or better?

Does this knowledge make language more **predictable**?
Frequent Frames as a strategy: When and Why

- Frequent Frames (FFs) is a computationally inexpensive strategy intended for the beginning stages of grammatical categorization
 - Would be used before 12-14 months (Booth & Waxman 2003)
Frequent Frames as a strategy: When and Why

– Frequent Frames (FFs) is a computationally inexpensive strategy intended for the beginning stages of grammatical categorization
 – Would be used before 12-14 months (Booth & Waxman 2003)

– Basic intuition:
 • Frequently occurring frames tend to identify words that behave similarly in sentences
 • Behave similarly = they appear in the same context
 • Context = surrounding words
Frequent Frames: Frames

Example with words as frames:
For a sequence of words XYZ, $X__Z$ is the frame, and Y is the thing identified.

I am *hugging* nice penguins. I am *petting* nice kitties.

$am__nice$ captures: *hugging* and *petting*
Frequent Frames: Frequent

What’s “Frequent”?

Intuition: Too many things are hard to pay attention to —> Fewer is easier

Frequent things are likely to be salient, so a few very frequent things are likely to be in the child’s intake (as opposed to all the things in the input).
Frequent Frames: Experimental Basis

– Children at early learning stages shown to be able to identify and use FFs (Mintz 2006), as well as non-adjacent dependencies (Lany & Saffran 2011)
Frequent Frames: Computational Justification

– Shown to work well on various spoken languages (Mintz 2003, Chemla et al. 2009, Weisleder & Waxman 2010, Wang et al. 2011)
Big Questions

Two questions:

1) Are FFs useful for early processing?
2) How well do FFs identify grammatical categories in ASL, a language with a different modality?
Roadmap

• Case study: Grammatical categorization
 • focusing on the frequent frames (FFs) learning strategy (Mintz 2003)

• Proposed metric: assesses processing ease for a learner using category knowledge

• Model implementation

• Take-home points:
 • Strategy works the same way for a spoken language (English) and a signed language (ASL)
 • FF-based categories make processing easier than adult categories at early stage of development
Frequent Frames: Measuring Success Before

- What does it mean for FFs to be successful?
 - Previously: Compared against adult knowledge
- Reason: (practical) It’s what we had available
Frequent Frames: Measuring Success Before

• What does it mean for FFs to be successful?
 • Previously: Compared against adult knowledge
 • Reason: (practical) It’s what we had available

• But it means we expect *dog*, *kitty*, and *idea* to go together
Introducing Our Utility Metric

Remember:
Making language \textit{easier to process} =
Making language \textit{more predictable}

A formal definition of more predictable: \textit{Perplexity} (Brown et al. 1992)
Introducing the computational measure of perplexity

- We’re getting this from computational linguists who use this to measure how effective their models are.

- Perplexity is inversely related to probability, so low perplexity = higher probability of seeing the data.

\[
\text{Perplexity}(\text{Words} = w_1w_2\ldots w_N) = \sqrt[N]{\frac{1}{P(\text{start} - w_1w_2\ldots w_N - \text{end})}}
\]

If the probability is low because we didn’t expect our data, then whatever we learned is not helpful.
Introducing the computational measure of perplexity

Perplexity($Words = w_1 w_2 ... w_N$) = $\sqrt[N]{\frac{1}{P(start - w_1 w_2 ... w_N - end)}}$

• Example of low perplexity:

Perplexity("I – like – nice – penguins") = $\sqrt[4]{\frac{1}{\text{probability}(start – I – like – nice – penguins – end)}}$

Perplexity —> near 1!

Highly likely = low perplexity
Introducing the computational measure of perplexity

\[
\text{Perplexity}(\text{Words} = w_1w_2...w_N) = \sqrt[N]{\frac{1}{P(\text{start} - w_1w_2...w_N - \text{end})}}
\]

• Example of high perplexity:

\[
\text{Perplexity}(\text{"Nice - I - penguins - like"}) = \sqrt[N]{\frac{1}{\text{probability}(\text{start} - \text{Nice} - \text{I} - \text{penguins} - \text{like} - \text{end})}}
\]

Perplexity \(\rightarrow\) big number!

Not likely = high perplexity
How do we get $P(\text{start-w}_1...\text{w}_n\text{-end})$?

Naïve assumption of early language representation which we think may be a reasonable approximation of a child’s developing structural knowledge.

Bigram model:
current category depends on previous category
How we calculate probability of a sentence

How do we get $P(\text{start-}w_1\ldots w_n\text{-end})$?

Bigram model:
current category depends on previous category

$$P(\text{start-}w_1\ldots w_n\text{-end}) = p(g_1|\text{start}) \times p(w_1|g_1) \times p(g_2|g_1) \times p(w_2|g_2) \times p(g_3|g_2) \times p(w_3|g_3) \times \ldots \times p(g_n|g_{n-1}) \times p(w_n|g_n) \times p(\text{end}|g_n)$$
How do we get $P(\text{start}-w_1…w_n\text{-end})$?

