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We investigated the mechanical behavior of two-dimensional hierarchical honeycomb structures using
analytical, numerical and experimental methods. Hierarchical honeycombs were constructed by replac-
ing every three-edge vertex of a regular hexagonal lattice with a smaller hexagon. Repeating this process
builds a fractal-appearing structure. The resulting isotropic in-plane elastic properties (effective elastic
modulus and Poisson’s ratio) of this structure are controlled by the dimension ratios for different hierar-
chical orders. Hierarchical honeycombs of first and second order can be up to 2.0 and 3.5 times stiffer
than regular honeycomb at the same mass (i.e., same overall average density). The Poisson’s ratio varies
from nearly 1.0 (when planar ‘bulk’ modulus is considerably greater than Young’s modulus, so the
structure acts ‘incompressible’ for most loadings) to 0.28, depending on the dimension ratios. The work
provides insight into the role of structural organization and hierarchy in regulating the mechanical
behavior of materials, and new opportunities for developing low-weight cellular structures with tailor-
able properties.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Hierarchical structures are ubiquitous in nature and can be ob-
served at many different scales in organic materials and biological
systems (Aizenberg et al., 2005; Buehler, 2006; Espinosa et al.,
2011; Fratzl and Weinkamer, 2007; Gibson et al., 2010; Lakes,
1993; Ortiz and Boyce, 2008; Qing and Mishnaevsky Jr, 2009).
The hierarchical organization of these systems generally plays a
key role in their properties, function and survival (Fratzl and
Weinkamer, 2007; Gibson et al., 2010). Hierarchy is also important
in engineering designs, materials and architecture. Examples range
from the Eiffel tower (Lakes, 1993) and polymers with micro-level
hierarchical structures (Lakes, 1993), to sandwich panels with
cores made of foams or composite lattice structures (Cote et al.,
2009; Fan et al., 2008; Kazemahvazi et al., 2009; Kazemahvazi
and Zenkert, 2009; Kooistra et al., 2007). There, the hierarchical
organization can lead to superior mechanical behavior and tailor-
able properties, as described recently for sandwich cores with hier-
archical structure (Fan et al., 2008) and for hierarchical corrugated
truss structures (Kooistra et al., 2007). The overall mechanical
behavior of these structures is governed by the response at differ-
ent length scales and levels of hierarchy; and increasing levels of
structural hierarchy can result in lighter-weight and better-
performing structures (Bhat et al., 1989; Burgueño et al., 2005;
ll rights reserved.
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t al. Hierarchical honeycombs
Gibson et al., 2010; Kooistra et al., 2007; Lakes, 1993; Murphey
and Hinkle, 2003; Taylor et al., 2011).

