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Linear eigenvalue buckling analysis was carried out for singly and doubly cracked cylindrical thin shells
under axial compression using the finite element method. First, the effect of crack size and orientation
on the buckling behavior of an axially loaded shell with a single crack was studied. Then, the buckling
behavior of a cylinder with two parallel longitudinal cracks was investigated. Two different
buckling shapes with cross-sectional deformation profiles that resemble letters M (symmetric) and N
(anti-symmetric) were identified as the first buckling modes of the cylinder. The exchange between
these local buckling modes due to variation of crack size and spacing was illustrated. The transition
between these two buckling shapes can be used to estimate the ‘maximum interaction distance’ of the
cylinder cracks—the separation distance beyond which the two cracks do not interact in affecting the
buckling load of the cylindrical shell. The influence of shell thickness and crack length on the maximum
interaction distance was quantified for cylinders with two co-centered (i.e., parallel offset) or collinear
longitudinal cracks. Additional simulations were carried out for cylinders with multiple symmetrically
spaced longitudinal cracks to show how the behavior of single and double cracks can give the buckling
load and mode shape of cylinders with multiple cracks.

© 2012 Published by Elsevier Ltd.

1. Introduction

Defects can have a significant influence on the behavior of
thin-walled structures. From the structural point of view, the
most detrimental consequence of a defect is the excessive stress,
which could result in fracture at or near the defect location and
possibly overall structural failure. Defects could also lead to large
localized deformations (e.g. local buckling or plastic deformation),
which can alter the structure’s load carrying capacity or function
[1-5]. Thus, there is a driving need to better understand the effect
of defects on the mechanical behavior and structural performance
of plates and shells. We have chosen to focus on cracks, which
could appear due to overload, fatigue, manufacturing errors, or
harsh environmental condition. The mechanics of cracked shells
have been studied extensively in recent decades. These studies
range from development of theoretical approaches to better
understand stress distribution and structural behavior of the shell
in the presence of defects [6-15], and numerical simulations of
linear and nonlinear response of cracked shells under loading
[16-28], to experimental investigation of shells with defects
[29-37].
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Cracked shells have often been explored numerically, since
this makes it possible to probe the response over a broad range of
geometrical parameters and loading conditions. However, most of
these studies are focused on investigating the role of a single
defect (e.g., a crack) on shell failure. In this study, the role of
single and multiple cracks on the eigenvalue buckling load of
cylindrical shells - which represent the most common type of
shells used in pipelines and marine or aerospace structures — was
studied using finite element analysis. Finite element models of
cracked cylinders were developed by extending a special plane
stress crack tip meshing scheme developed by Estekanchi and
Vafai [16] to the case of cylinders with multiple cracks. This
approach accurately captures the crack-tip stress intensity factor
with relatively few elements. The method has been previously
used to study the eigenvalue buckling behavior of cracked plates
[17,18] and cylinders with a single crack subjected to tension or
compression [19,28], pure torsion [20] and combined axial
compression and internal pressure [21]. This method simplifies
the generation of numerical models of cracked shells and thus,
allows comprehensive and parametric investigations on the
behavior and mechanical response of cracked shells. More details
of the computational models are provided in Section 2. In Section
3, we revisit the buckling of a cylinder with a single crack under
axial compression which had previously been investigated by
Estekanchi and Vafai [16] and Vaziri [19] for circumferential or
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longitudinal crack orientations. Here, we expand those results by
carrying out a parametric study for different crack orientations,
and studying the appearance of non-symmetric mode shapes
when cracks are not at 0° or 90°. In Section 4 we extend our
study to cylindrical shells with two parallel cracks. For this
purpose, we focused on parallel longitudinal cracks since the
results in Section 3 show that a single longitudinal crack has the
most detrimental effect on the buckling load of the cylindrical
shell. We particularly studied the effect of crack separation
distance. A maximum interaction distance, dj,,, was defined as
the separation beyond which the effect of any crack on the
buckling load is decoupled from the effects of the other crack.
In this case, the lowest buckling load of the cracked cylinder is
dictated only by the worst-case crack, ignoring the others
entirely. The dependence of the maximum interaction distance
on cylinder thickness and crack size is exhibited for equal
co-centered cracks (i.e., with parallel offset) and equal collinear
cracks. In Section 5, we discussed how the results obtained for
single- and double- cracked cylindrical shells could be used to
understand the behavior of a cylindrical shell with multiple
cracks. The conclusions were drawn in Section 6.

