
 

Chapter Outline

4.1 Robust Regression Methods 4.1.1 Regression with Robust Standard Errors 4.1.2 Using the Cluster
Option 4.1.3 Robust Regression 4.1.4 Quantile Regression 4.2 Constrained Linear Regression 4.3
Regression with Censored or Truncated Data 4.3.1 Regression with Censored Data 4.3.2 Regression
with Truncated Data 4.4 Regression with Measurement Error 4.5 Multiple Equation Regression Models
4.5.1 Seemingly Unrelated Regression 4.5.2 Multivariate Regression 4.6 Summary 4.7 Self assessment
4.8 For more information

In this chapter we will go into various commands that go beyond OLS. This chapter is a bit different from
the others in that it covers a number of different concepts, some of which may be new to you. These
extensions, beyond OLS, have much of the look and feel of OLS but will provide you with additional
tools to work with linear models.

The topics will include robust regression methods, constrained linear regression, regression with
censored and truncated data, regression with measurement error, and multiple equation models.

4.1 Robust Regression Methods

It seems to be a rare dataset that meets all of the assumptions underlying multiple regression. We know
that failure to meet assumptions can lead to biased estimates of coefficients and especially biased
estimates of the standard errors. This fact explains a lot of the activity in the development of robust
regression methods.

The idea behind robust regression methods is to make adjustments in the estimates that take into
account some of the flaws in the data itself. We are going to look at three approaches to robust
regression: 1) regression with robust standard errors including the cluster option, 2) robust regression
using iteratively reweighted least squares, and 3) quantile regression, more specifically, median
regression.

Before we look at these approaches, let’s look at a standard OLS regression using the elementary
school academic performance index (elemapi2.dta) dataset.

use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/elemapi2

We will look at a model that predicts the api 2000 scores using the average class size in K through 3
(acs_k3), average class size 4 through 6 (acs_46), the percent of fully credentialed teachers (full), and
the size of the school (enroll). First let’s look at the descriptive statistics for these variables.  Note the
missing values for acs_k3 and acs_k6.



summarize api00 acs_k3 acs_46 full enroll 

Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
   api00 |     400    647.6225    142.249        369        940   
  acs_k3 |     398     19.1608   1.368693         14         25   
  acs_46 |     397    29.68514   3.840784         20         50   
    full |     400       84.55   14.94979         37        100   
  enroll |     400     483.465   226.4484        130       1570

Below we see the regression predicting api00 from acs_k3, acs_46 full and enroll. We see that all of the
variables are significant except for acs_k3.

regress api00 acs_k3 acs_46 full enroll 

  Source |       SS       df       MS                  Number of obs =     395 
---------+------------------------------               F(  4,   390) =   61.01 
   Model |  3071909.06     4  767977.265               Prob > F      =  0.0000 
Residual |  4909500.73   390  12588.4634               R-squared     =  0.3849 
---------+------------------------------               Adj R-squared =  0.3786 
   Total |  7981409.79   394  20257.3852               Root MSE      =  112.20 

------------------------------------------------------------------------------ 
   api00 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  acs_k3 |   6.954381   4.371097      1.591   0.112       -1.63948    15.54824 
  acs_46 |   5.966015   1.531049      3.897   0.000       2.955873    8.976157 
    full |   4.668221   .4142537     11.269   0.000       3.853771    5.482671 
  enroll |  -.1059909   .0269539     -3.932   0.000      -.1589841   -.0529977 
   _cons |  -5.200407   84.95492     -0.061   0.951      -172.2273    161.8265 
------------------------------------------------------------------------------

We can use the test command to test both of the class size variables, and we find the overall test of
these two variables is significant.

test acs_k3 acs_46 



 ( 1)  acs_k3 = 0.0 
 ( 2)  acs_46 = 0.0 

       F(  2,   390) =   11.08 
            Prob > F =    0.0000

Here is the residual versus fitted plot for this regression. Notice that the pattern of the residuals is not
exactly as we would hope.  The spread of the residuals is somewhat wider toward the middle right of the
graph than at the left, where the variability of the residuals is somewhat smaller, suggesting some
heteroscedasticity.

rvfplot  

Below we show the avplots.  Although the plots are small, you can see some points that are of concern.
There is not a single extreme point (like we saw in chapter 2) but a handful of points that stick out.  For
example, in the top right graph you can see a handful of points that stick out from the rest.  If this were
just one or two points, we might look for mistakes or for outliers, but we would be more reluctant to
consider such a large number of points as outliers.

avplots 



Here is the lvr2plot for this regression. We see 4 points that are somewhat high in both their leverage
and their residuals.

lvr2plot  

None of these results are dramatic problems, but the rvfplot suggests that there might be some outliers
and some possible heteroscedasticity; the avplots have some observations that look to have high
leverage, and the lvr2plot shows some points in the upper right quadrant that could be influential. We
might wish to use something other than OLS regression to estimate this model. In the next several



sections we will look at some robust regression methods.

4.1.1 Regression with Robust Standard Errors

The Stata regress command includes a robust option for estimating the standard errors using the
Huber-White sandwich estimators. Such robust standard errors can deal with a collection of minor
concerns about failure to meet assumptions, such as minor problems about normality,
heteroscedasticity, or some observations that exhibit large residuals, leverage or influence. For such
minor problems, the robust option may effectively deal with these concerns.

With the robust option, the point estimates of the coefficients are exactly the same as in ordinary OLS,
but the standard errors take into account issues concerning heterogeneity and lack of normality. Here is
the same regression as above using the robust option. Note the changes in the standard errors and t-
tests (but no change in the coefficients). In this particular example, using robust standard errors did not
change any of the conclusions from the original OLS regression.

regress api00 acs_k3 acs_46 full enroll, robust 

Regression with robust standard errors                 Number of obs =     395 
                                                       F(  4,   390) =   84.67 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.3849 
                                                       Root MSE      =  112.20 

------------------------------------------------------------------------------ 
         |               Robust 
   api00 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  acs_k3 |   6.954381   4.620599      1.505   0.133      -2.130019    16.03878 
  acs_46 |   5.966015   1.573214      3.792   0.000       2.872973    9.059057 
    full |   4.668221   .4146813     11.257   0.000       3.852931    5.483512 
  enroll |  -.1059909   .0280154     -3.783   0.000      -.1610711   -.0509108 
   _cons |  -5.200407   86.66308     -0.060   0.952      -175.5857    165.1849 
------------------------------------------------------------------------------

 

4.1.2 Using the Cluster Option

As described in Chapter 2, OLS regression assumes that the residuals are independent. The elemapi2



p , g p p
dataset contains data on 400 schools that come from 37 school districts. It is very possible that the
scores within each school district may not be independent, and this could lead to residuals that are not
independent within districts. We can use the cluster option to indicate that the observations are
clustered into districts (based on dnum) and that the observations may be correlated within districts, but
would be independent between districts.

