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Abstract
Developmental theories often posit that changes in children’s early psychological characteristics
will affect much later psychological, social, and economic outcomes. However, tests of these
theories frequently yield results that are consistent with plausible alternative theories that posit a
much smaller causal role for earlier levels of these psychological characteristics. Our paper
explores this issue with empirical tests of skill building theories, which predict that early boosts to
simpler skills (e.g., numeracy or literacy) or behaviors (e.g, anti-social behavior or executive
functions) support the long-term development of more sophisticated skills or behaviors.
Substantial longitudinal associations between academic or socioemotional skills measured early
and then later in childhood or adolescence are often taken as support of these skill-building
processes. Using the example of skill-building in mathematics, we argue that longitudinal
correlations, even if adjusted for an extensive set of baseline covariates, constitute an
insufficiently risky test of skill-building theories. We first show that experimental manipulation of
early math skills generates much smaller effects on later math achievement than the non-
experimental literature has suggested. We then conduct falsification tests that show puzzlingly
high cross-domain associations between early math and later literacy achievement. Finally, we
show that a skill-building model positing a combination of unmeasured stable factors and skill-
building processes is able to reproduce the pattern of experimental impacts on children’s
mathematics achievement. Implications for developmental theories, methods, and practice are
discussed.
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Developmental theories often posit that changes in children’s early psychological
characteristics will affect their much later psychological, social, and economic outcomes.
Such theories include skill-building theories (e.g., Baroody, 1987; Stanovich, 1986; Cunha
& Heckman, 2007), theories of the life-course development of psychopathology (e.g.,
Moffitt, 1993), theories that posit reciprocal effects between children and their environments
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(e.g., Scarr & McCartney, 1983), and theories of early critical periods in children’s social
and cognitive development (Fraley and Roisman, 2015).

Tests of these theories are often conducted by estimating correlations between important
outcomes and children’s early psychological characteristics that have been adjusted by
statistical controls for variables that might affect both early and later child characteristics.
These findings are given varying degrees of causal interpretation. A cautious, yet superficial,
alternative approach adopted by many authors writing about these kinds of correlations is to
assert that because only random-assignment designs can prove causation, correlational
evidence should not be interpreted as evidence of causality. But many of these same authors
then go on to discuss the policy implications of their evidence (for review, see Reinhart et
al., 2013), a linkage that requires causal evidence. One cannot have it both ways.

We argue that regression-adjusted correlations often provide insufficiently “risky” tests of
developmental theories. We borrow from Meehl’s (1978, 1990) insight that when diverse
theories make the same predictions, it is important to conduct “risky” tests that have the
ability to distinguish among them. A prediction is considered risky if the probability of such
a prediction being true, assuming that the theory is false, is low. Non-zero regression-
adjusted correlations between children’s early psychological characteristics and their much
later psychological, social, and economic outcomes do not constitute a risky test of a
developmental theory because such correlations are consistent with a number of plausible
competing theories, including those positing that a combination of differentially stable
general cognitive abilities, personality, and environmental affordances is responsible for
generating the correlational patterns. We explore these issues in the context of a well-
trodden area in child development and education: the substantial correlations between
children’s early and much later academic achievement.

Correlational Tests of Skill-Building Theories
Even after adjusting for a large set of controls, including baseline measures of other
academic and socio-emotional skills and capacities, domain-general cognitive abilities, and
socioeconomic status, strong longitudinal correlations are often observed in studies of
academic domains of school readiness, across many years (Aunola, Leskinen, Lerkkanen, &
Nurmi, 2004; Bailey, Siegler, & Geary, 2014a; Duncan et al., 2007; Geary, Hoard, Nugent,
& Bailey, 2013; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Siegler et al., 2012; Watts,
Duncan, Siegler, & Davis-Kean, 2014). These longitudinal correlations constitute an
important part of the empirical basis for skill-building theories.

Researchers, including authors of this paper (Bailey et al., 2014a; Duncan et al., 2007; Watts
et al., 2014), attribute to these robust correlations varying degrees of causality. For example,
the Duncan et al. (2007; p. 1430) study of school readiness states: “…we implement
rigorous analytic methods that attempt to isolate the effects of school-entry academic,
attention, and socioemotional skills by controlling for an extensive set of prior child, family,
and contextual influences that may be related to children’s achievement.” Focusing on the
development of children’s mathematics achievement, this article uses experimental
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evidence, falsification tests, and alternative model structures to show that riskier tests
suggest a much smaller causal role for skill-building processes than commonly believed.

Causal Mechanisms and Correlational Patterns
What are the causal mechanisms through which boosts in early school readiness skills and
behaviors promote the development of much later academic and socioemotional skills?
Skill-building models provide one clear answer: for math and literacy, early academic skills
are the foundations upon which later skills are built. In the case of math, counting serves as a
basis for children’s early addition problem solving (Baroody, 1987), and addition is often
employed as a subroutine of children’s multiplication problem solving (Lemaire & Siegler,
1995). Such findings might reasonably lead one to predict that the children with the most
solid early foundations of math skills will, in the context of K-12 instruction will tend to
maintain higher levels of math skills throughout childhood and adolescence.

In the development of reading skills, children’s ability to match letters to sounds supports
their learning to recognize written words, which in turn supports their vocabulary learning,
which then supports their reading comprehension. Causal relations among these literacy
skills are likely bi-directional with, for example, increases in reading comprehension
facilitating more reading, which increases vocabulary (Stanovich, 1986).

The skill-building model of Cunha and Heckman (2007) is more comprehensive in that it
allows for simpler skills to support more sophisticated skills, but also posits a kind of
multiplier effect in which early skills and capacities can increase the productivity of
subsequent schooling and other investments. Moreover, it assumes that the list of “inputs”
for the production of any particular skill or behavior may include a wide array of past skills
and behaviors.

Substantial longitudinal correlations within domains of academic achievement and
socioemotional behaviors are predicted by these skill-building causal models and are
generally found in studies that estimate zero-order and regression-adjusted correlations
within many domains of achievement and socioemotional skills across time (e.g., Duncan et
al., 2007). For example, the “math to math,” “reading to reading,” and “anti-social to anti-
social” inter-wave correlations with fall of kindergarten values, calculated from national
data from the 1998–99 Early Childhood Longitudinal Study (ECLS-K), appear in Figure 1
(measure and sample details in the appendix). These correlations decay the most across the
kindergarten year, but then flatten out to a moderate (about .45 to .65) magnitude by fifth
grade. These kinds of patterns have been well documented in longitudinal correlational
studies of children’s cognitive abilities (Bayley, 1949; Tucker-Drob & Briley, 2014) and in
the development of personality (Anusic & Schimmack, 2015).

Although clearly consistent with skill-building developmental theories, these correlations do
not constitute a risky test of those theories because they are also consistent with alternative
theories in which the causal effects of early skills on later skills play a minor role in
contributing to the stability of psychological characteristics during cognitive development.
We focus on one set of competing theories: those that posit an important role for some
combination of foundational and relatively stable psychological characteristics and
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persistent environmental characteristics such as family functioning or neighborhood poverty.
If these influences are not captured sufficiently with regression controls or other techniques
for reducing omitted-variables bias (OVB), then the apparent role of skill-building processes
in generating cross-time correlations could be seriously overstated.

Riskier Tests
We discuss three promising approaches to understanding the importance of skill-building
processes. First, and most important, is an experimental manipulation of children’s early
skills or behaviors, which provides the riskiest (i.e., most at risk of being refuted) test of
theories of children’s skill development. Second, we detail how falsification tests can be
applied more widely to correlational data. And third, we show that longitudinal correlations
and experimental impact patterns can be modeled in ways that make more precise (and thus
riskier) predictions about the effects of prior skills or behaviors on later skills or behavior.
Our empirical evidence on these approaches is taken exclusively from the domain of math
achievement. As we argue below, our analysis has implications for a much broader set of
developmentally important skills and behaviors.

