ALGEBRA REVIEW

From test 3 (6 problems)

- 22. If b and c are elements in a group G, and if $b^5 = c^3 = e$, where e is the unit element of G, then the inverse of $b^2cb^4c^2$ must be
 - (A) b^3c^2bc
- (B) $b^4c^2b^2c$
- (C) $c^2b^4cb^2$
- (D) $cb^2c^2b^4$
- (E) cbc^2b^3
- 32. Let R denote the field of real numbers, Q the field of rational numbers, and Z the ring of integers. Which of the following subsets F_i of R, $1 \le i \le 4$, are subfields of R?

$$F_1 = \{a/b: a, b \in Z \text{ and } b \text{ is odd}\}$$

$$F_2 = \{a + b\sqrt{2}: a, b \in Z\}$$

$$F_3 = \{a + b\sqrt{2}: a, b \in Q\}$$

$$F_4 = \{a + b\sqrt[4]{2}: a, b \in Q\}$$

- (A) No F_i is a subfield of R.
- (B) F_3 only
- (C) F_2 and F_3 only
- (D) F_1 , F_2 , and F_3 only
- (E) $F_1, F_2, F_3, \text{ and } F_4$
- 48. Let G_n denote the cyclic group of order n. Which of the following direct products is NOT cyclic?
 - (A) $G_{17} \times G_{11}$
 - (B) $G_{17} \times G_{11} \times G_5$
 - (C) $G_{17} \times G_{33}$
 - (D) $G_{22} \times G_{33}$
 - (E) $G_{49} \times G_{121}$
- 51. An automorphism ϕ of a field F is a one-to-one mapping of F onto itself such that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in F$. If F is the field of rational numbers, then the number of distinct automorphisms of F is
 - (Å) 0
- (B)_1___
- (C) 2
- (D) 4
- (E) infinite

exactly three ele (A) pq, p^q, q^p (B) $p + q, pq,$ (C) $p, p + q, p$ (D) p, p^q, q^p (E) p, pq, p^q	p^{q}			
9. Two subgroups he the order of the	H and K of a group ne subgroup of G ge	o G have orders 12 and 30 merated by H and K?	, respectively. Which of the	
(A) 30	(B) 60	(C) 120	(D) 360	(E) Countable infinity
are true? I. * is cor	inary operation on		en by $a*b=a+b+$	2ab. Which of the follo
17. Let * be the bare true? I. * is con II. There is	inary operation on	that is a *-identity.	en by $a * b = a + b +$ (D) I and III only	2ab. Which of the follows: (E) I, II, and III
17. Let * be the bare true? I. * is con II. There is III. Every re (A) I only	nmutative a rational number ational number has (B) II only	that is a *-identity. a *-inverse. (C) I and II only	(D) I and III only	(E) I, II, and III
17. Let * be the bare true? I. * is con II. There is III. Every re (A) I only	oinary operation on national number ational number has (B) II only	that is a *-identity. a *-inverse. (C) I and II only		(E) I, II, and III

25.	Let x and y be positive integers such that $3x + 7y$ is divisible by 11. Which of the following must also be divisible by 11?						
	(A) 4x + 6y	(B) $x + y + 5$	(C) $9x + 4y$	(D) $4x - 9y$	(E) $x + y - 1$		
49.	 If the finite group G contains a subgroup of order seven but no element (other than the identity) is its or inverse, then the order of G could be 						
	(A) 27	(B) 28	(C) 35	(D) 37	(E) 42		
54	The map $x \to axa$ (A) G is abelian	G^2 of a group G into $G = \{e\}$		hism if and only if $(D) a^2 = a$	(E) $a^3 = e$		
66	I. $\{a + b\sqrt{2} \mid a\}$ II. $\{\frac{n}{3^m} \mid n \text{ is an}\}$ III. $\{a + b\sqrt{5} \mid a\}$	Fring subsets are subringaring and b are rational. In integer and m is a notation a and b are real numbers.	on-negative integer $\begin{cases} a^2 + b^2 \le 1 \end{cases}$ ers and $a^2 + b^2 \le 1$				
**************************************	(A) I only (B)) I and II only (C) I and III only	(D) II and III only	(E) I, II, and III		
ro	m test 1 (7 proble	ems)					