By the way, if we did not know the number of districts, we could quickly find out how many districts there
are as shown below, by quietly tabulating dnum and then displaying the macro r(r) which gives the
numbers of rows in the table, which is the number of school districts in our data.

quietly tabulate dnum 
display r(r) 
37

Now, we can run regress with the cluster option. We do not need to include the robust option since
robust is implied with cluster. Note that the standard errors have changed substantially, much more so,
than the change caused by the robust option by itself.

regress api00 acs_k3 acs_46 full enroll, cluster(dnum) 

Regression with robust standard errors                 Number of obs =     395 
                                                       F(  4,    36) =   31.18 



                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.3849 
Number of clusters (dnum) = 37                         Root MSE      =  112.20 

------------------------------------------------------------------------------ 
         |               Robust 
   api00 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  acs_k3 |   6.954381   6.901117      1.008   0.320      -7.041734     20.9505 
  acs_46 |   5.966015   2.531075      2.357   0.024       .8327565    11.09927 
    full |   4.668221   .7034641      6.636   0.000        3.24153    6.094913 
  enroll |  -.1059909   .0429478     -2.468   0.018      -.1930931   -.0188888 
   _cons |  -5.200407   121.7856     -0.043   0.966       -252.193    241.7922 
------------------------------------------------------------------------------

As with the robust option, the estimate of the coefficients are the same as the OLS estimates, but the
standard errors take into account that the observations within districts are non-independent.  Even
though the standard errors are larger in this analysis, the three variables that were significant in the OLS
analysis are significant in this analysis as well.  These standard errors are computed based on aggregate
scores for the 37 districts, since these district level scores should be independent. If you have a very
small number of clusters compared to your overall sample size it is possible that the standard errors
could be quite larger than the OLS results. For example, if there were only 3 districts, the standard errors
would be computed on the aggregate scores for just 3 districts.

 

4.1.3 Robust Regression

The Stata rreg command performs a robust regression using iteratively reweighted least squares, i.e.,
rreg assigns a weight to each observation with higher weights given to better behaved observations. In
fact, extremely deviant cases, those with Cook’s D greater than 1, can have their weights set to missing
so that they are not included in the analysis at all.

We will use rreg with the generate option so that we can inspect the weights used to weight the
observations. Note that in this analysis both the coefficients and the standard errors differ from the
original OLS regression. Below we show the same analysis using robust regression using the rreg
command.



rreg api00 acs_k3 acs_46 full enroll, gen(wt) 

Robust regression estimates                            Number of obs =     395 
                                                       F(  4,   390) =   56.51 
                                                       Prob > F      =  0.0000 

------------------------------------------------------------------------------ 
   api00 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  acs_k3 |   6.110881   4.658131      1.312   0.190      -3.047308    15.26907 
  acs_46 |   6.254708   1.631587      3.834   0.000       3.046901    9.462516 
    full |   4.796072   .4414563     10.864   0.000        3.92814    5.664004 
  enroll |  -.1092586   .0287239     -3.804   0.000      -.1657316   -.0527855 
   _cons |  -6.788183    90.5336     -0.075   0.940      -184.7832    171.2068 
------------------------------------------------------------------------------

If you compare the robust regression results (directly above) with the OLS results previously presented,
you can see that the coefficients and standard errors are quite similar, and the t values and p values are
also quite similar. Despite the minor problems that we found in the data when we performed the OLS
analysis, the robust regression analysis yielded quite similar results suggesting that indeed these were
minor problems. Had the results been substantially different, we would have wanted to further
investigate the reasons why the OLS and robust regression results were different, and among the two
results the robust regression results would probably be the more trustworthy.

Let’s calculate and look at the predicted (fitted) values (p), the residuals (r), and the leverage (hat) values
(h). Note that we are including if e(sample) in the commands because rreg can generate weights of
missing and you wouldn’t want to have predicted values and residuals for those observations.

predict p if e(sample) 
(option xb assumed; fitted values) 
(5 missing values generated) 



predict r if e(sample), resid 
(5 missing values generated) 

predict h if e(sample), hat 
(5 missing values generated)

Now, let’s check on the various predicted values and the weighting. First, we will sort by wt then we will
look at the first 15 observations. Notice that the smallest weights are near one-half but quickly get into
the .7 range.

sort wt 
list snum api00 p r h wt in 1/15 

          snum   api00          p          r          h          wt  
  1.       637     447   733.1567  -286.1568   .0037645   .55612093   
  2.      5387     892   611.5344   280.4655   .0023925   .57126927   
  3.      2267     897   621.4881   275.5119    .010207   .58433963   
  4.        65     903   631.2718   271.7282   .0105486   .59425026   
  5.      3759     585   842.4838  -257.4838   .0414728   .63063771   
  6.      5926     469   715.2266  -246.2266   .0058346   .65892631   
  7.      1978     894   650.7816   243.2184   .0058116    .6665881   
  8.      3696     483   721.3105  -238.3105   .0052619   .67834344   
  9.      5222     940    707.648    232.352   .0041016   .69303069   
 10.       690     424   654.5795  -230.5795   .0094319   .69701005   
 11.      3785     459   687.3311  -228.3311   .0081474   .70245717   
 12.      2910     831   604.4401     226.56   .0536809   .70650365   
 13.       699     437   660.2588  -223.2588   .0059152   .71449402   
 14.      3070     479   698.1256  -219.1256   .0043322   .72399766   
 15.      1812     917   698.9828   218.0172   .0099871   .72670695  

Now, let’s look at the last 10 observations. The weights for observations 391 to 395 are all very close to
one. The values for observations 396 to the end are missing due to the missing predictors. Note that the
observations above that have the lowest weights are also those with the largest residuals (residuals over
200) and the observations below with the highest weights have very low residuals (all less than 3).

list snum api00 p r h wt in -10/l 

          snum   api00          p          r          h          wt  
391.      3024     727   729.0243  -2.024302   .0104834   .99997367   



392.      3535     705    703.846   1.154008   .0048329   .99999207   
393.      1885     605    605.427  -.4269809   .0144377   .99999843   
394.      1678     497   496.8011   .1989256   .0243301   .99999956   
395.      4486     706   705.8076    .192455   .0142448   .99999986   
396.      4488     521          .          .          .           .   
397.      3072     763          .          .          .           .   
398.      3055     590          .          .          .           .   
399.       116     513          .          .          .           .   
400.      4534     445          .          .          .           .

After using rreg, it is possible to generate predicted values, residuals and leverage (hat), but most of the
regression diagnostic commands are not available after rreg. We will have to create some of them for
ourselves. Here, of course, is the graph of residuals versus fitted (predicted) with a line at zero. This plot
looks much like the OLS plot, except that in the OLS all of the observations would be weighted equally,
but as we saw above the observations with the greatest residuals are weighted less and hence have
less influence on the results.

graph r p, yline(0) 

To get an lvr2plot we are going to have to go through several steps in order to get the normalized
squared residuals and the means of both the residuals and the leverage (hat) values.

First, we generate the residual squared (r2) and then divide it by the sum of the squared residuals. We
then compute the mean of this value and save it as a local macro called rm (which we will use for



then compute the mean of this value and save it as a local macro called rm (which we will use for
creating the leverage vs. residual plot).

generate r2=r^2 
(5 missing values generated) 

sum r2 

Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
      r2 |     395    12436.05   14677.98   .0370389    81885.7   

replace r2 = r2/r(sum) 
(395 real changes made) 

summarize r2 

Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
      r2 |     395    .0025316    .002988   7.54e-09   .0166697   

local rm = r(mean)

Next we compute the mean of the leverage and save it as a local macro called hm.

summarize h 

Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
       h |     395    .0126422   .0108228   .0023925   .0664077   

local hm = r(mean)

Now, we can plot the leverage against the residual squared as shown below. Comparing the plot below
with the plot from the OLS regression, this plot is much better behaved. There are no longer points in
the upper right quadrant of the graph.

graph h r2 yline(`hm') xline(`rm')



graph h r2, yline( hm') xline( rm') 

Let’s close out this analysis by deleting our temporary variables.

drop wt p r h r2 

 

4.1.4 Quantile Regression

Quantile regression, in general, and median regression, in particular, might be considered as an
alternative to rreg. The Stata command qreg does quantile regression. qreg without any options will
actually do a median regression in which the coefficients will be estimated by minimizing the absolute
deviations from the median. Of course, as an estimate of central tendency, the median is a resistant
measure that is not as greatly affected by outliers as is the mean. It is not clear that median regression is
a resistant estimation procedure, in fact, there is some evidence that it can be affected by high leverage
values.