Experimental evidence

Random assignment to programs that boost school readiness skills and behaviors provide a
very risky test of the theory that early skills are a powerful cause of the learning of new
content in a manner that allows students with early skill advantages to maintain this
advantage throughout school. If, as Duncan et al. (2007) imply, controls for an extensive set
of prior child, family, and contextual influences enable an analyst to use nonexperimental
data to compare otherwise similar groups of children who differ only in one particular
school-entry skill or behavior, then the multivariate regression approach of Duncan et al.
(2007) and others could identify the causal impact of a particular skill or behavior on later
school success. We would then expect the patterns of predicted impacts from these
regression models to match those generated by a genuine random-assignment experiment.

To investigate whether well controlled correlational models of long-run achievement
patterns reliably generate causal estimates, we draw data from a test of the TRIAD
(Technology-enhanced, Research-based, Instruction, Assessment, and professional
Development) learning intervention model. TRIAD featured a preschool mathematics
curriculum, called Building Blocks, as its key component (see Clements & Sarama, 2008).
As explained in the appendix, the TRIAD study randomly assigned 42 schools with state-
funded preschool programs in Massachusetts and New York either to a treatment condition
in which the Building Blocks curriculum was implemented in preschool classes, or to a
control condition in which preschool math was taught as usual. In treatment schools, the
curriculum was administered over the course of the preschool year. Math achievement was
measured in the fall and spring of the prekindergarten year, in the spring of the kindergarten,
first, fourth and fifth-grade years, as well as in the fall of the fourth-grade year. Random
assignment checks showed that treatment and control groups were balanced (Clements et al.,
2011).
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We first ignored experimental variation in the TRIAD data and used the study’s control
group to generate cross-time correlations between math achievement in the spring of the
prekindergarten year and math achievement measured in all of the study’s follow-ups. In
contrast to Figure 1, we adjusted these correlations for the baseline achievement and
demographic measures described in the appendix and also show 95 percent confidence
intervals associated with each of the estimates. These confidence intervals were derived
from standard errors that were adjusted for school-level clustering. The correlations shown
in the “TRIAD regression-adjusted correlations” line of Figure 2 display the same kind of
asymptotic pattern found with the unadjusted ECLS-K-based “math-to-math” correlations
shown in Figure 1.1

Regression adjustments drop the estimated effect by around .20 SD-units, although these
estimates still exceed .40 SD in fifth grade. Duncan and colleagues (2007) reported an
average regression-adjusted math-to-math estimated predicted impact of a remarkably
similar .42 SD when comparing an early measure of children’s mathematics achievement
with later measures across six data sets. If the baseline covariates included in these
regression-adjusted TRIAD estimates eliminate OVB, then we would expect to see a similar
pattern in the experimental data.

The “TRIAD Treatment Impacts” line in Figure 2 shows that this is not at all the case.
Treatment and control differences at the end of the pre-K year amounted to .63 SD – a large
impact. To establish comparability between this .63 SD impact and the 1.0 SD predicted
impact implicit in the regression-adjusted estimate shown in Figure 2’s top line, we rescale
this and all other experimental impact estimates by multiplying by 1/.63.2 Rescaled impact
estimates fall to about .46 SD within a year, and drop to statistically non-significant .08 SD
and −.02 SD values for the two fourth-grade tests. The partial recovery of impacts in fifth-
grade (.14 SD) is intriguing, but statistically indistinguishable from zero in this analysis.3

Overall, the correlation-based estimate of the treatment effect is very close to the observed
treatment effect one year after the end of treatment, but then much higher than the observed
treatment effects at all subsequent waves. In highlighting the discrepancy between
correlational estimates and experimental impacts, we do not intend to discourage the use of
early intervention (we discuss possible implications for research and practice below).
Rather, our goal is to highlight the inaccuracy of estimated theoretically important causal
effects when confounds are assumed to be largely or fully controlled in a regression model.

TRIAD’s ability to shed light on math skill-building processes is a function of the
comprehensiveness of its initial impacts. End-of-preschool mathematics knowledge was
assessed using the REMA (Research-based Early Maths Assessment; Clements, Sarama, &
Liu, 2008; described more completely in the supplementary materials). The REMA assessed
children’s conceptual and procedural knowledge, as well as problem-solving and strategic

1Full correlation matrices for measures of children’s mathematics achievement administered at several waves across development are
available in Bailey et al. (2014b).
2This means, for example, that TRIAD’s .63 SD impact at the end of pre-kindergarten is shown as 1.0 and its the .29 SD experimental
impact at the end of the kindergarten is shown as .29 SD (= .18/.63). The scale for the correlations and rescaled impact estimates are
shown on the left y-axis, while the non-rescaled estimates appear on the right y-axis.
3Using a 2-level random intercept logistic regression model, Clements and colleagues (under review) found a statistically significant
treatment impact of the TRIAD intervention at the spring of fifth grade.
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competencies in the domain of early mathematics, and has been shown to strongly correlate
with other measures of early math learning (e.g., Applied Problems, Child Math
Assessment). Further it has been shown to strongly predict later mathematics achievement
measured through grade 5 (Watts, Duncan, Clements, & Sarama, 2016). Thus, the REMA
should provide a strong measure of the early mathematical competencies needed to build
later skills in mathematics.

As explained in the appendix, the end-of-Pre-K REMA test showed considerable variation in
four subdomains of preschool mathematics knowledge: counting, patterning, measurement,
and geometry. Bearing in mind that the psychometric properties of the overall REMA test,
but not its subscales, have been established (Clements, Sarama, & Liu, 2008; Weiland et al.,
2012), we grouped REMA items into each of these subdomains and created four measures
defined as the proportion of correct responses on the items included in each category. We
then tested the impact of the treatment on each standardized subdomain score. The
intervention generated statistically significant impacts on all four subdomains: counting (β=
0.45, SE=0.06), patterning (β= 0.36, SE=0.06), geometry (β= 0.67, SE=0.06), and
measurement (β= 0.20, SE=0.06), all of which have been shown to predict later mathematics
knowledge (Nguyen et al., 2016). Because the intervention boosted a wide variety of
preschool math skills, treated children should have had a much stronger base of math
competencies from which to build further math skills when compared with children in the
control group. In other words, these robust causal impacts at the end of the pre-K year
suggest that the TRIAD intervention provides an excellent foundation for tests of subsequent
skill-building processes.

Returning to the patterns of experimental impacts in Figure 1, it is noteworthy that TRIAD
treatment effects do not disappear completely immediately following the conclusion of
treatment, which is indeed consistent with skill building processes at work in children’s
academic development. However, skill-building processes following the conclusion of the
intervention do not appear to sustain a substantial treatment effect much beyond first grade.
This pattern of declining treatment effects is consistent with the patterns observed in many
randomized controlled trials testing the effects of interventions designed to boost children’s
early academic skills (Bus & van IJzendoorn, 1999; Puma et al., 2012; Smith et al., 2013;
for review, see Bailey et al., 2015, and for a review of treatment impacts on children’s
intelligence scores, see Protzko, 2015).

The divergent lines in Figure 2 pose a profound challenge to the large correlational literature
(including our own work) that has relied on longitudinal trajectories based on
nonexperimental data to infer developmental processes. It would appear that experimentally
induced changes in early skills may have temporary effects on children’s subsequent
learning. Yet, in the longer run, and in the context of the elementary schools most of these
children attended, children’s skills converge to trajectories governed by other processes.

A falsification test based on cross-domain correlations

Even in the absence of experimental data, it is possible to subject skill-building models to
riskier tests using correlational data. Falsification tests provide one example. One set is
based on the argument that if within-domain skill building processes were generating the
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strong pattern of longitudinal correlations shown in Figure 1, then cross-domain
correlational patterns should be much weaker. Specifically, in the case of mathematics and
reading, correlations between early and later math achievement scores should be persistently
higher than correlations between early math and later reading. Figure 1 shows this is the
case for math and anti-social behavior but decidedly not for math-to-reading correlations,
which are virtually indistinguishable from math-to-math correlations beyond first grade.
That school-entry mathematics achievement is a robust predictor of children’s long-term
reading outcomes was also observed by Duncan and colleagues (2007) in their analysis of
six longitudinal datasets (including the ECLS-K).