Here, we have presented a systematic way to incorporate hier-
archy in honeycomb structures. Honeycombs are two-dimensional
cellular structures used in different applications including thermal
isolation (Lu and Chen, 1999), impact energy absorption and struc-
tural protection (Ajdari et al., 2011; Vaziri et al, 2007; Wadley et al,
2007; Vaziri and Xue, 2007; Zheng et al.2005), and as the core of
lightweight sandwich panels (Vaziri and Hutchinson, 2007; Rath-
bun et al., 2006; Vaziri et al, 2006; Xue and Hutchinson, 2006),
Xue and Hutchinson, 2004. The transverse (i.e., in-plane) stiffness
and strength of honeycombs are generally governed by the bend-
ing deformation of cell walls, and strongly depend on the honey-
comb relative density (Gibson and Ashby, 1997). Under uniform
transverse loading, the maximum bending moment in each cell
wall occurs at the honeycomb vertices (i.e., cell wall corners). Thus,
moving material from the middle part of each wall closer to the
vertices can potentially increase the transverse stiffness and
strength (Chuang and Huang, 2002a,b; Simone and Gibson,
1998). Here, we replace the vertices of a regular hexagonal lattice
with smaller hexagons (simultaneously reducing the wall thick-
ness to maintain fixed overall density), to achieve a structure with
one level of hierarchy. This will be shown able to exhibit a Young’s
modulus superior to that of its regular hexagonal counterpart of
equal relative density. This replacement procedure for three-edge
vertices can be repeated at smaller scales to achieve fractal-
appearing honeycombs with higher orders of structural hierarchy.
Fig. 1(A) shows the evolution of a hexagonal honeycomb cell as
structural hierarchy is increased. The structural organization of
with tailorable properties. Int. J. Solids Struct. (2012), http://dx.doi.org/
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Fig. 1. Hierarchical honeycombs. (A) Unit cell of the hierarchical honeycombs with regular structure and with 1st and 2nd order hierarchy. (B) Images of honeycombs with
a = 2 cm fabricated using three-dimensional printing.
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the honeycomb at each level of hierarchy can be defined by the ra-
tio of the introduced hexagonal edge length (b for 1st order hierar-
chy and c for 2nd order hierarchy), to the original hexagon’s edge
length, a, as described in Fig. 1(A) (i.e., c1 = b/a and c2 = c/a). For a
honeycomb with 1st order hierarchy, 0 6 b 6 a/2 and thus,
0 6 c1 6 0.5, where c1 = 0 denotes the regular honeycomb struc-
ture. For a honeycomb with 2nd order hierarchy, there are two
geometrical constraints, 0 6 c 6 b and c 6 a/2 � b. In terms of the
ratio parameters, the constraints are 0 6 c2 6 c1 if c1 6 0.25 and
0 6 c2 6 (0.5 � c1) if 0.25 6 c1 6 0.5. The dimensionless relative
density (i.e., area fraction), can be given in terms of t/a:

q ¼ 2
ffiffiffi
3
p
� ð1þ 2c1 þ 6c2Þ � t=a; ð1Þ

where t is the thickness of the cell walls, from which the special cases
of c2, c1 = 0 can be read off immediately. (For regular honeycomb,
q ¼ 2=

ffiffiffi
3
p
� 2=t=a; and for honeycomb with 1st order hierarchy,

q ¼ 2
ffiffiffi
3
p
� ð1þ 2c1Þ � t=a). This relation clearly shows that t/a must

decrease to maintain fixed relative density as c1, c2 are increased.
Here, we studied the effective elastic properties hierarchical

honeycombs using analytical, numerical and experimental meth-
ods. The hierarchical honeycomb samples were fabricated using
3D printing as discussed in Section 2. In Sections 3 and 4, we pro-
vided analytical models to estimate the effective elastic modulus
and Poisson’s ratio of hierarchical honeycombs using the concepts
of mechanics of materials and compare the analytical results with
finite element simulations and experiments. In Section 5, we sum-
marized the elastic properties of the hierarchical honeycombs and
draw conclusions, while discussing additional possibilities for fur-
ther enhancement of the performance of hierarchical honeycombs.
2. Fabrication using 3D printing