Here is what the quantile regression looks like using Stata’s qreg command. The coefficient and
standard error for acs_k3 are considerably different when using qreg as compared to OLS using the
regress command (the coefficients are 1.2 vs 6.9 and the standard errors are 6.4 vs 4.3). The coefficients
and standard errors for the other variables are also different, but not as dramatically different.



Nevertheless, the qreg results indicate that, like the OLS results, all of the variables except acs_k3 are
significant.

qreg api00 acs_k3 acs_46 full enroll 

Median regression                                    Number of obs =       395 
  Raw sum of deviations    48534 (about 643) 
  Min sum of deviations 36268.11                     Pseudo R2     =    0.2527 

------------------------------------------------------------------------------ 
   api00 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  acs_k3 |   1.269065   6.470588      0.196   0.845      -11.45253    13.99066 
  acs_46 |    7.22408   2.228949      3.241   0.001       2.841821    11.60634 
    full |   5.323841   .6157333      8.646   0.000       4.113269    6.534413 
  enroll |  -.1245734   .0397576     -3.133   0.002      -.2027395   -.0464073 
   _cons |   17.15049   125.4396      0.137   0.891      -229.4719    263.7729 
------------------------------------------------------------------------------

The qreg command has even fewer diagnostic options than rreg does. About the only values we can
obtain are the predicted values and the residuals.

predict p if e(sample) 
(option xb assumed; fitted values) 
(5 missing values generated) 

predict r if e(sample), r 
(5 missing values generated) 

graph r p, yline(0)  

Stata has three additional commands that can do quantile regression.

iqreg estimates interquantile regressions, regressions of the difference in quantiles. The estimated
variance-covariance matrix of the estimators is obtained via bootstrapping.

sqreg estimates simultaneous-quantile regression. It produces the same coefficients as qreg for each
quantile sqreg obtains a bootstrapped variance covariance matrix of the estimators that includes



quantile. sqreg obtains a bootstrapped variance-covariance matrix of the estimators that includes
between-quantiles blocks. Thus, one can test and construct confidence intervals comparing coefficients
describing different quantiles.

bsqreg is the same as sqreg with one quantile. sqreg is, therefore, faster than bsqreg.

4.2 Constrained Linear Regression

Let’s begin this section by looking at a regression model using the hsb2 dataset. The hsb2 file is a
sample of 200 cases from the Highschool and Beyond Study (Rock, Hilton, Pollack, Ekstrom & Goertz,
1985). It includes the following variables: id, female, race, ses, schtyp, program, read, write, math,
science and socst. The variables read, write, math, science and socst are the results of standardized
tests on reading, writing, math, science and social studies (respectively), and the variable female is
coded 1 if female, 0 if male.

use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/hsb2

Let’s start by doing an OLS regression where we predict socst score from read, write, math, science and
female (gender)

regress socst read write math science female 

  Source |       SS       df       MS                  Number of obs =     200 
---------+------------------------------               F(  5,   194) =   35.44 



   Model |  10949.2575     5   2189.8515               Prob > F      =  0.0000 
Residual |  11986.9375   194  61.7883375               R-squared     =  0.4774 
---------+------------------------------               Adj R-squared =  0.4639 
   Total |   22936.195   199  115.257261               Root MSE      =  7.8606 

------------------------------------------------------------------------------ 
   socst |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    read |   .3784046   .0806267      4.693   0.000       .2193872     .537422 
   write |   .3858743   .0889283      4.339   0.000       .2104839    .5612646 
    math |   .1303258   .0893767      1.458   0.146       -.045949    .3066006 
 science |  -.0333925   .0818741     -0.408   0.684      -.1948702    .1280852 
  female |  -.3532648   1.245372     -0.284   0.777      -2.809471    2.102941 
   _cons |   7.339342   3.650243      2.011   0.046       .1400864     14.5386 
------------------------------------------------------------------------------

Notice that the coefficients for read and write are very similar, which makes sense since they are both
measures of language ability.  Also, the coefficients for math and science are similar (in that they are
both not significantly different from 0). Suppose that we have a theory that suggests that read and write
should have equal coefficients, and that math and science should have equal coefficients as well. We
can test the equality of the coefficients using the test command.

test read=write 

 ( 1)  read - write = 0.0 

       F(  1,   194) =    0.00 
            Prob > F =    0.9558

We can also do this with the testparm command, which is especially useful if you were testing whether 3
or more coefficients were equal.

testparm read write, equal 



 ( 1) - read + write = 0.0 

       F(  1,   194) =    0.00 
            Prob > F =    0.9558

Both of these results indicate that there is no significant difference in the coefficients for the reading and
writing scores. Since it appears that the coefficients for math and science are also equal, let’s test the
equality of those as well (using the testparm command).

testparm math science, equal 

 ( 1) - math + science = 0.0 

       F(  1,   194) =    1.45 
            Prob > F =    0.2299

Let’s now perform both of these tests together, simultaneously testing that the coefficient for read
equals write and math equals science.  We do this using two test commands, the second using the
accum option to accumulate the first test with the second test to test both of these hypotheses together.

test read=write 

 ( 1)  read - write = 0.0 



       F(  1,   194) =    0.00 
            Prob > F =    0.9558 

test math=science, accum 

 ( 1)  read - write = 0.0 
 ( 2)  math - science = 0.0 

       F(  2,   194) =    0.73 
            Prob > F =    0.4852

Note this second test has 2 df, since it is testing both of the hypotheses listed, and this test is not
significant, suggesting these pairs of coefficients are not significantly different from each other.  We can
estimate regression models where we constrain coefficients to be equal to each other.  For example,
let’s begin on a limited scale and constrain read to equal write. First, we will define a constraint and then
we will run the cnsreg command.

constraint define 1 read = write 
. cnsreg socst read write math science female, constraint(1) 

Constrained linear regression                          Number of obs =     200 



                                                       F(  4,   195) =   44.53 
                                                       Prob > F      =  0.0000 
                                                       Root MSE      =  7.8404 
 ( 1)  read - write = 0.0 
------------------------------------------------------------------------------ 
   socst |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    read |   .3818488   .0513899      7.430   0.000       .2804975    .4832002 
   write |   .3818488   .0513899      7.430   0.000       .2804975    .4832002 
    math |   .1303036   .0891471      1.462   0.145      -.0455126    .3061197 
 science |  -.0332762   .0816379     -0.408   0.684      -.1942827    .1277303 
  female |  -.3296237   1.167364     -0.282   0.778      -2.631904    1.972657 
   _cons |   7.354148   3.631175      2.025   0.044       .1927294    14.51557 
------------------------------------------------------------------------------

Notice that the coefficients for read and write are identical, along with their standard errors, t-test, etc.
Also note that the degrees of freedom for the F test is four, not five, as in the OLS model. This is
because only one coefficient is estimated for read and write, estimated like a single variable equal to
the sum of their values.  Notice also that the Root MSE is slightly higher for the constrained model, but
only slightly higher.  This is because we have forced the model to estimate the coefficients for read and
write that are not as good at minimizing the Sum of Squares Error (the coefficients that would minimize
the SSE would be the coefficients from the unconstrained model).