Skill-building models of children’s academic development have a difficult time explaining
why early mathematics achievement would exert a strong causal impact on later reading
achievement. To be sure, skills such as language comprehension are common to both
mathematics and reading achievement. But other evidence shows that correlations between
early math and later reading scores (.26 in meta-analytic estimates in Duncan et al., 2007)
are much higher than correlations between early reading and later math (.10). Is it plausible
that boosting children’s early mathematics skills would affect later reading skills one to two
years later to the same extent that it affected children’s mathematics skills? On one hand, the
TRIAD early mathematics intervention did show effects on some measures of early oral
language skills (Sarama et al., 2012). On the other hand, the effects did not generalize to
other tests of early reading skills, and the statistically significant effects were much smaller
than they were for children’s mathematics skills. Learning mathematics may have a non-
zero effect on children’s early reading achievement, but we doubt that the effect would be
almost identical to the effect on children’s achievement in the same domain. Still, we
consider additional falsification tests below.

Models consistent with temporal patterns of within-domain correlations

Consider the asymptotic rather than complete decline in the within-domain correlations
shown in Figure 1 and the regression-based correlations in Figure 2. What kind of skill-
building processes would cause the later impacts of early achievement to become constant
throughout development? A simple skill-building model could explain the shape of these
lines if learning a basic skill earlier than one’s peers persistently enabled a child to learn
more advanced skills before his or her peers. For example, if learning to count before one’s
peers resulted in a high probability of learning to add before one’s peers, which in turn
resulted in a high probability of learning to multiply before one’s peers, the correlation
between counting skills and multiplication fluency could be high.

However, probabilities of learning later skills conditional on learning an early skill are the
product of these interim probabilities. This model is shown with solid lines in Figure 3,
where the paths MS1 and MS2 (i.e., “math skills”) represent the impacts of a previous math
skill on the immediately following math skill. As long as these probabilities are less than
one, we should observe some kind of exponential decay in early-to-late correlations as skills
become more advanced. Research on transfer of learning, wherein knowledge or skills
learned in one domain or setting are applied to other situations, provides a strong theoretical
basis for this decay. In particular, this work suggests that as the features of domains and
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settings diverge from those in which the initial learning takes place, transfer becomes
decreasingly likely (Perkins & Salomon, 1988). As children progress through school, the
settings and content to which they are exposed grow increasingly dissimilar, on average, to
the settings and content to which they exposed at school entry.

The correlational estimates in Figures 1 and the top line of Figure 2 show a different pattern.
They decay a bit over time, which is predicted by the hypothesis that skill building plays a
role in the stability of individual differences in children’s early academic achievement.
However, they soon show a great deal of stability, especially after the first year of the study,
which suggests that other factors or processes are at work.

Skill-building models may account for an asymptote in the effects of early math
achievement on much later math achievement if individual differences in early achievement
skills provide a basis for learning across development. This theory, illustrated by the dashed
line in Figure 3, is appealing, given that skills acquired early in development clearly provide
a basis for children’s subsequent academic development. However, given that the most basic
skills are quickly mastered by the vast majority of children (Engel, Claessens, Watts, &
Farkas, 2016; Paris, 2005), individual differences in such skills are unlikely to account for
robust longitudinal associations between earlier and later academic skills. For example, if
almost all fifth graders can count to 10, it is difficult to imagine how children’s ability to
count to 10 would underlie individual differences in fifth graders’ learning, despite the
obvious importance of being able to count to 10 for learning mathematics throughout
development. It is an open question whether broader foundational proficiencies (as
described by the National Research Council, 2001) which are not quickly or easily mastered
(e.g., OECD, 2014) could be developed early and result in more persistent effects on
children’s mathematics achievement.

An Alternative Developmental Model
What might account for the lingering discrepancy between experimental and correlational
estimates of the effects of changes in early academic skills on academic skills several years
later? The discrepant correlational and experimental patterns shown in Figure 2 and the
estimated patterns of correlations across time within and between academic domains all
suggest that omitted variables influencing development throughout the observed period may
be imparting a substantial upward bias to the correlational estimates. Directly and precisely
measuring all of the important variables omitted from the regressions producing the top line
of Figure 2, and then controlling for them in a regression, is a Herculean task.

An instructive alternative approach is to partition the causes of children’s academic
development into factors that exert a stable influence on children’s academic skills
throughout development and – to continue with the example of mathematics achievement –
children’s mathematics knowledge assessed in the immediately preceding wave of data
collection. This approach provides an additional risky test of the hypothesis that skill-
building effects can be recovered in longitudinal datasets. If confounds are sufficiently
controlled in standard regression models, then removing variance attributable to stable
factors influencing children’s learning across development should not impact estimates of
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the effects of early achievement on later achievement. If, however, persistent confounds are
responsible for the discrepancy between experimental and regression derived estimates, then
controlling for these confounds across development should enable us to reproduce
experimental estimates using correlational data.

A simple version of one such model is depicted in Figure 4. Developed by Steyer (1987),
and implemented in structural equation modeling software (for discussion, see Cole, Martin,
& Steiger, 2005; Steyer & Schmitt, 1994; for an accessible introduction and code, see
Prenoveau, 2016), this so-called latent state-trait model considers children’s mathematics
achievement at any time to be caused by two sets of factors:

1. Children’s mathematics skill at the immediately preceding measurement
occasion. The impacts of children’s immediately preceding mathematics
achievement on their subsequent mathematics achievement, indicated in Figure 4
by MS1, MS2, …, MSk–1, could occur through content overlap and two aspects of
skill-building – transfer of learning and indirect effects of mathematics
achievement via increased motivation, teacher placement, or other mediators.

2. Characteristics with a stable influence on children’s learning throughout
development, represented by the loading of children’s mathematics achievement
at each occasion on a latent variable, labeled in Figure 4 as “Unmeasured
persistent factor.” This factor is likely comprised of environmental and personal
factors that differ between individuals in a similar manner across development
and could include a much broader set of stable influences than is usually implied
by the term “trait.”

The model depicted in Figure 4 requires at least three waves of data to estimate, but has
several advantages over traditional regression and some other SEM-based approaches for
estimating the effects of children’s prior and subsequent skills and behaviors. First, in the
case of math, it simultaneously estimates effects of children’s prior achievement on their
later achievement during several inter-wave periods (the MS paths), thereby allowing for
simultaneous tests of several theoretically important predictions (e.g., that a treatment effect
on children’s time 1 mathematics achievement will be reduced to the treatment effect times
MS1 at the second wave, to the original treatment effect times MS1 times MS2 by the third
wave, etc.).

Second, the model may plausibly account for the apparent discrepancy between correlational
and experimental estimates of the effects of children’s prior mathematics achievement on
their later mathematics achievement. If one assumes relatively large effects of stable
environmental and personal factors on children’s mathematics learning, then the model
predicts an approximately exponential decay of treatment effects as the time between
measurement occasions increases – a pattern consistent with experimental estimates –
accompanied by high correlational stability. In the presence of stable confounding, more
common alternative approaches such as the cross-lagged panel model might yield upwardly
biased predicted effects across development (Hamaker et al., 2015).

Third, owing to the accumulating effects of stable factors on children’s achievement across
development, the model generates a testable prediction of increasing inter-year stability as
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children get older (Cole, 2005). This pattern is well established in the development of
children’s general cognitive ability, both at the phenotypic and genetic levels (Bayley, 1949;
Tucker-Drob & Briley, 2014), and in the development of personality (Anusic & Schimmack,
2015). It is also evident in the ECLS-K dataset, where the correlations between mathematics
achievement scores across waves increase, despite growing inter-wave intervals. Children’s
mathematics achievement in the spring of kindergarten correlates .77 (SE= .01) with their
mathematics achievement one year later in the spring of first grade, which correlates .80
(SE= .01) with their mathematics achievement two years later than that in the spring of third
grade, which correlates .89 (SE= .01) with mathematics achievement two years later than
that in the spring of fifth grade.

Fourth, the model can be easily adapted into an experimental design, in which the first wave
of post-treatment achievement and the stable latent variable are simultaneously regressed on
treatment status. Relying on the TRIAD data used above, Watts and colleagues (2016) found
a substantial impact of the intervention on children’s math skills, but no effect on the latent
variable representing stable factors that influence children’s achievement across
development. However, this finding warrants replication under conditions in which
persistence may be most likely, including for subgroups, treatments, and populations for
which skills affected by the intervention are least likely to develop under counterfactual
conditions.