Fig. 1(B) shows samples of regular and hierarchical honeycombs
with q = 0.10 and a = 20 mm fabricated using 3D printing
(Dimensions 3D printer, Stratasys Inc., Eden Prairie, MN). The
Please cite this article in press as: Ajdari, A., et al. Hierarchical honeycombs
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regular honeycomb has t = 1.75 mm; the honeycomb with one-
level hierarchy has c1 = 0.3 and t = 1 mm; and that with two-level
hierarchy has c1 = 0.3, c2 = 0.12, and t = 0.75 mm. These were
printed as three-dimensional extruded shells from an ABS polymer
(acrylonitrile butadiene styrene, elastic modulus = 2.3 GPa) as the
bulk material. The input file to the 3D printing software was cre-
ated for honeycombs with a relative density of 0.10. The cell wall
thickness was reduced for honeycombs with hierarchy in order
to keep the overall relative density constant, similar to the finite
element calculations. The actual printed samples did not maintain
the target density very precisely due to the 0.25 mm resolution of
the printer (so the relative density was between 8–12%, and only
certain discrete values of c1 and c2 could be achieved). Prior to
the experiments, aluminum plates were bonded to the top and bot-
tom of the samples using cyanoacrylate adhesive, in order to pre-
vent the edge nodes (similar to 1, 2, 3, and 4 in Fig. 2(A) from
excessive bending. The in-plane compressive response of these
bonded-end samples was measured using an INSTRON 5582 at
the slow rate of 1mm/min (i.e., strain rate, _e = 0.5%/min). The effec-
tive elastic modulus of the honeycombs were estimated from the
slope of the force-displacement curve at early stage of the experi-
ment (e < 1.5%). For each specimen, the true relative density was
measured by weighing, and then was used when calculating the
normalized effective elastic modulus. For each configuration, three
samples were tested. In addition to the experiments, we developed
analytical and finite element models to calculate the effective in-
plane elastic constants of the honeycombs in terms of cell-wall
Young’s modulus.
3. Hierarchical honeycombs: effective elastic modulus

For the analytical approach, we used Castigliano’s second theo-
rem (Boresi and Schmidt, 2002) to determine the uniaxial in-plane
deformation of hierarchical honeycombs made of an isotropic elas-
tic material with elastic modulus, Es. It is well known that plane
with tailorable properties. Int. J. Solids Struct. (2012), http://dx.doi.org/
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Fig. 2. Free body diagrams of the subassembly of honeycombs with 1st and 2nd order hierarchy used in the analytical estimation. Ni and Mi (i = 1 to 3) denote the reaction
vertical forces and moments in the nodes of the subassembly structures as denoted in the pictures. It should be noted that P is not an actual load, it is rather a dummy force so
Castigliano’s method can be used for horizontal strain.
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lattices with threefold symmetry will exhibit macroscopically iso-
tropic in-plane elastic behavior (Christensen, 1987). Thus, the mac-
roscopic in-plane linear elastic behavior of hierarchical honeycomb
can be characterized by just two constants, to be found by what-
ever loadings are most convenient. We imposed a far field y-direc-
tion stress, ryy = �(2/3)F/a, in a vertical direction (perpendicular to
the horizontal hexagon edges in Fig. 1(A). This is equivalent to
applying a vertical force F at every cut-point of a horizontal line
(such as L1 in Fig. 1A) passing through the mid-points of non-hor-
izontal edges in a row of underlying (i.e., no hierarchy) hexagons.

To understand the analysis, it is helpful to envision the underly-
ing regular hexagonal network as illustrated in Fig. 1(A). Midpoints
of various edges have been labeled MP1 to MP5. For a macroscopic
state of stress rij , the average force per unit length transmitted
across a vertical line such as L2 is r11 (direct) and r12 (shear). Since
only r22 is nonzero, no net horizontal or vertical force is transmit-
ted across L2. Yet every horizontal bar is equivalent, allowing us to
conclude that they transmit neither axial nor shear force. Further-
more, they also transmit no bending moment, because a consistent
moment, such as sagging, it would break the symmetry about hor-
izontal lines. Therefore, the horizontal cut by L2 are entirely load-
free for this state of stress.

Next, considering the edges cut at their midpoints by line L1, it
was already stated that each cut bar must sustain a vertical force
F = �3ryya/2. Cut at the midpoints as they are, we can conclude
that no bending moment is transmitted by these bars, because that
would imply a bar curvature or ‘bulging’ in a way prohibited by
symmetry. (For example, if the bar at MP3 is bulged ‘outward’, hor-
izontal and vertical reflection symmetry would mean that all four
non-horizontal bars of the base hexagon are bulged outward. But
the bar at MP3 is shared by an adjacent hexagon, which should
similarly bulge outward – an inconsistency.)