Next, we will define a second constraint, setting math equal to science. We will also abbreviate the
constraints option to c.

constraint define 2 math = science 
. cnsreg socst read write math science female, c(1 2) 

Constrained linear regression                          Number of obs =     200 



                                                       F(  3,   196) =   58.75 
                                                       Prob > F      =  0.0000 
                                                       Root MSE      =  7.8496 
 ( 1)  read - write = 0.0 
 ( 2)  math - science = 0.0 
------------------------------------------------------------------------------ 
   socst |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    read |   .3860376   .0513322      7.520   0.000       .2848033    .4872719 
   write |   .3860376   .0513322      7.520   0.000       .2848033    .4872719 
    math |   .0428053   .0519238      0.824   0.411      -.0595958    .1452064 
 science |   .0428053   .0519238      0.824   0.411      -.0595958    .1452064 
  female |   -.200875   1.163831     -0.173   0.863      -2.496114    2.094364 
   _cons |   7.505658   3.633225      2.066   0.040       .3404249    14.67089 
------------------------------------------------------------------------------

Now the coefficients for read =  write and math = science and the degrees of freedom for the model has
dropped to three.  Again, the Root MSE is slightly larger than in the prior model, but we should
emphasize only very slightly larger.  If indeed the population coefficients for read =  write and math =
science, then these combined (constrained) estimates may be more stable and generalize better to
other samples.  So although these estimates may lead to slightly higher standard error of prediction in
this sample, they may generalize better to the population from which they came.

 

4.3 Regression with Censored or Truncated Data

Analyzing data that contain censored values or are truncated is common in many research disciplines.
According to Hosmer and Lemeshow (1999), a censored value is one whose value is incomplete due to
random factors for each subject. A truncated observation, on the other hand, is one which is incomplete
due to a selection process in the design of the study.

We will begin by looking at analyzing data with censored values.

4.3.1 Regression with Censored Data

In this example we have a variable called acadindx which is a weighted combination of standardized
test scores and academic grades. The maximum possible score on acadindx is 200 but it is clear that
the 16 students who scored 200 are not exactly equal in their academic abilities. In other words, there is
variability in academic ability that is not being accounted for when students score 200 on acadindx. The



variable acadindx is said to be censored, in particular, it is right censored.

Let’s look at the example. We will begin by looking at a description of the data, some descriptive
statistics, and correlations among the variables.

use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/acadindx 
(max possible on acadindx is 200) 

describe 



Contains data from acadindx.dta 
  obs:           200                          max possible on acadindx is 200 
 vars:             5                          19 Jan 2001 20:14 
 size:         4,800 (99.7% of memory free) 
------------------------------------------------------------------------------- 
   1. id        float  %9.0g                   
   2. female    float  %9.0g       fl          
   3. reading   float  %9.0g                   
   4. writing   float  %9.0g                   
   5. acadindx  float  %9.0g                  academic index 
------------------------------------------------------------------------------- 

summarize 

Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
      id |     200       100.5   57.87918          1        200   
  female |     200        .545   .4992205          0          1   
 reading |     200       52.23   10.25294         28         76   
 writing |     200      52.775   9.478586         31         67   
acadindx |     200     172.185    16.8174        138        200   

count if acadindx==200 
   16

corr acadindx female reading writing 
(obs=200) 

         | acadindx   female  reading  writing 
---------+------------------------------------ 
acadindx |   1.0000 
  female |  -0.0821   1.0000 

 reading |   0.7131  -0.0531   1.0000 
 writing |   0.6626   0.2565   0.5968   1.0000

Now, let’s run a standard OLS regression on the data and generate predicted scores in p1.



regress acadindx female reading writing 

  Source |       SS       df       MS                  Number of obs =     200 
---------+------------------------------               F(  3,   196) =  107.40 
   Model |   34994.282     3  11664.7607               Prob > F      =  0.0000 
Residual |   21287.873   196  108.611597               R-squared     =  0.6218 
---------+------------------------------               Adj R-squared =  0.6160 
   Total |   56282.155   199  282.824899               Root MSE      =  10.422 

------------------------------------------------------------------------------ 
acadindx |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  female |  -5.832498    1.58821     -3.672   0.000      -8.964671   -2.700324 
 reading |   .7184174   .0931493      7.713   0.000       .5347138     .902121 
 writing |   .7905706   .1040996      7.594   0.000       .5852715    .9958696 
   _cons |   96.11841   4.489562     21.409   0.000       87.26436    104.9725 
------------------------------------------------------------------------------ 

predict p1 
(option xb assumed; fitted values)

The tobit command is one of the commands that can be used for regression with censored data. The
syntax of the command is similar to regress with the addition of the ul option to indicate that the right
censored value is 200. We will follow the tobit command by predicting p2 containing the tobit predicted
values.

tobit acadindx female reading writing, ul(200) 

Tobit estimates                                   Number of obs   =        200 
                                                  LR chi2(3)      =     190.39 



                                                  Prob > chi2     =     0.0000 
Log likelihood = -718.06362                       Pseudo R2       =     0.1171 

------------------------------------------------------------------------------ 
acadindx |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  female |  -6.347316   1.692441     -3.750   0.000      -9.684943   -3.009688 
 reading |   .7776857   .0996928      7.801   0.000       .5810837    .9742877 
 writing |   .8111221    .110211      7.360   0.000       .5937773    1.028467 
   _cons |   92.73782   4.803441     19.307   0.000       83.26506    102.2106 
---------+-------------------------------------------------------------------- 
     _se |   10.98973   .5817477              (Ancillary parameter) 
------------------------------------------------------------------------------ 

Obs. summary:       184 uncensored observations 
                     16 right-censored observations at acadindx>=200 

predict p2 
(option xb assumed; fitted values)

Summarizing the p1 and p2 scores shows that the tobit predicted values have a larger standard
deviation and a greater range of values.

summarize acadindx p1 p2 

Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
acadindx |     200     172.185    16.8174        138        200   
      p1 |     200     172.185   13.26087   142.3821   201.5311   
      p2 |     200     172.704   14.00292   141.2211   203.8541

When we look at a listing of p1 and p2 for all students who scored the maximum of 200 on acadindx, we
see that in every case the tobit predicted value is greater than the OLS predicted value. These
predictions represent an estimate of what the variability would be if the values of acadindx could exceed

200.

list p1 p2 if acadindx==200 

p1 p2



            p1         p2  
 32.   179.175     179.62   
 57.  192.6806   194.3291   
 68.  201.5311   203.8541   
 80.  191.8309    193.577   
 82.  188.1537   189.5627   
 88.  186.5725   187.9405   
 95.  195.9971   198.1762   
100.  186.9333   188.1076   
132.  197.5782   199.7984   
136.  189.4592   191.1436   
143.  191.1846   192.8327   
157.  191.6145   193.4767   
161.  180.2511   181.0082   
169.   182.275   183.3667   
174.  191.6145   193.4767   
200.  187.6616   189.4211

Here is the syntax diagram for tobit:

tobit depvar [indepvars] [weight] [if exp] [in range], ll[(#)] ul[(#)] 
        [ level(#) offset(varname) maximize_options ]

You can declare both lower and upper censored values. The censored values are fixed in that the same
lower and upper values apply to all observations.