F

- 21. Let P_1 be the set of all primes, $\{2, 3, 5, 7, \ldots\}$, and for each integer n, let P_n be the set of all prime multiples of n, $\{2n, 3n, 5n, 7n, \ldots\}$. Which of the following intersections is nonempty?
- (A) $P_1 \cap P_{23}$ (B) $P_7 \cap P_{21}$ (C) $P_{12} \cap P_{20}$ (D) $P_{20} \cap P_{24}$ (E) $P_5 \cap P_{25}$

- 32. Suppose that two binary operations, denoted by \oplus and \odot , are defined on a nonempty set S, and that the following conditions are satisfied for all x, y, and z in S:
 - (1) $x \oplus y$ and $x \odot y$ are in S.
 - (2) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$ and $x \odot (y \odot z) = (x \odot y) \odot z$.
 - (3) $x \oplus y = y \oplus x$

Also, for each x in S and for each positive integer n, the elements nx and x^n are defined recursively as follows:

$$1x = x^{1} = x$$
 and

if kx and
$$x^k$$
 have been defined, then $(k+1)x = kx \oplus x$ and $x^{k+1} = x^k \odot x$.

Which of the following must be true?

- I. $(x \odot y)^n = x^n \odot y^n$ for all x and y in S and for each positive integer n.
- II. $n(x \oplus y) = nx \oplus ny$ for all x and y in S and for each positive integer n.
- III. $x^m \odot x^n = x^{m+n}$ for each x in S and for all positive integers m and n.
- (A) I only
- (B) II only
- (C) III only
- (D) II and III only
- (E) I, II, and III
- 33. The Euclidean algorithm is used to find the greatest common divisor (gcd) of two positive integers a and b

```
input(a)
input(b)
while b > 0
  begin
    r := a mod b
    a := b
    b := r
  end
gcd := a
output(gcd)
```

When the algorithm is used to find the greatest common divisor of a = 273 and b = 110, which of the following is the sequence of computed values for r?

- (A) 2, 26, 1, 0
- (B) 2, 53, 1, 0
- (C) 53, 2, 1, 0
- (D) 53, 4, 1, 0
- (E) 53, 5, 1, 0

- 40. For which of the following rings is it possible for the product of two nonzero elements to be zero?
 - (A) The ring of complex numbers
 - (B) The ring of integers modulo 11
 - (C) The ring of continuous real-valued functions on [0, 1]
 - (D) The ring $\{a + b\sqrt{2} : a \text{ and } b \text{ are rational numbers}\}$
 - (E) The ring of polynomials in x with real coefficients
- 46. Let G be the group of complex numbers $\{1, i, -1, -i\}$ under multiplication. Which of the following statements are true about the homomorphisms of G into itself?
 - I. $z \mapsto \overline{z}$ defines one such homomorphism, where \overline{z} denotes the complex conjugate of z.
 - II. $z \mapsto z^2$ defines one such homomorphism.
 - III. For every such homomorphism, there is an integer k such that the homomorphism has the form $z \mapsto z^k$.
 - (A) None
- (B) II only
- (C) I and II only
- (D) II and III only
- (E) I, II, and III
- 49. Up to isomorphism, how many additive abelian groups G of order 16 have the property that x + x + x + x = 0 for each x in G?
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 5

- 60. The group of symmetries of the regular pentagram shown above is isomorphic to the
 - (A) symmetric group S_5
 - (B) alternating group A_5
 - (C) cyclic group of order 5
 - (D) cyclic group of order 10
 - (E) dihedral group of order 10