To be sure, the model depicted in Figure 4 leaves much to be desired because it merely
assigns a key role to unmeasured persistent factors but does not identify them. As discussed
above, the ideal test of what constitutes a persistent factor, and indeed, of whether such a
factor truly exists, is to regress the unmeasured persistent factor on a source of exogenous
variation, such as a randomly assigned intervention. In correlational datasets, the
unmeasured persistent factor can be regressed on hypothesized sources of persistent
variation (Bailey et al., 2014b), but this analysis is vulnerable to problems associated with
all cross-sectional regression analyses, such as OVB. Furthermore, the model is only one of
many possible explanations for how early and later mathematics achievement are related.
We hope other models will be compared to the one we use here, both on the basis of fit to
correlational datasets and their predictions about experimentally induced effects across time.

Comparing the persistent factor model with experimental estimates

Assuming no effects of early mathematics interventions on the unmeasured persistent factor
(an assumption that deserves continued scrutiny), the key model parameters for estimating
the pattern of treatment effects over time are the MS paths in Figure 4. Table 1 shows
estimates of the MS paths from all of the correlational studies of the development of
children’s math achievement across pre-kindergarten and the elementary school years to
which the state-trait model has been applied, to our knowledge. The average 1-year lagged
MS paths from the three datasets are all modest, ranging from .29 to .35, depending on
whether effect estimates are weighted by their underlying sample sizes. Put another way, the
model depicted in Figure 4 predicts that the treatment effect should decay to approximately
one-third of its previous magnitude each year.
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How well do these estimates track patterns observed in the TRIAD experimental study? The
bottom half of Table 1 shows estimates of MS paths implied by experimental impacts from
three early mathematics interventions that followed children for at least a year following the
conclusion of the given intervention included in the bottom half of Table 1. One-year lagged
MS paths can be calculated by dividing experimental impacts at the end of a one-year period
by the impacts at the beginning of that period. The average 1-year lagged MS path from the
three studies ranged from .39 to .44, depending on how effects were weighted across studies.
In other words, MS paths inferred from patterns of experimental impacts across time follow
a pattern of decay that is only slightly less steep than that predicted by estimates derived
from models based on a persistent latent factor. Patterns of impacts across time predicted by
estimated and inferred weighted study average MS paths appear in Figure 5. These are
calculated using the formula MSt, where MS is the estimated (.35) or inferred (.44) weighted
study average MS path and t is the number of years since the end of the treatment. They are
similar to each other and to the pattern of impacts in the TRIAD study (this is unsurprising
for the inferred paths given that these were based in large part on the TRIAD impact
estimates). In fact, the average MS path estimated from the state-trait model falls within the
confidence interval of every observed impact in the TRIAD study, while this is true of only
1 out of 5 regression-based estimates.

These patterns may generalize well to other kinds of studies of children’s academic
achievement outcomes. In a review of experimental estimates from 67 high-quality studies
of early childhood education programs, Li and colleagues (under review) reported an
average end-of-treatment effect size of .23, with estimates 0–1 years after treatment
averaging approximately .10. Impact estimates from subsequent waves were smaller, but
their precise values were sensitive to inclusion criteria.

As mentioned above in the discussion of Figure 2, correlational data track experimental
impact estimates from TRIAD much more closely at the end of kindergarten than in later
grades. In light of the estimates of the MS paths shown in Table 1, the model depicted in
Figure 4 appears to track experimental estimates more closely in later grades than at the end
of kindergarten. An obvious possible explanation for the larger 1-year lagged MS paths
inferred from experimental estimates is some misspecification or bias in the Figure 4 model.
Another possible explanation for the difference is that early mathematics interventions
generate transitory impacts on a broader set of children’s capacities (e.g., oral language
[Sarama et al., 2012] or motivation), which independently boost children’s later
mathematics achievement. Although in the latter case, the state-trait estimates would
actually provide more accurate estimates of MS paths than those inferred from experimental
impacts, the experimental impacts are more policy-relevant than the state-trait estimates in
either case.

In summary, a model that allows for persistent unmeasured factors produces estimates
consistent with the exponential decay in treatment effects observed in the most relevant set
of experimental studies on children’s early mathematics achievement, whereas traditional
methods fail to do so after the first year or so. Notably, the correlational estimates most in
line with experimental data were produced by the state-trait model from the largest sample
to which it has been applied, which also spanned the longest time interval. In our view, this
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model has advantages over standard OLS regression at approximating experimental impacts
because it considers persistent unmeasured factors influencing children across development.
However, the model does not resolve several important issues. First, it is unclear whether
this particular model is the ideal specification (see Cole et al., 2005, for a discussion, and
Hamaker et al., 2015, for alternatives), or whether intervention effects are likely to be
confined to occasion-specific variation, rather than stable environmental and personal
factors. Further, more research should investigate what variables constitute the stable
environmental and personal factors that influence children’s mathematics learning
throughout development.

What stable factors are missing from our regression models?

As noted above, we think that the “unmeasured persistent factors” in Figure 4 that influence
children’s academic and social development are in all likelihood a set of stable
environmental and personal factors. Probable influences on child achievement throughout
development include domain-general cognitive abilities, personality, and environmental
affordances. Intelligence and working memory have been strongly implicated as key drivers
of children’s academic development in correlational studies (Deary, Strand, Smith, &
Fernandes, 2007; Geary, Hoard, Nugent, & Bailey, 2012; Szücs, Devine, Soltesz, Nobes, &
Gabriel, 2014), so much so that a general factor extracted from various cognitive tests was
found to correlate .83 with a general factor extracted from academic achievement tests
(Kaufman et al., 2012). Personality also likely plays a significant and complex role in
children’s academic development.

Both personality and domain-general cognitive abilities are substantially influenced by
differences in both genes and environments (Bouchard & McGue, 2003). Aside from latent
environmental effects inferred from imperfect correlations between identical twins, strong
designs have also identified effects of measured environments, such as adoption (van
Ijzendoorn, Juffer, & Poelhuis, 2005; Kendler et al., 2015), maternal nutrition during
prenatal development (Almond & Mazumder, 2011), or a very intensive early childhood
education program (Campbell et al., 2001), on cognitive abilities many years later.

Implications for Design and Analysis in Developmental Research
We have argued that commonly used approaches to inferring skill-building processes from
longitudinal correlation are based on insufficiently risky tests. In particular, we have shown
that longitudinal correlations imply a much stronger skill-building process than does more
direct evidence from experimental studies; that the similarity of within- and cross-domain
correlations over time constitutes a falsification test that a simple math skill-building model
does not pass; and that at least one alternative developmental model, which accounts for
unmeasured factors, better reproduces the declining pattern of impacts generated by a large
random-assignment evaluation of an intensive math skills intervention.

Although our review has been confined to mathematics learning, we suspect that we would
find similar patterns in data on literacy, given the parallel nature of skill-building in those
two domains of learning and the similar patterns of within-domain longitudinal correlations
shown in Figure 1. Whether our conclusions about math generalize to other domains of

Bailey et al. Page 12

Am Psychol. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interest in developmental research, such as anti-social behavior or executive functions, is
less obvious. The differing heights of patterns of math-to-reading and math-to-antisocial
behavior correlational lines shown in Figure 1 suggest that whatever latent factor may
underlie math and reading trajectories does not substantially impact anti-social behavior
across development. However, an analogous developmental story may apply: Correlations
between kindergarten anti-social behavior and anti-social behavior at subsequent waves
follow a pattern similar to those for children’s academic skills (Figure 1), suggesting that
other factors may generate stability in children’s anti-social behavior across time. If these
factors are not well measured, the auto-regressive effects of anti-social behavior will be
exaggerated. Consistent with this possibility, Anusic and Schimmack (2015) observed
substantial stability in the inter-wave correlations of personality, affect, self-esteem, and life
satisfaction, with the highest stability observed in personality.4 It is important to emphasize
that the existence of effects of stable environmental and personal factors on children’s
academic development does not preclude skill-building processes, nor does the existence of
empirically stable environmental and personal factors imply that such factors are immutable.