Since r12 = 0, no net horizontal force is transmitted across L1.
Therefore, considering the structure below L1, a leftward force ap-
plied to MP3 balanced by a rightward force at MP1 might be envis-
aged. But by reflection in a horizontal line through the hexagon
center, we would also have to expect a leftward force applied to
the bar above a cut at MP4. The resulting net leftward force on
the bars between cuts at MP3 and MP4 is not possible because we
already know that the horizontal bars (e.g., on the line through
the hexagon center) are tension-free. We can thus conclude that
the forces at cut points MP1, MP3, and MP4 are purely vertical with
magnitude F. This ‘hexagon midpoint’ reasoning is unchanged
when structural hierarchy is introduced.
Please cite this article in press as: Ajdari, A., et al. Hierarchical honeycombs
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Fig. 2(A) shows the free body diagram of a subassembly able to
represent an entire honeycomb with 1st order hierarchy subject to
ryy loading (therefore, for this section, to find effective elastic mod-
ulus in y-direction, we are not taking the horizontal forces shown
at point 2, 3, and 4 into account – It should be noted that the hor-
izontal forces shown in the figures are not an actual load, it is
rather a dummy force so Castigliano’s method can be used for hor-
izontal strain.) According to the above arguments, 3 is load-free,
and 4 is subject only to force �F in the y direction. Since the sub-
assembly is also cut free at points 1 and 2, we need to find the force
and moment reactions at those cuts. y-direction forces acting on
the subassembly are denoted by N1 and N2, and moments are de-
noted by M1 and M2. There can be no horizontal force at point 1 be-
cause of reflection symmetry about the x axis, along with the lack
of any third force on point 1 to balance same-direction horizontal
inputs from above and below. At point 2, since no other horizontal
forces act on the subassembly, we can also be sure that there is no
horizontal reaction. So in this problem, x-direction equilibrium is
trivially satisfied. By applying the y-force and moment balance laws
to the subassembly, N2 and M2 can therefore be written as linear
functions of N1, M1, and F. The bending energy stored in the subas-
sembly can be expressed as a sum over all the beams:
UðF;M1;N1Þ ¼

PR
ðM2Þ=ð2EsIÞds, where M is the bending moment

at location s along the beam, Es is the elastic modulus of the cell wall
material, and I is the beam’s cross sectional area moment of inertia
at s (cell walls are considered to have rectangular cross section with
thickness, t, and unit depth; i.e., I ¼ t3=12). Since the beam resul-
tants are linear in F, M1 and N1, U is then a quadratic function of
those same quantities. The horizontal beam connecting nodes 2
and 3 can be excluded from the analysis since it is load-free.

Since there is zero vertical displacement and zero rotation at
point 1 due to symmetry, we can use Castigliano’s method to write
@U=@N1 ¼ 0, and @U=@M1 ¼ 0. These two relations allow N1 and M1

to be calculated in terms of F: N1 ¼ Fð0:533þ 0:15=c1Þ, M1 ¼
Fað0:283c1 � 0:017Þ. At point 4 we can find the displacement
d ¼ @U=@F, and then the above substitution for N1 and M1 gives
d ¼

ffiffiffi
3
p

Fa3=ð72EsIf ðc1ÞÞ. The effective elastic modulus (to be nor-
malized by beam material modulus, Es) is then defined as the ratio
of average stress (�2F/3a) and average strain, (�4d=a

ffiffiffi
3
p

):
E=Es ¼ ðt=aÞ3f ðc1Þ ð2Þ

where f ðc1Þ ¼
ffiffiffi
3
p

=ð0:75� 3:525c1 þ 3:6c2
1 þ 2:9c3

1Þ. To find
the maximum normalized elastic modulus for structures with
with tailorable properties. Int. J. Solids Struct. (2012), http://dx.doi.org/
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first-level hierarchy and constant relative density, we eliminate (t/
a) from Eq. (2) by using the relative density expression of Eq. (1)
The resulting expression for E=Es is q3 times a function of c1, and
setting ð@ðE=EsÞ=@c1Þq ¼ 0 gives c1 = 0.32. Making this substitution
leads to E=Es ¼ 2:97q3, a stiffness almost twice the stiffness of the
regular honeycomb structure (Gibson and Ashby, 1997), for which
E0=Es ¼ 1:5q3. (The regular honeycomb result can be found by let-
ting c1 = 0 in Eq. (2), and using Eq. (1) to eliminate t/a).