There are two other commands in Stata that allow you more flexibility in doing regression with censored
data.

cnreg estimates a model in which the censored values may vary from observation to observation.

intreg estimates a model where the response variable for each observation is either point data, interval
data, left-censored data, or right-censored data.

4.3.2 Regression with Truncated Data



Truncated data occurs when some observations are not included in the analysis because of the value of
the variable. We will illustrate analysis with truncation using the dataset, acadindx, that was used in the
previous section. If acadindx is no longer loaded in memory you can get it with the following use
command.

use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/acadindx 
(max possible on acadindx is 200)

Let’s imagine that in order to get into a special honors program, students need to score at least 160 on
acadindx. So we will drop all observations in which the value of acadindx is less than 160.

drop if acadindx <= 160 
(56 observations deleted)

Now, let’s estimate the same model that we used in the section on censored data, only this time we will
pretend that a 200 for acadindx is not censored.

regress acadindx female reading writing 

      Source |       SS       df       MS              Number of obs =     144 
-------------+------------------------------           F(  3,   140) =   33.01 
       Model |  8074.79638     3  2691.59879           Prob > F      =  0.0000 
    Residual |  11416.3633   140  81.5454524           R-squared     =  0.4143 
-------------+------------------------------           Adj R-squared =  0.4017 
       Total |  19491.1597   143  136.301816           Root MSE      =  9.0303 

------------------------------------------------------------------------------ 
    acadindx |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female |  -5.238495   1.615632    -3.24   0.001    -8.432687   -2.044303 
     reading |   .4411066   .0963504     4.58   0.000     .2506166    .6315965 
     writing |   .5873287   .1150828     5.10   0.000     .3598037    .8148537 
       _cons |   125.6355   5.891559    21.32   0.000     113.9875    137.2834 
------------------------------------------------------------------------------

It is clear that the estimates of the coefficients are distorted due to the fact that 56 observations are no
longer in the dataset. This amounts to restriction of range on both the response variable and the
predictor variables. For example, the coefficient for writing dropped from .79 to .59. What this means is
that if our goal is to find the relation between adadindx and the predictor variables in the population,



then the truncation of acadindx in our sample is going to lead to biased estimates. A better approach to
analyzing these data is to use truncated regression. In Stata this can be accomplished using the
truncreg command where the ll option is used to indicate the lower limit of acadindx scores used in the
truncation.

truncreg acadindx female reading writing, ll(160) 
(note: 0 obs. truncated) 

Truncated regression 
Limit:   lower =        160                             Number of obs =    144 
         upper =       +inf                             Wald chi2(3)  =  77.87 
Log likelihood = -510.00768                             Prob > chi2   = 0.0000 

------------------------------------------------------------------------------ 
    acadindx |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
eq1          | 
      female |  -6.099602   1.925245    -3.17   0.002    -9.873012   -2.326191 
     reading |   .5181789   .1168288     4.44   0.000     .2891986    .7471592 
     writing |   .7661636     .15262     5.02   0.000     .4670339    1.065293 
       _cons |   110.2892   8.673849    12.72   0.000     93.28877    127.2896 
-------------+---------------------------------------------------------------- 
sigma        | 
       _cons |   9.803572    .721646    13.59   0.000     8.389172    11.21797 
------------------------------------------------------------------------------

The coefficients from the truncreg command are closer to the OLS results, for example the coefficient
for writing is .77 which is closer to the OLS results of .79.  However, the results are still somewhat
different on the other variables, for example the coefficient for reading is .52 in the truncreg as
compared to .72 in the original OLS with the unrestricted data, and better than the OLS estimate of .47
with the restricted data.  While truncreg may improve the estimates on a restricted data file as compared
to OLS, it is certainly no substitute for analyzing the complete unrestricted data file.

4.4 Regression with Measurement Error

As you will most likely recall, one of the assumptions of regression is that the predictor variables are
measured without error. The problem is that measurement error in predictor variables leads to under
estimation of the regression coefficients. Stata’s eivreg command takes measurement error into account
when estimating the coefficients for the model.



Let’s look at a regression using the hsb2 dataset.

use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/hsb2 

regress write read female 

  Source |       SS       df       MS                  Number of obs =     200 
---------+------------------------------               F(  2,   197) =   77.21 
   Model |  7856.32118     2  3928.16059               Prob > F      =  0.0000 
Residual |  10022.5538   197  50.8759077               R-squared     =  0.4394 
---------+------------------------------               Adj R-squared =  0.4337 
   Total |   17878.875   199   89.843593               Root MSE      =  7.1327 

------------------------------------------------------------------------------ 
   write |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    read |   .5658869   .0493849     11.459   0.000        .468496    .6632778 
  female |   5.486894   1.014261      5.410   0.000        3.48669    7.487098 
   _cons |   20.22837   2.713756      7.454   0.000       14.87663    25.58011 
------------------------------------------------------------------------------

The predictor read is a standardized test score. Every test has measurement error. We don’t know the
exact reliability of read, but using .9 for the reliability would probably not be far off. We will now estimate
the same regression model with the Stata eivreg command, which stands for errors-in-variables
regression.

eivreg write read female, r(read .9) 

               assumed                          errors-in-variables regression 
variable     reliability 



------------------------                               Number of obs =     200 
    read       0.9000                                  F(  2,   197) =   83.41 
       *       1.0000                                  Prob > F      =  0.0000 
                                                       R-squared     =  0.4811 
                                                       Root MSE      = 6.86268 

------------------------------------------------------------------------------ 
   write |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    read |   .6289607   .0528111     11.910   0.000        .524813    .7331085 
  female |   5.555659   .9761838      5.691   0.000       3.630548     7.48077 
   _cons |   16.89655   2.880972      5.865   0.000       11.21504    22.57805

Note that the F-ratio and the R  increased along with the regression coefficient for read. Additionally,
there is an increase in the standard error for read.