Better measurement of children’s skills enables riskier tests of developmental hypotheses.
Measures in large longitudinal studies are often based on single scores rather than more
cognitively-complex and diagnostic assessments. Thus, children assigned the same score are
assumed to have the same knowledge state, such as children who raised their scores via
participation in an intervention group matched to controls who achieved that score without
the intervention (Bailey et al., 2016). The intervention may have taught the former certain
concepts and skills, raising their score. However, the latter, control children will likely have
a far longer, far more extensive, set of experiences that led to the same score. For example,
building parallel distributed process networks of broad reach across the brain, which,
because they have been reinforced for years, have established retrieval paths are myriad,
strong, and stable. The former children have none of these advantages. Therefore, future
measures of the two groups of children may yield different scores even if subsequent
experiences are the same. Future assessments and research designs, including those that
investigate measurement invariance across subgroups (Wicherts, 2016), are needed to
investigate such possibilities.

Some research has included much more specific measures of children’s knowledge in
longitudinal studies. The advantage of this approach is that such studies can, in principal,
provide riskier tests of skill building theories by relating gains in specific knowledge states
to subsequent knowledge states. If researchers are testing a very specific theory of learning,
this approach enables them to make very specific predictions about where non-zero
estimated effects should appear, how big they should be, and perhaps most importantly,
when they should vanish. This approach is what Shadish, Cook, & Campbell (2002) refer to
as coherent pattern matching. The downsides to this approach are that 1) better
measurement in one domain often comes at the cost of lower sample size and/or worse

4Anusic and Schimmack (2015) reported values of “1-year stability of the change component” comparable to the 1-year MS paths
reported in this article, Table 1. For personality, affect, self-esteem, and life satisfaction, the authors reported values of .25, .88, .79,
and .78, respectively. Thus, the .35 estimate in Table 1 indicates that inter-individual stability across time in children’s mathematics
achievement more closely resembles the pattern observed for personality than for affect, self-esteem, or life satisfaction.

Bailey et al. Page 13

Am Psychol. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measurement in other domains, including family background characteristics, 2) some
developmental theories are sufficiently open-ended that a very wide range of estimated
effects can be argued to be plausible after the fact, and 3) in the context of early cognitive
development, individual differences may be sufficiently non-differentiated that differential
prediction of later outcomes better reflects the extent to which a measure captures
commonalities in knowledge states rather than uniqueness to a specific knowledge state
(Paris, 2005; Purpura & Lonigan, 2013; Schenke et al., 2016). These shortcomings may be
addressed by precision and completeness in measurement and theory and by formulating the
riskiest tests possible. We see as particularly useful the practice of comparing correlational
estimates to the most relevant experimental impacts whenever possible.

Following a demonstration of mismatched correlational and experimental findings, it is
common to call for more randomized controlled trials. We certainly endorse RCTs because
they can provide the strongest evidence on skill-building processes, but we recognize that
many (including most lab-based experiments) have limited external validity, sometimes
target a bundle of constructs that may benefit children but render implications for
developmental processes unclear, and rarely track longer-term persistence. We also endorse
the pursuit of data from sibling, neighborhood and school fixed effects models and from so-
called “natural experiments” such as school policy changes that provide significantly more
intensive academic training to a subset of students who can be compared with a very similar
group of “untreated” students. An example is the “double dose” algebra training introduced
to low-achieving ninth-graders in the Chicago Public Schools as defined by an eighth-grade
math test score cutoff (Cortes and Goodman, 2014). Natural experiments (including the
double-dose program) are not unproblematic (they often face the same problems with
external and construct validity), but they can help to adjudicate competing theories of
learning.

Should we give up on the idea of using correlational data analysis to make theoretical or
policy-relevant inferences about children’s academic development? We are not so
pessimistic. Indeed, we believe that when exposed to riskier tests and informed by prior
experimental work, correlational data analyses can also help triangulate to the most useful
theories of children’s academic development: theories that can accurately predict when the
effects of academic interventions will fade out or persist.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Bivariate correlations with Fall of Kindergarten measures
Source: ECLS-K 1998–1999 cohort. All correlations are p<.05
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Figure 2. Regression-adjusted correlations and experimental impacts in TRIAD
Note: All 4th and 5th grade impacts are p>.05. All correlations and other impacts are p<.05.
Impacts are rescaled to be 1.0 in the spring of pre-K, Right scale shows non-rescaled
impacts. Vertical lines depict 95% confidence intervals.
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Figure 3.
Direct and indirect paths in a math skill-building model
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Figure 4. An alternative math skill-building model with unmeasured persistent influences
Predicted standardized treatment effects on math skill following 1 SD boost in Math skill at
time 1:
Math skill at time 1:1
Math skill at time 2:MS1
Math skill at time 3: MS1* MS2
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Figure 5. Correlations inferred from MS path estimates in Table 1
Note: All 4th and 5th grade impacts are p>.05. All correlations and other impacts are p<.05.
Impacts are rescaled to be 1.0 in the spring of pre-K, Right scale shows non-rescaled
impacts. Vertical lines depict 95% confidence intervals.
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Table 1

Estimates of MS (Math Skills) paths from observational and experimental data

Source Sample size Period Implied 1-year MS
estimate

State-trait estimates Bailey et al., 2014b: Missouri Math Study 292 Grade 1-Grade 2 0.26

Bailey et al., 2014b: Missouri Math Study 292 Grade 2-Grade 3 0.18

Bailey et al., 2014b: Missouri Math Study 292 Grade 3-Grade 4 0.20

Bailey et al., 2014b: SECCYD 1124 Grade 1-Grade 3 0.58

Bailey et al., 2014b: SECCYD 1124 Grade 3-Grade 5 0.30

Watts et al., 2016: TRIAD 834 PreK-K 0.25

Watts et al., 2016: TRIAD 834 K-Grade 1 0.04

Watts et al., 2016: TRIAD 834 Grade1-Grade 4 0.51

Simple average 0.29

Unweighted study average 0.31

Weighted study average 0.35

Experimental estimates Current paper: TRIAD 834 PreK-K 0.46

Current paper: TRIAD 834 K-Grade 1 0.48

Current paper: TRIAD 834 Grade 1-Grade 4 0.48*

Current paper: TRIAD 834 Grade 4-Grade 5 N/A**

Hofer et al., 2013: TRIAD 1192 Pre-K-K 0.28

Hofer et al., 2013: TRIAD 1129 K-Grade 1 0.67

Smith et al., 2013 320 Grade 1-Grade 2 0.22***

Simple average 0.43

Unweighted study average 0.39

Weighted study average 0.44

Note. One-year MS estimates from intervals with multiple lags are calculated by raising the reported estimate to the power of 1/t, where t is the
number of years in the given interval. MS estimates from experimental studies are calculated by dividing a treatment effect by a prior treatment
effect, and are corrected using the same exponential transformation when intervals between measurements vary by an amount different from 1 year.
All state-trait models corrected correlations among math tests for measurement error by setting the path from the latent state factor to the
mathematics measure equal to the square root of the reliability of the test. For information regarding the Missouri Math Study, see Geary, 2010.
SECCYD stands for the Study of Early Childcare and Youth Development (see NICHD Early Child Care Research Network, 2002). Information
regarding the TRIAD (Technology-enhanced, Research-based, Instruction, Assessment, and professional Development) study is presented in the
Appendix and in Clements et al., 2013.

*
4th grade is the average of 2 4th grade scores. Average interval is 2.75 years

**
5th grade estimate is higher than 4th grade estimate; neither is statistically distinguishable from 0

***
Treatment effects were calculated as the average of the 3 standardized mathematics tests administered at both waves.

Am Psychol. Author manuscript.
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Online Supplementary Material for “Risky Business: Correlation and Causation in 

Longitudinal Studies of Skill Development” 
 

Data 

 ECLS-K.  Data for Figure 1 were drawn from the Early Childhood Longitudinal Study- 

Kindergarten Cohort (ECLS-K).  In the fall of 1998, The National Center for Educational 

Statistics (NCES), began data collection for the ECLS-K, and a nationally representative sample 

of kindergarteners were drawn from approximately 1000 public and private schools across the 

country.   The children were then followed longitudinally through the end of eighth grade, and 

data was collected from students, parents, teachers and administrators in kindergarten, first 

grade, third grade, fifth grade, and eighth grade.  For the analyses presented in the current paper, 

we relied on data collected in the fall and spring of kindergarten, and in the spring of the first, 

third, and fifth grade years.  NCES designed sampling weights for each wave, and for our 

analyses, we used panel weights designed for longitudinal analyses of child-level data from 

kindergarten through the end of fifth grade (see Table S2 note).  The ECLS-K has been widely 

used to study K-12 education and child development, and further details regarding the study can 

be found in the NCES user manual (Tourangeau et al., 2009).   