The same analytical approach was used to evaluate the in-plane
effective Young’s modulus of honeycomb with two orders of hier-
archy, as a function of hierarchy indices c1 and c2. Fig. 2(B) shows
the free body diagram of a subassembly chosen to minimize calcu-
lation. As before, the vertical compressive stress (�2F/3a) is
achieved by the external force, F, applied downward at point 5 (a
midpoint of the underlying hexagon side), with symmetry argu-
ments showing that no other loads act at that point. Bar 3–4 is
again load-free. The same argument applies to point 3 as formerly
applied to point 2 for the honeycomb with one order of hierarchy.
And, the same argument applies to points 2 and 1 as formerly ap-
plied to point 1. Therefore, N1, M1, N2, M2, N3, and M3 are the un-
known reaction forces and moments at vertices 1, 2, and 3 as
shown in Fig. 2(B). One additional step required for analysis of
the second-order hierarchy is to determine the beam resultants
for the statically indeterminate, complete (small) hexagon of side
c embedded in each subassembly, loaded at nodes 6 and 7 with
reactions at node 8. The bending moments along each side of the
c-hexagon are determined from a subsidiary analysis in which it
is divided at nodes 6 and 7, and then three compatibility conditions
are enforced at each of those nodes. The details of that analysis are
omitted for brevity. Similar to honeycombs with first order hierar-
chy, using the y-direction and rotational equilibrium equations, N3

and M3 can be written as a function of N1, M1, N2, M2, and F. There-
fore, the total energy of the investigated substructure, which is the
sum of the bending strain energy of all the beams, can be written
as: UðF;M1;N1;M2;N2Þ ¼

PR
ðM2=ð2EsIÞÞds. The following four

boundary conditions are imposed at points 1 and 2 to achieve
the zero rotation and zero displacement demanded by symmetry,
as shown in Fig. 2(B): @U=@N1 ¼ 0, @U=@M1 ¼ 0, @U=@N2 ¼ 0, and
@U=@M2 ¼ 0. These relations allow us to solve for M1, N1, M2, N2.
In a similar way as above the effective elastic modulus can be pre-
sented as:

E=Es ¼ ðt=aÞ3f ðc1; nÞ ð3Þ

where n ¼ c2=c1 and f ðc1; nÞ ¼ N4ðnÞ=ðc3
1D7ðnÞ þ c2

1D6ðnÞ þ c1DSðnÞþ
D4ðnÞÞ

N4ðnÞ ¼ 29:62� 54:26nþ 31:75n2 � 4:73n3 � n4
D7ðnÞ ¼ 49:64� 609:01nþ 862:56n2 � 195:50n3 � 270:14n4

þ 159:95n5 � 18:13n6 � 2:20n7
D6ðnÞ ¼ 61:73þ 310:43n� 662:32n2 þ 334:12n3 þ 9:70n4

� 29:38n5 � 1:88n6
D5ðnÞ ¼ 60:43þ 12:80nþ 123:22n2 � 108:06n3 þ 20:50n4 þ 3:90n5
D4ðnÞ ¼ 12:80� 23:46nþ 13:74n2 þ 2:04n3 � 0:43n4