Now, let’s try a model with read, math and socst as predictors. First, we will run a standard OLS
regression.

regress write read math socst female 

  Source |       SS       df       MS                  Number of obs =     200 
---------+------------------------------               F(  4,   195) =   64.37 
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   Model |  10173.7036     4  2543.42591               Prob > F      =  0.0000 
Residual |  7705.17137   195  39.5136993               R-squared     =  0.5690 
---------+------------------------------               Adj R-squared =  0.5602 
   Total |   17878.875   199   89.843593               Root MSE      =   6.286 

------------------------------------------------------------------------------ 
   write |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    read |   .2065341   .0640006      3.227   0.001       .0803118    .3327563 
    math |   .3322639   .0651838      5.097   0.000       .2037082    .4608195 
   socst |   .2413236   .0547259      4.410   0.000        .133393    .3492542 
  female |   5.006263   .8993625      5.566   0.000       3.232537     6.77999 
   _cons |   9.120717   2.808367      3.248   0.001       3.582045    14.65939 
------------------------------------------------------------------------------

Now, let’s try to account for the measurement error by using the following reliabilities: read – .9, math –
.9, socst – .8.

eivreg write read math socst female, r(read .9 math .9 socst .8) 

               assumed                          errors-in-variables regression 
variable     reliability 



------------------------                               Number of obs =     200 
    read       0.9000                                  F(  4,   195) =   70.17 
    math       0.9000                                  Prob > F      =  0.0000 
   socst       0.8000                                  R-squared     =  0.6047 
       *       1.0000                                  Root MSE      = 6.02062 

------------------------------------------------------------------------------ 
   write |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    read |   .1506668   .0936571      1.609   0.109      -.0340441    .3353776 
    math |    .350551   .0850704      4.121   0.000       .1827747    .5183273 
   socst |   .3327103   .0876869      3.794   0.000        .159774    .5056467 
  female |   4.852501   .8730646      5.558   0.000        3.13064    6.574363 
   _cons |    6.37062   2.868021      2.221   0.027       .7142973    12.02694 
------------------------------------------------------------------------------

Note that the overall F and R  went up, but that the coefficient for read is no longer statistically
significant.

4.5 Multiple Equation Regression Models

If a dataset has enough variables we may want to estimate more than one regression model. For
example, we may want to predict y1 from x1 and also predict y2 from x2. Even though there are no
variables in common these two models are not independent of one another because the data come
from the same subjects. This is an example of one type of multiple equation regression known as
seemingly unrelated regression. We can estimate the coefficients and obtain standard errors taking into
account the correlated errors in the two models. An important feature of multiple equation models is that
we can test predictors across equations.

Another example of multiple equation regression is if we wished to predict y1, y2 and y3 from x1 and x2.
This is a three equation system, known as multivariate regression, with the same predictor variables for
each model. Again, we have the capability of testing coefficients across the different equations.

Multiple equation models are a powerful extension to our data analysis tool kit.

 

4.5.1 Seemingly Unrelated Regression

Let’s continue using the hsb2 data file to illustrate the use of seemingly unrelated regression.  You can
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g g y g
load it into memory again if it has been cleared out.

use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/hsb2 
(highschool and beyond (200 cases))

This time let’s look at two regression models.

    science = math female 
    write   = read female

It is the case that the errors (residuals) from these two models would be correlated. This would be true
even if the predictor female were not found in both models. The errors would be correlated because all
of the values of the variables are collected on the same set of observations. This is a situation tailor
made for seemingly unrelated regression using the sureg command. Here is our first model using OLS.

regress science math female 

<some output omitted> 
------------------------------------------------------------------------------ 
 science |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    math |   .6631901   .0578724     11.460   0.000        .549061    .7773191 
  female |  -2.168396   1.086043     -1.997   0.047      -4.310159    -.026633 
   _cons |   18.11813   3.167133      5.721   0.000        11.8723    24.36397 
------------------------------------------------------------------------------

And here is our second model using OLS.

regress write read female 

<some output omitted> 
------------------------------------------------------------------------------ 



   write |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    read |   .5658869   .0493849     11.459   0.000        .468496    .6632778 
  female |   5.486894   1.014261      5.410   0.000        3.48669    7.487098 
   _cons |   20.22837   2.713756      7.454   0.000       14.87663    25.58011 
------------------------------------------------------------------------------

With the sureg command we can estimate both models simultaneously while accounting for the
correlated errors at the same time, leading to efficient estimates of the coefficients and standard errors.
By including the corr option with sureg we can also obtain an estimate of the correlation between the
errors of the two models. Note that both the estimates of the coefficients and their standard errors are
different from the OLS model estimates shown above. The bottom of the output provides a Breusch-
Pagan test of whether the residuals from the two equations are independent (in this case, we would say
the residuals were not independent, p=0.0407).

sureg (science math female) (write read female), corr 

Seemingly unrelated regression 
------------------------------------------------------------------ 



Equation      Obs  Parms        RMSE    "R-sq"       Chi2        P 
------------------------------------------------------------------ 
science       200      2    7.595793    0.4085   125.4142   0.0000 
write         200      2    7.085844    0.4383   144.2683   0.0000 
------------------------------------------------------------------------------ 
         |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
science  | 
    math |   .6251409   .0570948     10.949   0.000       .5132373    .7370446 
  female |  -2.189344   1.077862     -2.031   0.042      -4.301914   -.0767744 
   _cons |   20.13265   3.125775      6.441   0.000       14.00624    26.25905 
---------+-------------------------------------------------------------------- 
write    | 
    read |   .5354838   .0487212     10.991   0.000       .4399919    .6309757 
  female |   5.453748   1.006609      5.418   0.000        3.48083    7.426665 
   _cons |   21.83439    2.67851      8.152   0.000        16.5846    27.08417 
------------------------------------------------------------------------------ 

Correlation matrix of residuals: 

         science    write 
science   1.0000 
  write   0.1447   1.0000 

Breusch-Pagan test of independence: chi2(1) =     4.188, Pr = 0.0407

Now that we have estimated our models let’s test the predictor variables. The test for female combines
information from both models. The tests for math and read are actually equivalent to the z-tests above
except that the results are displayed as chi-square tests.

test female 

 ( 1)  [science]female = 0.0 
 ( 2)  [write]female = 0.0 



           chi2(  2) =   37.45 
         Prob > chi2 =    0.0000 

test math 

 ( 1)  [science]math = 0.0 

           chi2(  1) =  119.88 
         Prob > chi2 =    0.0000 

test read 

 ( 1)  [write]read = 0.0 

           chi2(  1) =  120.80 
         Prob > chi2 =    0.0000

Now, let’s estimate 3 models where we use the same predictors in each model as shown below.

     read  = female prog1 prog3 
     write = female prog1 prog3 
     math  = female prog1 prog3

If you no longer have the dummy variables for prog, you can recreate them using the tabulate
command.

tabulate prog, gen(prog)

Let’s first estimate these three models using 3 OLS regressions.

regress read female prog1 prog3 

<some output omitted> 
------------------------------------------------------------------------------ 



    read |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  female |  -1.208582   1.327672     -0.910   0.364      -3.826939    1.409774 
   prog1 |   -6.42937   1.665893     -3.859   0.000      -9.714746   -3.143993 
   prog3 |  -9.976868   1.606428     -6.211   0.000      -13.14497   -6.808765 
   _cons |    56.8295   1.170562     48.549   0.000       54.52099    59.13802 
------------------------------------------------------------------------------ 

regress write female prog1 prog3 

<some output omitted> 
------------------------------------------------------------------------------ 
   write |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  female |   4.771211   1.181876      4.037   0.000       2.440385    7.102037 
   prog1 |  -4.832929   1.482956     -3.259   0.001      -7.757528   -1.908331 
   prog3 |  -9.438071   1.430021     -6.600   0.000      -12.25827   -6.617868 
   _cons |   53.62162   1.042019     51.459   0.000       51.56661    55.67662 
------------------------------------------------------------------------------ 

regress math female prog1 prog3 

<some output omitted> 
------------------------------------------------------------------------------ 
    math |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  female |  -.6737673   1.176059     -0.573   0.567      -2.993122    1.645587 
   prog1 |  -6.723945   1.475657     -4.557   0.000      -9.634149    -3.81374 
   prog3 |  -10.32168   1.422983     -7.254   0.000        -13.128   -7.515352 
   _cons |   57.10551    1.03689     55.074   0.000       55.06062     59.1504 
------------------------------------------------------------------------------

These regressions provide fine estimates of the coefficients and standard errors but these results
assume the residuals of each analysis are completely independent of the others. Also, if we wish to test
female, we would have to do it three times and would not be able to combine the information from all
three tests into a single overall test.