 TRIAD. Data for Figure 2 were drawn from the TRIAD (Technology-enhanced, 

Research-based, Instruction, Assessment, and professional Development) scale-up evaluation, a 

multi-site, longitudinal, study designed to assess the long-run impacts of the Building Blocks 

preschool mathematics curriculum (see Clements & Sarama, 2013). The TRIAD study randomly 

assigned 42 elementary schools serving low-income neighborhoods in either Buffalo, New York 

or Boston, Massachusetts to one of three conditions: 1) Building Blocks preschool curriculum; 2) 

Building Blocks preschool curriculum with follow-through; 3) control (business as usual).  
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Schools were randomly-assigned through a blocking procedure, in which schools were grouped 

into 8 blocks based on similarity of state-achievement test scores, and random assignment then 

occurred within each blocking group. Schools assigned to either of the Building Blocks treatment 

conditions implemented the Building Blocks curriculum during preschool, and preschool teachers 

attended approximately 13 pedagogical development (PD) sessions designed to help them 

improve the mathematics taught in their classrooms.  Control schools kept their pre-existing 

preschool mathematics programs.  The “Building Blocks with follow-through” condition 

included additional PD for kindergarten and first grade teachers in which teachers were 

encouraged to build upon the mathematics the students learned during preschool.   

 The Building Blocks curriculum (Clements & Sarama, 2013) was based on developmental 

and cognitive theory, and the curriculum was designed to help children mathematize their 

everyday activities.  The curriculum was organized into highly-sequenced learning trajectories, 

in which students developed conceptual understanding, procedural skill, and problem solving 

competencies in various foundational areas of mathematics (e.g., counting, geometry).  The 

curriculum was also paired with the Building Blocks software, which further helped teachers 

personalize instruction to each child’s unique needs.  In total, the curriculum was designed to 

take approximately 15 to 30 minutes each day.  Initial analyses showed that the curriculum was 

implemented with strong fidelity during preschool (Clements et al., 2011).  For full details 

regarding the curriculum development and fidelity of implementation, see Clements and Sarama, 

2013 and Clements et al., 2011.   

TRIAD evaluators drew a random sample of 1375 students from the 42 participating 

schools, and students’ mathematics achievement was measured during preschool, kindergarten, 

first grade, fourth grade, and fifth grade. Clements and colleagues (2011) reported a large initial 
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treatment effect at the end of preschool for students in either of the Building Blocks conditions 

and this effect faded by approximately 60% by the end of first grade for the treated students with 

no follow-through, and by 30% for the students that did receive follow-through (Clements et al., 

2013).    

 In the current analyses, we only use data collected form children in either the Building 

Blocks treatment without follow-through condition or the control group (n= 834; school n= 30).  

Table S1 presents baseline descriptive characteristics for treatment and control students, and we 

found no significant differences between the groups on any background measure observed.  

Reflecting the low-income status of the sample, 85% of students qualified for free or reduced 

price lunch, 51% identified as Black, and 23% as Hispanic.  

Measures 

 ECLS-K Achievement.  We draw on measures of student achievement in mathematics 

and reading collected during the fall and spring of kindergarten, and during the spring of the first, 

third, and fifth grade years.  The mathematics assessment was designed to assess conceptual and 

procedural knowledge in mathematics, and topics spanned basic counting in kindergarten to 

fractions and pre-algebra in fifth grade.  The reading assessment was designed to assess 

vocabulary knowledge and reading comprehension, and topics spanned letter knowledge in 

kindergarten to understanding words in context and drawing inferences based on textual clues in 

fifth grade.  The assessments were individually administered, and the assessments were adaptive 

such that the items students received were based on their performance on previous items.  

Assessment items in math and reading were drawn from the National Assessment of Educational 

Progress (NAEP), as well as the National Longitudinal Study of 1988 and the Educational 

Longitudinal Study of 2002.  Items were ordered on a hierarchical scale, and proficiency scores 
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were calculated for each assessment in each wave.  We rely on the IRT scores generated by 

NCES for each respective assessment at each respective wave.  For more information regarding 

the ECLS-K achievement measures, see Pollack et al., 2005 and Tourangeau et al., 2009. 

 ECLS-K Behavior.  We rely on teacher ratings of anti-social behavior (i.e., externalizing 

behavioral problems) measured during the fall and spring of kindergarten, as well as during the 

spring semesters of first, third, and fifth grade.  The anti-social behavior scale was drawn from 

the Social Skills Rating System (Gresham & Elliott, 1990).  Teachers used a frequency scale to 

indicate how often a student exhibited a certain behavior (items ranged from “1” = “never” to 

“4” = “very often”).  NCES used factor analyses to confirm the items used in the scales, and 

items for the anti-social behavioral measure focused on whether the child disrupted class or if 

they acted aggressively toward other students.  For the waves of data used here, reliability for the 

anti-social behavior problem scale ranged from 0.86 to 0.90 (see Rock & Pollack, 2002; Pollack 

et al., 2005a; 2005b).   

 TRIAD mathematics achievement.  During the fall and spring of preschool, spring of 

kindergarten, and spring of first grade, mathematics achievement was assessed using the 

Research-based Early Math Assessment (REMA; Clements, Sarama, & Liu, 2008; Clements, 

Sarama, & Wolfe, 2011).  The REMA was designed to measure the mathematics understanding 

of children between the ages of 3 and 8, and it was administered through two one-on-one 

interviews.  The interviews were taped and coded, and students were rated on both their 

correctness and strategy use.  Topics on the exam included counting, measurement, geometry 

and place value, and the REMA scores were converted to Rasch-IRT scales.  The measure was 

validated across three different samples of young children, and the measure has been shown to 

have a 0.74 correlation with the Woodcock-Johnson Applied Problems subtest (Clements, 
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Sarama, & Wolfe, 2011).  Further, the measure was found to have strong internal reliability 

(Cronbach’s α = 0.94; Clements, Sarama, & Wolfe, 2011). 

 In order to assess the degree to which the Building Blocks program impacted various 

aspects of preschool mathematics achievement, we also created sub-scores of the REMA.  We 

replicated the measures used by Nguyen et al. 2016.  In their study, they coded items of the 

REMA into various domains of preschool knowledge found across a wide variety of state-

defined preschool mathematics standards documents (e.g., Massachusetts Department of 

Elementary and Secondary Education, 2011) and early childhood advisory panels and 

mathematics teaching organizations (e.g., National Council of Teachers of Mathematics, 2002).  

The final categories used were Counting and Cardinality, Patterning, Geometry and 

Measurement and Data.  The Counting and Cardinality category included items that asked 

students to count objects and recognize numbers.  Patterning items asked students to extend and 

duplicate patterns.  The Geometry category was comprised of items that asked students to 

recognize shapes.  Finally, the Measurement and Data category included items that asked 

students to identify the attributes of shapes by using measuring instruments.   

 In the fall and spring of fourth grade, and the spring of fifth grade, mathematics 

achievement was measured using the TEAM 3-5, a variant of the REMA (Clements, Sarama, 

Khasanova, & Van Dine, 2012).  The TEAM 3-5 was a paper-and-pencil test that was aligned to 

the developmental progressions used in the REMA.  However, simpler topics are retired (e.g., 

counting) and replaced with more advanced topics (e.g., fractions).  Topics on the test included 

multiplication and division, measurement of area and volume, coordinate systems, and decimals, 

among other topics typical of late elementary school math curriculum.  In the TRIAD sample, 

the TEAM 3-5 was found to have good internal reliability Cronbach’s α = 0.91), and it was also 
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found to have a strong correlation with state achievement tests in New York (r(351)= 0.82, p < 

0.001) and Massachusetts (r(110)= 0.76, p < 0.001).   As with the REMA, the TEAM 3-5 was 

transformed into a Rasch-IRT scale. 