For the 2nd order hierarchical structure, once again eliminating
(t/a) in favor of density, and then differentiating at constant
density, (@ðE=EsÞ@c1Þq ¼ ð@ðE=EsÞ:@c2Þq ¼ 0 give c1 = 0.32, and c2 =
0.135, leading to E=Es ¼ 5:26q3, a stiffness almost 3.5 times that
of the regular honeycomb.
Please cite this article in press as: Ajdari, A., et al. Hierarchical honeycombs
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To validate the theoretical results we simulated the structural
response using finite element analysis. Two-dimensional hierarchi-
cal honeycombs were modeled using Abaqus 6.10 (SIMULIA, Prov-
idence, RI). All models were meshed using the BEAM22 element,
which is capable of capturing not only the bending compliance of
the above theory, but also the axial and shear deformations which
may become significant at greater values of t/a. A rectangular cross
section with unit length normal to the plane of loading was as-
sumed for the cell wall beams. The thickness of all the beams
was adjusted to control the overall relative density of the structure.
The material properties of aluminum, Es = 70 GPa, and ms = 0.3,
were used in this study. We performed the analysis with two dif-
ferent boundary conditions representing our analytical model
and experimental tests, respectively. In the first set, we applied
periodic boundary conditions to matching nodes on the left and
right edges, as if the sample were infinitely wide but free to strain
laterally (Harders et al., 2005). To model infinitely long cellular
structure, all the nodes lying along the dashed symmetry line of
Fig. 2 (A) or (B) at the top and bottom of the model were connected
to a rigid plate. Those nodes were constrained by symmetry condi-
tions, i.e. free to slide left or right, but all maintaining the same y
coordinate, and prevented from rotating. This model represents
an infinite cellular structure in both in-plane directions and thus,
the mechanical response is not dependant on the model size (i.e.
eliminating the size effect). We confirmed the independence of
the results from the model size by systematically changing the
model size from a single unit cell to structure comprising of
8 � 8 unit cells for a honeycomb with one order hierarchy and rel-
ative density of 6% and c1 = 0.3. The unit cell was only 0.5% stiffer
than the 8 � 8 cellular structure (measured by comparing the
effective elastic modulus of each system).

In the second set of simulations, those same top and bottom
nodes were constrained horizontally by being built into the fixed
rigid plates (i.e. tied boundary condition with no rotation and no
displacement in the horizontal direction and with equal displace-
ment in the vertical direction for the nodes in contact with the ri-
gid plates), and the side nodes were free as in the experimental
setup. In this case, the effective elastic modulus is strongly depen-
dant on the size of the structure. For a model comprising of 5 � 5
unit cells, which is consistent with our experiments, the increase
in modulus caused by this constraint in the second kind of simula-
tion ranged from 3% up to a maximum of about 20% depending on
the honeycomb relative density (the different is smaller for honey-
combs with lower relative density). Here, we show the numerical
results from the first set, which matched the boundary conditions
of our analytical model (first model described above for simulating
the response of an infinitely long and wide cellular structure). The
effective elastic modulus of each structure was calculated from the
slope of compressive stress-strain response.

Fig. 3(A) shows the effective elastic modulus of first order hier-
archical honeycombs for all possible values of c1. In this fig., the
elastic modulus is normalized by the effective stiffness of the coun-
terpart regular honeycomb with the same relative density, 1.5Esq3,
allowing us to present results for every density on a single curve. In
the finite element simulations, structures with three different rel-
ative densities (2%, 6% and 10%) were analyzed. Results show quite
good agreement between numerical and theoretical approaches,
even though the theoretical analysis ignored the axial and shear
deformation of the beams (a good approximation only for low den-
sity honeycombs with small beam thickness (Harders et al., 2005)).
We suspect that the numerical incorporation of shear and stretch-
ing accounts for the FEA-determined modulus falling somewhat
below the theory, particularly as density increases or beam lengths
decrease. The FEA results nicely confirm the near-doubling of stiff-
ness for c1 = 0.32. In this fig., experimental results are also plotted
which show reasonable agreement with both theory and numerical
with tailorable properties. Int. J. Solids Struct. (2012), http://dx.doi.org/
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Fig. 3. Stiffness of hierarchical honeycombs. (A) Normalized stiffness for honey-
combs with 1st order hierarchy versus c1. (B) Normalized stiffness versus c2, for
honeycombs with 2nd order hierarchy and c1 = 0.3. The schematic of the honey-
comb unit cells are shown for selected values of c1 and c2 in each plot. The finite
element results are shown for honeycombs with three different relative densities.
Experimental results for structures with different hierarchy levels are also shown
(black circles). The error bars show the results variation. Each experimental point is
from 3 tested specimens.