Now let’s use sureg to estimate the same models.  Since all 3 models have the same predictors, we can
use the syntax as shown below which says that read, write and math will each be predicted by female,
prog1 and prog3. Note that the coefficients are identical in the OLS results above and the sureg results
below, however the standard errors are different, only slightly, due to the correlation among the
residuals in the multiple equations.

sureg (read write math = female prog1 prog3), corr 

Seemingly unrelated regression 
------------------------------------------------------------------ 



Equation      Obs  Parms        RMSE    "R-sq"       Chi2        P 
------------------------------------------------------------------ 
read          200      3    9.254765    0.1811   44.24114   0.0000 
write         200      3    8.238468    0.2408   63.41908   0.0000 
math          200      3    8.197921    0.2304   59.88479   0.0000 
------------------------------------------------------------------------------ 
         |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
read     | 
  female |  -1.208582   1.314328     -0.920   0.358      -3.784618    1.367454 
   prog1 |   -6.42937    1.64915     -3.899   0.000      -9.661645   -3.197095 
   prog3 |  -9.976868   1.590283     -6.274   0.000      -13.09377   -6.859971 
   _cons |    56.8295   1.158797     49.042   0.000        54.5583     59.1007 
---------+-------------------------------------------------------------------- 
write    | 
  female |   4.771211   1.169997      4.078   0.000       2.478058    7.064363 
   prog1 |  -4.832929   1.468051     -3.292   0.001      -7.710257   -1.955602 
   prog3 |  -9.438071   1.415648     -6.667   0.000      -12.21269   -6.663451 
   _cons |   53.62162   1.031546     51.982   0.000       51.59982    55.64341 
---------+-------------------------------------------------------------------- 
math     | 
  female |  -.6737673   1.164239     -0.579   0.563      -2.955634    1.608099 
   prog1 |  -6.723945   1.460826     -4.603   0.000      -9.587111   -3.860778 
   prog3 |  -10.32168   1.408681     -7.327   0.000      -13.08264   -7.560711 
   _cons |   57.10551   1.026469     55.633   0.000       55.09367    59.11735 
------------------------------------------------------------------------------ 

Correlation matrix of residuals: 

         read   write    math 
 read  1.0000 
write  0.5519  1.0000 
 math  0.5774  0.5577  1.0000 

Breusch-Pagan test of independence: chi2(3) =   189.811, Pr = 0.0000

In addition to getting more appropriate standard errors, sureg allows us to test the effects of the
predictors across the equations We can test the hypothesis that the coefficient for female is 0 for all



predictors across the equations.  We can test the hypothesis that the coefficient for female is 0 for all
three outcome variables, as shown below.

test female 

 ( 1)  [read]female = 0.0 
 ( 2)  [write]female = 0.0 
 ( 3)  [math]female = 0.0 

           chi2(  3) =   35.59 
         Prob > chi2 =    0.0000

We can also test the hypothesis that the coefficient for female is 0 for just read and math. Note that
[read]female means the coefficient for female for the outcome variable read.

test [read]female [math]female 

 ( 1)  [read]female = 0.0 
 ( 2)  [math]female = 0.0 

           chi2(  2) =    0.85 
         Prob > chi2 =    0.6541

We can also test the hypothesis that the coefficients for prog1 and prog3 are 0 for all three outcome
variables, as shown below.

test prog1 prog3 

 ( 1)  [read]prog1 = 0.0 
 ( 2)  [write]prog1 = 0.0 



 ( 3)  [math]prog1 = 0.0 
 ( 4)  [read]prog3 = 0.0 
 ( 5)  [write]prog3 = 0.0 
 ( 6)  [math]prog3 = 0.0 

           chi2(  6) =   72.45 
         Prob > chi2 =    0.0000

4.5.2 Multivariate Regression

Let’s now use multivariate regression using the mvreg command to look at the same analysis that we
saw in the sureg example above, estimating the following 3 models.

     read  = female prog1 prog3 
     write = female prog1 prog3 
     math  = female prog1 prog3

If you don’t have the hsb2 data file in memory, you can use it below and then create the dummy
variables for prog1 – prog3.

use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/hsb2 
tabulate prog, gen(prog) 
<output omitted>

Below we use mvreg to predict read, write and math from female, prog1 and prog3. Note that the top
part of the output is similar to the sureg output in that it gives an overall summary of the model for each
outcome variable, however the results are somewhat different and the sureg uses a Chi-Square test for
the overall fit of the model, and mvreg uses an F-test. The lower part of the output appears similar to the
sureg output; however, when you compare the standard errors you see that the results are not the
same.  These standard errors correspond to the OLS standard errors, so these results below do not take
into account the correlations among the residuals (as do the sureg results).

mvreg read write math = female prog1 prog3 

Equation      Obs  Parms        RMSE    "R-sq"          F        P 
------------------------------------------------------------------ 



read          200      4    9.348725    0.1811   14.45211   0.0000 
write         200      4     8.32211    0.2408    20.7169   0.0000 
math          200      4    8.281151    0.2304   19.56237   0.0000 

------------------------------------------------------------------------------ 
         |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
read     | 
  female |  -1.208582   1.327672     -0.910   0.364      -3.826939    1.409774 
   prog1 |   -6.42937   1.665893     -3.859   0.000      -9.714746   -3.143993 
   prog3 |  -9.976868   1.606428     -6.211   0.000      -13.14497   -6.808765 
   _cons |    56.8295   1.170562     48.549   0.000       54.52099    59.13802 
---------+-------------------------------------------------------------------- 
write    | 
  female |   4.771211   1.181876      4.037   0.000       2.440385    7.102037 
   prog1 |  -4.832929   1.482956     -3.259   0.001      -7.757528   -1.908331 
   prog3 |  -9.438071   1.430021     -6.600   0.000      -12.25827   -6.617868 
   _cons |   53.62162   1.042019     51.459   0.000       51.56661    55.67662 
---------+-------------------------------------------------------------------- 
math     | 
  female |  -.6737673   1.176059     -0.573   0.567      -2.993122    1.645587 
   prog1 |  -6.723945   1.475657     -4.557   0.000      -9.634149    -3.81374 
   prog3 |  -10.32168   1.422983     -7.254   0.000        -13.128   -7.515352 
   _cons |   57.10551    1.03689     55.074   0.000       55.06062     59.1504 
------------------------------------------------------------------------------

Now, let’s test female. Note, that female was statistically significant in only one of the three equations.
Using the test command after mvreg allows us to test female across all three equations simultaneously.
And, guess what? It is significant. This is consistent with what we found using sureg (except that sureg
did this test using a Chi-Square test).

test female 

 ( 1)  [read]female = 0.0 
 ( 2)  [write]female = 0.0 



 ( 3)  [math]female = 0.0 

       F(  3,   196) =   11.63 
            Prob > F =    0.0000

We can also test prog1 and prog3, both separately and combined. Remember these are multivariate
tests.