 TRIAD baseline controls.  In our TRIAD models, we control for a number of baseline 

demographic measures.  Information regarding child gender, race, age at preschool entry, 

whether qualified for free or reduced price lunch, whether limited English proficient, and 

whether designated for special education was obtained from the study districts and schools.  

Mother’s reported their highest level of education on a parent survey administered during the 

preschool year. 

Data Analysis 

 Figure 1.  For the estimates presented in Figure 1, we simply standardized each 

respective measure of math and reading achievement and teacher-rated anti-social behavior, and 

we then regressed each respective measure on the kindergarten measures of math, reading, and 

anti-social behavior.  In order to make the correlations between math and anti-social behavior 

comparable to the correlations between math and reading, we reverse-scaled each anti-social 

behavior measure.  Standard errors were adjusted for school-level clustering, and the regressions 

were weighted using the panel-weight for data spanning from kindergarten through fifth grade 

(see Table S2 note).  Coefficients and standard errors from each of these regressions can be 

found in Table S2.  

 Figure 2.  The red and blue lines displayed on Figure 2 were both generated from the 

TRIAD dataset.  The red line displays correlational results generated from a series of regressions 

that modeled mathematics achievement measured at various timepoints between kindergarten 

and fifth grade as a function of end-of-preschool mathematics achievement and baseline controls, 
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site, and blocking group.  All of these regression results were estimated only within the control 

group (n= 396), and full information maximum likelihood was used to account for missing data.  

Among the controls tested, 17% of students had missing data on “whether free or reduced price 

lunch,” and 25% were missing on mother’s education. Due to attrition, approximately 40% of the 

students were missing on follow-up tests during fourth and fifth grade.  The coefficients and 

standard errors (adjusted for school-level clustering) estimated from these correlational models 

are displayed in Table S3.   

The blue line on Figure 2 was generated from models in which we regressed end-of-

treatment (i.e., end-of-preschool) and follow-up measures of mathematics achievement on 

treatment status and baseline controls (i.e., the same list of controls used for the correlational 

estimates shown in Table S3).  In these models, the sample was restricted to students in only the 

treatment group without follow-through or the control group (n=880).  We again used FIML to 

account for missing data, and we observed that 16% of students were missing on FRPL, and 22% 

were missing on mother’s education.  Further, we found that approximately 40% of students 

were missing on fourth and fifth grade math measures due to attrition.  However, this pattern of 

attrition did not differ between treatment and control students, as we found only a 1% difference 

in the rate of attrition between the groups (p = .79).  Coefficients and cluster-adjusted standard 

errors generated by these models are presented in in Table S4. 
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Table S1 

   TRIAD Sample Characteristics 
   

  Treatment  Control 
p-

values 
Preschool Entry Math -0.037 0.066 0.628 

 
(1.042) (0.967) 

 Site - New York 0.704 0.757 0.840 
Male 0.502 0.497 0.570 
Ethnicity 

   African American 0.522 0.492 0.841 
Hispanic 0.197 0.262 0.747 
Ethnicity- Other 0.035 0.074 0.130 

Age (years) at Baseline 4.331 4.392 0.810 

 
(0.353) (0.348) 

 Mother's Education 
   Less than high school degree 0.142 0.139 0.900 

High school degree 0.326 0.325 0.794 
Free/Reduced Lunch 0.824 0.881 0.599 
Limited English Prof. 0.132 0.230 0.499 
Special Education 0.173 0.159 0.812 
Observations 456 378   
Note. For each variable, mean values are displayed.  Standard deviations 
are in parentheses.  P-values indicate the extent to which treatment 
participants different from controls on each variable.  In each regression, 
standard errors were adjusted for clustering at the school level (n= 30 
schools).   
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Table S2 

     Bivariate Regression-Adjusted Estimates of the Association Between Kindergarten Entry Competencies and 
Later Achievement and Behaviors 
  Math 

  Fall K Spring K Spring 1st Gr 
Spring 3rd 

Gr 
Spring 5th 

Gr 
K-Entry Math - 0.83 0.74 0.71 0.66 

 
- (0.01) (0.01) (0.02) (0.02) 

N - 17703 14612 9522 9515 

        Reading 

  Fall K Spring K Spring 1st Gr 
Spring 3rd 

Gr 
Spring 5th 

Gr 
K-Entry Reading - 0.83 0.71 0.53 0.51 

 
- (0.01) (0.02) (0.04) (0.04) 

N - 16749 13816 8902 8939 

      K-Entry Math 0.71 0.66 0.67 0.65 0.63 

 
(0.01) (0.01) (0.01) (0.02) (0.02) 

N 16747 17060 14376 9467 9508 

        Anti-Social Behavior 

  Fall K Spring K Spring 1st Gr 
Spring 3rd 

Gr 
Spring 5th 

Gr 
K-Entry Anti-Social 
Beh. - 0.74 0.55 0.52 0.47 

 
- (0.01) (0.01) (0.03) (0.02) 

N - 16944 13126 8053 9012 

      K-Entry Math 0.16 0.16 0.15 0.20 0.17 

 
(0.01) (0.01) (0.01) (0.02) (0.02) 

N 17239 16925 13122 8078 9024 
Note. All estimates were generated from separate regressions.  Robust standard errors were adjusted for 
school-level clustering, and standard errors are displayed in parentheses.  All coefficients were statistically 
significant (p < 0.001). We used the following panel weights for each respective set of regressions: 
kindergarten (BYCW0), first grade (C124CW0), third grade and fifth grade (C1_6FC0).  
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Table S3: Correlational Estimates of the Association Between End-of-Preschool Mathematics Achievement and Later 
Mathematics Achievement, TRIAD 
 
  Spring of K Spring of 1st Fall of 4th Spring of 4th Spring of 5th 
  (1) (2) (3) (4) (5) 
Math- End of Preschool  0.565 *** 0.582 *** 0.469 *** 0.493 *** 0.393 *** 

 
(0.042) 

 
(0.046) 

 
(0.070) 

 
(0.065) 

 
(0.071) 

 Controls 
          Math- Preschool Entry 0.225 *** 0.160 *** 0.231 ** 0.102 

 
0.197 ** 

 
(0.045) 

 
(0.048) 

 
(0.084) 

 
(0.069) 

 
(0.075) 

 Male 0.099 
 

0.197 ** 0.031 
 

0.064 
 

0.015 
 

 
(0.060) 

 
(0.064) 

 
(0.099) 

 
(0.092) 

 
(0.099) 

 African American -0.199 * -0.125 
 

0.054 
 

-0.298 * -0.138 
 

 
(0.095) 

 
(0.101) 

 
(0.146) 

 
(0.137) 

 
(0.149) 

 Hispanic -0.070 
 

-0.039 
 

0.254 
 

-0.177 
 

-0.170 
 

 
(0.107) 

 
(0.114) 

 
(0.172) 

 
(0.164) 

 
(0.180) 

 Ethnicity- Other 0.376 ** 0.439 ** 0.661 ** 0.387 
 

0.766 * 

 
(0.142) 

 
(0.152) 

 
(0.220) 

 
(0.211) 

 
(0.226) 

 Age (years) at Baseline 0.123 
 

-0.165 
 

0.026 
 

-0.088 
 

0.003 
 

 
(0.099) 

 
(0.106) 

 
(0.153) 

 
(0.149) 

 
(0.164) 

 Mom Ed.- No HS -0.152 
 

-0.342 ** -0.192 
 

-0.145 
 

-0.315 
 

 
(0.114) 

 
(0.121) 

 
(0.169) 

 
(0.164) 

 
(0.176) 

 Mom Ed.- HS -0.189 * -0.313 *** -0.423 *** -0.373 *** -0.387 ** 

 
(0.077) 

 
(0.082) 

 
(0.114) 

 
(0.107) 

 
(0.117) 

 Free/Reduced Lunch 0.179 
 

0.060 
 

0.443 * 0.486 ** 0.510 ** 

 
(0.109) 

 
(0.117) 

 
(0.200) 

 
(0.176) 

 
(0.189) 

 Limited Eng Prof. 0.168 
 

0.122 
 

0.238 
 

0.160 
 

0.170 
 

 
(0.096) 