Sample calculation of the probability of “I like nice penguins”

Start \rightarrow Pronoun

\[P(\text{start-I-like-nice-penguins-end}) = p(\text{pronoun}|\text{start}) \times p(I|\text{pronoun}) \]

$\#$ of times a “I” appears out of all pronouns
How do we get \(P(\text{start-}w_1\ldots w_n\text{-end}) \)?

Sample calculation of the probability of “I like nice penguins”

\[
P(\text{start-I-like-nice-penguins-end}) = p(\text{pronoun}|\text{start}) \times p(I|\text{pronoun}) \\
\times p(\text{verb}|\text{pronoun}) \times p(\text{like}|\text{verb})
\]
How do we get $P(\text{start-w}_1\ldots\text{w}_n\text{-end})$?

Sample calculation of the probability of “I like nice penguins”

$$P(\text{start-I-like-nice-penguins-end}) = p(\text{pronoun}|\text{start}) \times p(\text{I}|\text{pronoun})$$

$$\times p(\text{verb}|\text{pronoun}) \times p(\text{like}|\text{verb})$$

$$\times p(\text{adjective}|\text{verb}) \times p(\text{nice}|\text{adjective})$$
How do we get $P(\text{start-}w_1\ldots w_n\text{-end})$?

Sample calculation of the probability of “I like nice penguins”

$$P(\text{start-}I\text{-like-nice-penguins-end}) = p(\text{pronoun}|\text{start}) \times p(I|\text{pronoun}) \times p(\text{verb}|\text{pronoun}) \times p(\text{like}|\text{verb}) \times p(\text{adjective}|\text{verb}) \times p(\text{nice}|\text{adjective}) \times p(\text{noun}|\text{adjective}) \times p(\text{penguins}|\text{noun})$$
How do we get $P(\text{start}-w_1\ldots w_n-\text{end})$?

Sample calculation of the probability of “I like nice penguins”

$$P(\text{start}-I\text{-like}-\text{nice}-\text{penguins}-\text{end}) = p(\text{pronoun}|\text{start}) \times p(I|\text{pronoun}) \times p(\text{verb}|\text{pronoun}) \times p(\text{like}|\text{verb}) \times p(\text{adjective}|\text{verb}) \times p(\text{nice}|\text{adjective}) \times p(\text{noun}|\text{adjective}) \times p(\text{penguins}|\text{noun}) \times p(\text{end}|\text{noun})$$
Adult knowledge vs Processing ease

• Metrics of success:
 • Standard way: Measuring against adult knowledge
 • New way: Measuring processing ease as predictability
Adult knowledge vs Processing ease

Training:
Use word-level FFs to identify categories in English and ASL, using realistic data in both languages

Test:
Standard way:
Compare against adult grammatical categories

New way:
Compare FF-based categories and adult grammatical categories on their ability to predict language data (=comprehension)
• **Case study: Grammatical categorization**
 • focusing on the frequent frames (FFs) learning strategy (Mintz 2003)

• **Proposed metric**: assesses processing ease for a learner using category knowledge

• **Model implementation**

• **Take-home points**:
 • *Strategy works the same way* for a spoken language (English) and a signed language (ASL)
 • *FF-based categories make processing easier* than adult categories at early stage of development
Corpus Stats

English: Peter corpus (Bloom, Hood, & Lightbown, 1974; Bloom, Lightbown, & Hood, 1975) from CHILDES (MacWhinney, 2000)

ASL: BU ASLLRP (Neidle, C. & Vogler, C. 2012)

<table>
<thead>
<tr>
<th></th>
<th>tokens</th>
<th>types</th>
<th># utt</th>
<th>average utterance length</th>
<th>categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (child-directed)</td>
<td>13039</td>
<td>930</td>
<td>3484</td>
<td>5.27 words</td>
<td>72 (as derived from %mor line tagging)</td>
</tr>
<tr>
<td>ASL (adult-directed)*</td>
<td>10820</td>
<td>2321</td>
<td>1641</td>
<td>6.6 signs</td>
<td>34 (as derived from corpus) annotation)</td>
</tr>
</tbody>
</table>

*Ask me about how this impacts results!
Example of English Corpus

• One utterance in the English corpus:

*LOI: are you a fish?
%mor: cop | be&PRES pro | you det | a n | fish?
Example of ASL corpus

• One utterance in the ASL corpus:

A lot of things go into an ASL utterance that we don’t consider when using an English or other spoken language corpus.

We used main gloss and Part of Speech tagging to run our model.
Practical Decisions

• The choice points:
 • What counts as frequent?
 • What to do with words uncategorized by FFs?
 • Framing units
Choice point: Frequency

• We chose to implement Chemla et al.’s (2009) cutoff for frequency: they used the ones that grouped together at least 0.5% of types and 0.1% of tokens in the corpus (6 frames total)
 • Note: Differs from Mintz (2003), who used the top 0.13%

• Justification: Similar size of corpus between the French and ASL
Choice point: Words not in FFs

This was not a concern for previous implementations which were just comparing against adult categories. Why not?