test prog1 

 ( 1)  [read]prog1 = 0.0 
 ( 2)  [write]prog1 = 0.0 



 ( 3)  [math]prog1 = 0.0 

       F(  3,   196) =    7.72 
            Prob > F =    0.0001 

test prog3 

 ( 1)  [read]prog3 = 0.0 
 ( 2)  [write]prog3 = 0.0 
 ( 3)  [math]prog3 = 0.0 

       F(  3,   196) =   21.47 
            Prob > F =    0.0000 

test prog1 prog3 

 ( 1)  [read]prog1 = 0.0 
 ( 2)  [write]prog1 = 0.0 
 ( 3)  [math]prog1 = 0.0 
 ( 4)  [read]prog3 = 0.0 
 ( 5)  [write]prog3 = 0.0 
 ( 6)  [math]prog3 = 0.0 

       F(  6,   196) =   11.83 
            Prob > F =    0.0000

Many researchers familiar with traditional multivariate analysis may not recognize the tests above. They
don’t see Wilks’ Lambda, Pillai’s Trace or the Hotelling-Lawley Trace statistics, statistics that they are
familiar with. It is possible to obtain these statistics using the mvtest command written by David E. Moore
of the University of Cincinnati. mvtest , which UCLA updated to work with Stata 6 and above, can be
downloaded over the internet like this.

net from https://stats.idre.ucla.edu/stat/stata/ado/analysis 
net install mvtest



Now that we have downloaded it, we can use it like this.

mvtest female   

                     MULTIVARIATE TESTS OF SIGNIFICANCE 

Multivariate Test Criteria and Exact F Statistics for 
the Hypothesis of no Overall "female" Effect(s) 

                             S=1    M=.5    N=96 

Test                          Value          F       Num DF     Den DF   Pr > F 
Wilks' Lambda              0.84892448    11.5081          3   194.0000   0.0000 
Pillai's Trace             0.15107552    11.5081          3   194.0000   0.0000 
Hotelling-Lawley Trace     0.17796108    11.5081          3   194.0000   0.0000 

mvtest prog1 prog3 

                     MULTIVARIATE TESTS OF SIGNIFICANCE 

Multivariate Test Criteria and Exact F Statistics for 
the Hypothesis of no Overall "prog1 prog3" Effect(s) 

                             S=2    M=0    N=96 

Test                          Value          F       Num DF     Den DF   Pr > F 
Wilks' Lambda              0.73294667    10.8676          6   388.0000   0.0000 
Pillai's Trace             0.26859190    10.0834          6   390.0000   0.0000 
Hotelling-Lawley Trace     0.36225660    11.6526          6   386.0000   0.0000

We will end with an mvtest including all of the predictor variables. This is an overall multivariate test of
the model.

mvtest female prog1 prog3 



                     MULTIVARIATE TESTS OF SIGNIFICANCE 

Multivariate Test Criteria and Exact F Statistics for 
the Hypothesis of no Overall "female prog1 prog3" Effect(s) 

                            S=3    M=-.5    N=96 

Test                          Value          F       Num DF     Den DF   Pr > F 
Wilks' Lambda              0.62308940    11.2593          9   472.2956   0.0000 
Pillai's Trace             0.41696769    10.5465          9   588.0000   0.0000 
Hotelling-Lawley Trace     0.54062431    11.5734          9   578.0000   0.0000

The sureg and mvreg commands both allow you to test multi-equation models while taking into account
the fact that the equations are not independent.  The sureg command allows you to get estimates for
each equation which adjust for the non-independence of the equations, and it allows you to estimate
equations which don’t necessarily have the same predictors. By contrast, mvreg is restricted to
equations that have the same set of predictors, and the estimates it provides for the individual equations
are the same as the OLS estimates.  However, mvreg (especially when combined with mvtest) allows
you to perform more traditional multivariate tests of predictors.

 

4.6 Summary

 

This chapter has covered a variety of topics that go beyond ordinary least squares regression, but there
still remain a variety of topics we wish we could have covered, including the analysis of survey data,
dealing with missing data, panel data analysis, and more. And, for the topics we did cover, we wish we
could have gone into even more detail. One of our main goals for this chapter was to help you be aware
of some of the techniques that are available in Stata for analyzing data that do not fit the assumptions of

OLS regression and some of the remedies that are possible. If you are a member of the UCLA research

community, and you have further questions, we invite you to use our consulting services

(https://stats.idre.ucla.edu/ucla/policies/) to discuss issues specific to your data analysis.

https://stats.idre.ucla.edu/ucla/policies/


 

4.7 Self Assessment

 

1. Use the crime data file that was used in chapter 2 (use
https://stats.idre.ucla.edu/stat/stata/webbooks/reg/crime ) and look at a regression model predicting
murder from pctmetro, poverty, pcths and single using OLS and make a avplots and a lvr2plot following
the regression. Are there any states that look worrisome? Repeat this analysis using regression with
robust standard errors and show avplots for the analysis. Repeat the analysis using robust regression
and make a manually created lvr2plot. Also run the results using qreg. Compare the results of the
different analyses. Look at the weights from the robust regression and comment on the weights.

2. Using the elemapi2 data file (use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/elemapi2 )
pretend that 550 is the lowest score that a school could achieve on api00, i.e., create a new variable
with the api00 score and recode it such that any score of 550 or below becomes 550. Use meals, ell
and emer to predict api scores using 1) OLS to predict the original api score (before recoding) 2) OLS to
predict the recoded score where 550 was the lowest value, and 3) using tobit to predict the recoded api
score indicating the lowest value is 550. Compare the results of these analyses.

3. Using the elemapi2 data file (use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/elemapi2 )
pretend that only schools with api scores of 550 or higher were included in the sample. Use meals, ell
and emer to predict api scores using 1) OLS to predict api from the full set of observations, 2) OLS to
predict api using just the observations with api scores of 550 or higher, and 3) using truncreg to predict
api using just the observations where api is 550 or higher. Compare the results of these analyses.

4. Using the hsb2 data file (use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/hsb2 ) predict read
from science, socst, math and write. Use the testparm and test commands to test the equality of the
coefficients for science, socst and math. Use cnsreg to estimate a model where these three parameters
are equal.

5. Using the elemapi2 data file (use https://stats.idre.ucla.edu/stat/stata/webbooks/reg/elemapi2 )
consider the following 2 regression equations.

api00 = meals ell emer  
api99 = meals ell emer



Estimate the coefficients for these predictors in predicting api00 and api99 taking into account the non-
independence of the schools. Test the overall contribution of each of the predictors in jointly predicting
api scores in these two years. Test whether the contribution of emer is the same for api00 and api99.

Click here (/stata/webbooks/reg/chapter4/regressionwith-statachapter-4-answers-to-excersises/) for our

answers to these self assessment questions.

4.8 For more information

Stata Manuals

[R] rreg

[R] qreg

[R] cnsreg

[R] tobit

[R] truncreg

[R] eivreg

[R] sureg

[R] mvreg

[U] 23 Estimation and post-estimation commands

[U] 29 Overview of model estimation in Stata

Web Links

How standard errors with cluster() can be smaller than those without 

(http://www.stata.com/support/faqs/stat/cluster.html)

Advantages of the robust variance estimator

(http://www.stata.com/support/faqs/stat/robust_var.html)

How to obtain robust standard errors for tobit

(http://www.stata.com/support/faqs/stat/tobit.html)

Pooling data in linear regression (http://www.stata.com/support/faqs/stat/awreg.html)
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