Fig. 4. Poisson’s ratio of hierarchical honeycombs with one level of hierarchy versus
c1. The finite element results are also plotted for honeycomb with relative density
0.06.
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results. For honeycombs with 2nd order hierarchy, we fixed
c1 = 0.3 and plotted the normalized effective elastic modulus for
various values of c2. The results again match theory best for low
density, and show that honeycombs with two orders of hierarchy
where c1 = 0.3, and c2 = 0.135, have stiffness approximately 3.5
times that of regular hexagonal honeycomb with same relative
density (i.e. specific stiffness 3.5 times of the regular hexagonal
honeycomb).

4. Hierarchical honeycombs: Poisson’s ratio

To fully characterize the linear elastic behavior of hierarchical
honeycombs, we also need to obtain the dependence of Poisson’s
ratio, t, on the dimension ratios. We again used Castigliano’s sec-
ond theorem and considered the same subassemblies under biaxial
loading (where the horizontal stress is finally set to zero after
differentiating). This is a bending-based approximate analysis that
ignores axial and shear deformation of the cell walls.
Please cite this article in press as: Ajdari, A., et al. Hierarchical honeycombs
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Temporarily considering horizontal loading only, we apply rea-
soning similar to that in Section 3, to midpoint cut lines such as L2

and L3. This establishes that the horizontal segment aligned with
the dotted line is subjected to pure compression (no bending),
and that the segment midpoint to the upper right of each subas-
sembly experiences only a horizontal force. There is no horizontal
reaction at node 1 for first order hierarchy, or at nodes 1, 2 for sec-
ond order hierarchy. But node 2 (first order) and node 3 (second or-
der) has a horizontal reaction to balance 2P, �P, and nodes on the
dashed horizontal line still require vertical and moment reactions.
The composite free body diagrams for both horizontal and vertical
stress are shown in Fig. 2. Fig. 2(A) is for 1st order hierarchy where
the external forces P and F are applied at point 4 in x- and y-
directions, and N1, M1, N2, and M2 are the reaction vertical forces
and moments at vertices 1 and 2, respectively. The two non-trivial
equations of equilibrium (vertical and angular) allow us to write N2

and M2 as functions of N1, M1, P and F. Therefore, the bending en-
ergy stored in the subassembly can be expressed as the summation
of bending energy in all beams, UðF; P;M1;N1Þ ¼

PR
ðM2=2EsIÞds,

where M is the bending moment at position s along each beam,
Es is the elastic modulus of the cell wall material, and I is the
beam’s cross sectional area moment of inertia (cell walls are con-
sidered to have rectangular cross section with thickness t and unit
depth, i.e., I ¼ t3=12). The horizontal beam connecting the nodes 2
and 3 can be excluded from the analysis since it experiences no
bending moment. Assuming zero displacement and zero rotation
at vertices 1 and 2 due to symmetry, one can write @U=@N1 ¼ 0,
and @U=@M1 ¼ 0. These two relations allow N1 and M1 to be calcu-
lated as a function of P and F. The bending energy stored in the sub-
assembly can be subsequently expressed as U ¼ UðF; PÞ.