 
(0.103) 

 
(0.155) 

 
(0.152) 

 
(0.171) 

 Special Education 0.068 
 

-0.122 
 

0.128 
 

-0.037 
 

0.242 
 

 
(0.083) 

 
(0.089) 

 
(0.141) 

 
(0.126) 

 
(0.139) 

 Blocking Group 
          2 -0.136 

 
-0.225 

 
-0.111 

 
-0.095 

 
0.118 

 
 

(0.128) 
 

(0.138) 
 

(0.204) 
 

(0.195) 
 

(0.212) 
 3 -0.274 

 
-0.183 

 
0.049 

 
-0.246 

 
-0.336 

 
 

(0.154) 
 

(0.164) 
 

(0.235) 
 

(0.227) 
 

(0.236) 
 4 0.062 

 
0.184 

 
-0.131 

 
0.045 

 
0.152 

 
 

(0.113) 
 

(0.124) 
 

(0.179) 
 

(0.169) 
 

(0.187) 
 5 0.106 

 
-0.069 

 
0.006 

 
-0.205 

 
-0.112 

 
 

(0.109) 
 

(0.121) 
 

(0.184) 
 

(0.175) 
 

(0.188) 
 6 0.060 

 
-0.066 

 
0.207 

 
0.147 

 
0.439 

 
 

(0.127) 
 

(0.141) 
 

(0.220) 
 

(0.204) 
 

(0.228) 
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7 -0.067 

 
-0.207 

 
-0.099 

 
-0.239 

 
-0.038 

 
 

(0.122) 
 

(0.134) 
 

(0.202) 
 

(0.182) 
 

(0.201) 
 8 -0.162 

 
-0.305 * -0.340 

 
-0.533 ** -0.226 

 
 

(0.140) 
 

(0.149) 
 

(0.222) 
 

(0.206) 
 

(0.226) 
 Constant -0.543 

 
0.964 

 
-0.341 

 
0.546 

 
-0.264 

 
 

(0.462) 
 

(0.499) 
 

(0.726) 
 

(0.701) 
 

(0.766) 
 Observations 378 378 378 378 378 

Note. Models were estimated using the "SEM" commands in Stata 13.0, and full information maximum likelihood was 
used to account for missing data.  Standard errors are presented in parentheses.  Whites are the omitted reference group 
for race, and children from mother’s with at least some college are the omitted reference group for mother’s education. * 
p < .05 ** p < .01 *** p < .001 
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Table S4 

            Building Blocks Treatment Impact Estimates 
   End of PreK Spring of K Spring of 1st  Fall of 4th Spring of 4th Spring of 5th 

  (1) (2) (3) (4) (5) (6) 
Building Blocks Group 0.632 *** 0.291 *** 0.137 * 0.056 

 
-0.004 

 
0.094 

 
 

(0.052) 
 

(0.549) 
 

(0.057) 
 

(0.078) 
 

(0.073) 
 

(0.077) 
 Controls 

            Math- Prek Entry 0.537 *** 0.489 *** 0.466 *** 0.413 *** 0.394 *** 0.367 *** 

 
(0.028) 

 
(0.029) 

 
(0.031) 

 
(0.044) 

 
(0.039) 

 
(0.041) 

 Male -0.056 
 

-0.019 
 

0.073 
 

-0.016 
 

-0.051 
 

-0.061 
 

 
(0.050) 

 
(0.053) 

 
(0.055) 

 
(0.076) 

 
(0.071) 

 
(0.076) 

 African American -0.367 *** -0.440 *** -0.419 *** -0.255 * -0.527 *** -0.442 *** 

 
(0.073) 

 
(0.077) 

 
(0.080) 

 
(0.111) 

 
(0.103) 

 
(0.107) 

 Hispanic -0.227 * -0.172 
 

-0.112 
 

-0.006 
 

-0.288 * -0.290 * 

 
(0.088) 

 
(0.095) 

 
(0.099) 

 
(0.138) 

 
(0.133) 

 
(0.143) 

 Ethnicity- Other -0.101 
 

0.179 
 

0.161 
 

0.254 
 

-0.022 
 

0.320 
 

 
(0.128) 

 
(0.137) 

 
(0.142) 

 
(0.184) 

 
(0.179) 

 
(0.189) 

 Age (years) at Baseline 0.484 *** 0.359 *** 0.095 
 

0.151 
 

-0.043 
 

-0.007 
 

 
(0.080) 

 
(0.085) 

 
(0.088) 

 
(0.122) 

 
(0.115) 

 
(0.121) 

 Mom Ed- No HS -0.373 *** -0.439 *** -0.542 *** -0.451 *** -0.468 *** -0.509 *** 

 
(0.085) 

 
(0.087) 

 
(0.091) 

 
(0.119) 

 
(0.113) 

 
(0.123) 

 Mom Ed- HS -0.089 
 

-0.145 
 

-0.223 ** -0.249 ** -0.256 ** -0.199 * 

 
(0.066) 

 
(0.068) 

 
(0.071) 

 
(0.093) 

 
(0.087) 

 
(0.091) 

 Free/Reduced Lunch 0.117 
 

0.145 
 

0.007 
 

0.073 
 

0.016 
 

-0.043 
 

 
(0.080) 

 
(0.088) 

 
(0.091) 

 
(0.133) 

 
(0.125) 

 
(0.132) 

 Limited Eng Prof. 0.228 ** 0.265 ** 0.273 ** 0.363 ** 0.348 ** 0.269 
 

 
(0.084) 

 
(0.091) 

 
(0.095) 

 
(0.136) 

 
(0.132) 

 
(0.140) 

 Special Education -0.111 
 

-0.021 
 

-0.095 
 

-0.061 
 

-0.162 
 

-0.007 
 

 
(0.068) 

 
(0.073) 

 
(0.077) 

 
(0.106) 

 
(0.099) 

 
(0.105) 

 Blocking Group 
            2 0.474 *** 0.143 

 
0.155 

 
0.113 

 
0.204 

 
0.293 

 
 

(0.110) 
 

(0.116) 
 

(0.120) 
 

(0.164) 
 

(0.155) 
 

(0.166) 
 3 0.451 *** 0.115 

 
0.192 

 
0.336 * 0.209 

 
0.099 

 
 

(0.108) 
 

(0.116) 
 

(0.121) 
 

(0.169) 
 

(0.162) 
 

(0.168) 
 4 0.391 *** 0.219 

 
0.412 *** 0.178 

 
0.326 * 0.294 * 

 
(0.094) 

 
(0.100) 

 
(0.103) 

 
(0.142) 

 
(0.135) 

 
(0.143) 

 5 0.310 ** 0.186 
 

0.306 ** 0.271 
 

0.103 
 

0.362 * 

 
(0.092) 

 
(0.097) 

 
(0.101) 

 
(0.140) 

 
(0.135) 

 
(0.142) 

 6 0.426 *** 0.397 *** 0.458 *** 0.552 ** 0.490 ** 0.562 ** 

 
(0.105) 

 
(0.113) 

 
(0.120) 

 
(0.167) 

 
(0.159) 

 
(0.175) 

 7 0.487 *** 0.149 
 

0.253 * 0.215 
 

0.056 
 

0.132 
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(0.101) 

 
(0.107) 

 
(0.112) 

 
(0.155) 

 
(0.146) 

 
(0.157) 

 8 0.423 *** 0.002 
 

0.017 
 

-0.084 
 

-0.042 
 

0.056 
 

 
(0.121) 

 
(0.127) 

 
(0.132) 

 
(0.186) 

 
(0.166) 

 
(0.177) 

 Constant -2.673 *** -1.726 *** -0.485 
 

-0.772 
 

0.475 
 

0.121 
 

 
(0.357) 

 
(0.378) 

 
(0.393) 

 
(0.550) 

 
(0.513) 

 
(0.547) 

 Observations 834 834 834 834 834 834 
Note. Models were estimated using the "SEM" commands in Stata 13.0, and full information maximum likelihood was used to account for 
missing data.  Standard errors are presented in parentheses. Whites are the omitted reference group for race, and children from mothers with at 
least some college are the omitted reference group for mother’s education.  * p < .05 ** p < .01 *** p < .001 
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