Because they only cared about the accuracy of FF categories, so words not in those categories were ignored for purposes of evaluation.
Choice point: Words not in FFs

Our measure requires all words to be in a category, so that the probability of a sentence can be calculated.

\[
\text{Perplexity}(\text{Words} = w_1w_2...w_N) = \sqrt[N]{\frac{1}{P(\text{start} - w_1w_2...w_N - \text{end})}}
\]
Choice point: Words not in FFs

• Choice: Individual category or one large one?
 • We chose each one = individual category.

• Why? Intuition: Children will not think words are the same type of thing unless they have a reason to.
Choice point: Framing units

- Can use either words or morphemes
 - Unrealistic to use morphemes at this stage for ASL, so using “words” for both modalities
- ASL: word = sign
Choice point: Framing units

- Can decide to include utterance boundaries in frames or not
 - Utterance boundaries have been shown to be highly salient (e.g., Seidl & Johnson 2006) so we chose to include them
Previous work: Category Precision

- **Precision** is a typical measure for category accuracy
 - Highly precise categories are comprised of a single target category (ex: a category made up mostly of nouns)
 - Note: Highly precise categories are thought to be more useful for early acquisition as compared to complete categories (ex: a category that includes all the nouns)
Previous work: Precision

- FF **precision** is generally good.
- Note: Frame unit can matter.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg precision</td>
<td>Word: 98%</td>
<td>Word: 100%</td>
<td>Word: 75%</td>
<td>Word: 86% Morpheme: 88%</td>
<td>Word: 47% Morpheme: 91%</td>
</tr>
</tbody>
</table>
Roadmap

• Case study: Grammatical categorization
 • focusing on the frequent frames (FFs) learning strategy (Mintz 2003)

• Proposed metric: assesses processing ease for a learner using category knowledge

• Model implementation

• Take-home points:
 • **Strategy works the same way** for a spoken language (English) and a signed language (ASL)
 • **FF-based categories make processing easier** than adult categories at early stage of development
Our Results: Precision

• How do FF categories compare with adult level knowledge?

<table>
<thead>
<tr>
<th></th>
<th>FF-based: Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASL</td>
<td>0.415</td>
</tr>
<tr>
<td>English</td>
<td>0.248</td>
</tr>
</tbody>
</table>
Our Results: Precision

- How do FF categories compare with adult level knowledge?

<table>
<thead>
<tr>
<th></th>
<th>FF-based: Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASL</td>
<td>0.415</td>
</tr>
<tr>
<td>English</td>
<td>0.248</td>
</tr>
</tbody>
</table>

Note: Precision scores range from 0.0 (worst) to 1.0 (perfect)
Aren’t FFs supposed to work well at identifying adult knowledge?

Things to note:
(1) Precision is the same for both English and ASL
 • No modality difference.
Aren’t FFs supposed to work well at identifying adult knowledge?

Things to note:

(1) Precision is the same for both English and ASL

• **No modality difference.**

(2) Bad at getting adult category knowledge.

• But what if toddlers don’t need that? Instead, they want knowledge that helps them **process language better.**
Results: Perplexity

• How useful are the categories frequent frames identify at processing sentences by predicting what’s coming?
• Remember: Perplexity \approx inverse probability of an utterance

<table>
<thead>
<tr>
<th></th>
<th>Perplexity:</th>
<th>Perplexity:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FF-based categories</td>
<td>Adult categories</td>
</tr>
<tr>
<td>ASL</td>
<td>9.8</td>
<td>45.5</td>
</tr>
<tr>
<td>English</td>
<td>122.6</td>
<td>607.9</td>
</tr>
</tbody>
</table>
Results Summary

Categories inferred using the FF strategy, while **not similar** to adult level knowledge, **ease processing** for an early learner.
Future Work

Evaluate FFs on child-directed ASL corpus (might reasonably impact results).

Ask me!
Future Work

If we do want early categories to resemble adult categories, maybe we don’t need to get *all* of them.

- Maybe only need subset (noun, verb, adjectives) to be correct and not categories like determiners and auxiliaries.
Future Work

Output validity: Does the learned knowledge scaffold future acquisition (Phillips & Pearl 2015)?

Grammatical categories scaffold syntactic knowledge (example: hierarchical structure (Perfors et al. 2011))
Bigger Take-Home Point

Linking representations to processing may give idea about why intermediate representations look the way they do.

- Serving function of language use and comprehension, even though ultimate goal is adult representation (which in theory will serve it even better).
thank you

• Thanks to Lisa Pearl, Chen Qin, Tiffany Ng, Chloe Haviland, Sebastian Reyes, Yvonne Kim, and Shawn Abrahamson