When P is zero (free lateral expansion), the x and y
displacements of point 4 due to force F can be expressed as follows,
respectively: dF

X ¼ ð@U=@PÞjp¼0; dF
Y ¼ ð@U=@FÞp¼0. Considering the

initial dimensions of the subassembly to be 3a=4 and
ffiffiffi
3
p

a=4 in
X- and Y- dimensions, respectively, the Poisson’s ratios in direction
Y is obtained as m ¼ dF

X=
ffiffiffi
3
p

dF
Y , which gives: m ¼ 1� c3

1=ð2:9c3
1 þ 3:6

c2
1 � 3:525c1 þ 0:75Þ, which is plotted in Fig. 4. The value of m is

m = 1 at c1 = 0, m = 0.5 at c1 = 0.5, with the minimum value 0.37 at
c1 = 0.4. Finite element results are also shown which were obtained
with tailorable properties. Int. J. Solids Struct. (2012), http://dx.doi.org/
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by calculating the lateral deformation of honeycombs with peri-
odic boundary condition under uniaxial in-plane loading.

For the biaxially loaded 2nd order hierarchical honeycomb
subassembly illustrated in Fig. 2(B). N1, M1, N2, M2, N3, and M3

are the unknown reaction vertical forces and moments. Once again,
vertical and rotational equilibrium equations allow us to write N3

and M3 as functions of N1, M1, N2, M2, P and F. Therefore, the
bending energy stored in the subassembly can be expressed as
the summation of bending energy in all beams,
UðF; P;M1;N1;M2;N2Þ ¼

PR
ðM2=2EsIÞds. The horizontal beam con-

necting nodes 3 and 4 is again excluded from the analysis. Since
symmetry prevents vertical displacement or rotation at vertices 1
and 2, one can write @U=@N1 ¼ 0, @U@M1 ¼ 0, @U=@N2 ¼ 0, and
@U=@M2 ¼ 0. These four relations allow N1, N2, M1 and M2 to be cal-
culated as functions of P and F. The bending energy stored in the
Please cite this article in press as: Ajdari, A., et al. Hierarchical honeycombs
10.1016/j.ijsolstr.2012.02.029
subassembly can be subsequently expressed as U ¼ UðF; PÞ. The x
and y displacements of point 5 due to force F can be expressed
as: dF

X ¼ ð@U=@PÞjp¼0; dF
Y ¼ ð@U=@FÞjp¼0. Considering the initial

dimensions of the subassembly to be 3a=4 and
ffiffiffi
2
p

a=4 in the x
and y directions, the Poisson ratio is obtained as: ¼ dF

X=
ffiffiffi
3
p

dF
Y . The

value of m ranges from 0.28 at c1 = c2 = 0.23 to 1.0 at c1 = c2 = 0.

5. Concluding remarks

To summarize the behavior of all honeycombs with the investi-
gated hierarchical structures, we have plotted contour maps of the
effective (normalized) elastic modulus and Poisson’s ratio of hier-
archical honeycombs with second-order hierarchy for all possible
values of c1 and c2, as shown in Fig. 5. The x-axis is c1 ranges from
0 to 0.5, while c2 is limited by the two geometrical constraints,
c2 6 c1 and 0 6 c2 6 (0.5 � c1). Hierarchical honeycombs with
small to moderate values of c1 and c2, and especially a simple hex-
agonal honeycomb, have Poisson ratio near 1.0. This means that
the Young’s and Shear moduli, which are controlled by element
bending, are far lower than the ‘‘Bulk’’ (really, ‘‘Areal’’) modulus
which for those structures is controlled by element stretching.

The results show that a relatively broad range of elastic proper-
ties, and thus behavior, can be achieved by tailoring the structural
organization of hierarchical honeycombs, and more specifically the
two dimension ratios. For example, the hierarchical honeycombs
with one order and two orders hierarchy are shown to have spe-
cific stiffness up to 2.0 and 3.5 times of the regular hexagonal hon-
eycomb. Increasing the level of hierarchy provides a wider range of
achievable properties. Further optimization should be possible by
also varying the thickness of the hierarchically introduced cell
walls, and thus the relative distribution of the mass, between dif-
ferent hierarchy levels. The proposed work focused only on the
elastic properties of hierarchical honeycombs, and the collapse/
yield and instability properties of these structures are currently
under study.
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