2. Finite element modeling of cracked shells

We used the meshing scheme proposed by Estekanchi and
Vafai [16] for constructing the shell elements close to the crack
tip. In this approach, the element size is relatively uniform
everywhere away from the crack tips, while decreasing propor-
tionally only in a region near the crack tip by approaching the
crack tip. Fig. 1 shows an example of the developed finite element
mesh based on this meshing scheme. The parametric study
carried out in this work required constructing a substantial
number of finite element computational models. We have devel-
oped a MATLAB code that allow automatic creation of the finite
element model of cracked cylindrical shells with different crack
length, a, and crack orientation, «, where «=0° corresponds to
circumferential direction. Furthermore, we developed an addi-
tional MATLAB code to create finite element models of cracked
cylindrical shells with two parallel or collinear longitudinal cracks
(i.e. both cracks having «=90°). Eight-node shell elements (S8R)
with reduced integration and quadratic shape functions were
used for the meshing. The cylindrical shell in the uncracked
region was meshed into 150 elements in each of the axial and
circumferential directions. For meshing the crack region, the

A

zooming factor of 1/2 and zooming level of 6 were used. In this
meshing scheme, the zooming level denotes the number of
element layers surrounding the crack tip with reduced element
size compared to uniform element size in the uncracked region,
see Fig. 1. The zooming factor denotes the relative size (both
length and width) of the element at each element layer to the size
of the element in the previous element layer, as approaching the
crack tip. This results in the crack tip element size 1/64 of the
element size far from the crack tip. A sensitivity analysis was
performed to assure that the obtained results are minimally
sensitive to the selected mesh size.

Finite element models of cracked shells were numerically
solved using Abaqus finite element package. The cylindrical shell
was modeled as isotropic and linear elastic with Young’s modulus
E=69 GPa, and Poisson ratio v=0.33 (corresponding to the elastic
properties of aluminum). Computational models of cracked
cylindrical shells with length /=2 m, radius R=0.2 m, and various
thickness t, were created. The cylinder shell was fully clamped at
one end and was free to move in only the axial direction at the
other end. The large /R ratio adopted minimizes the effects of the
end boundary conditions in the crack-containing mid-region of
the cylinder [38]. A linear eigenvalue analysis was performed to
obtain the buckling shape and buckling load of the cracked
cylindrical shell. The calculated first mode buckling load of a
cracked shell, F., was normalized by the theoretical buckling load
of an uncracked cylinder with the same thickness, F,=3.8 Et?,
where E is the elastic modulus of the shell material [38]. The
normalized buckling load of a cracked shell is denoted by y=F_/F..

3. Cylindrical shells with a single crack

A sufficiently short crack has no significant effect on the
buckling behavior of a cylindrical shell: buckling occurs at y~1
and covers the cylinder in axisymmetric corrugations with wave-

length 27s(/R2D/Et where D is the flexural rigidity of the shell
[38]. In contrast, a sufficiently long crack gives rise to buckling in
the vicinity of the crack, with the buckling load y < 1. Figs. 2A and
B show the normalized buckling load of a cylindrical shell with a
single circumferential crack (#=0°) and a longitudinal crack
(«=90°), respectively. The buckling loads were calculated using
linear eigenvalue analysis for cracked cylinders with three differ-
ent values of t/R, the shell thickness to radius ratio. The results
show that a thinner cylinder suffers more from the presence of a
given-length crack, and that in general a longitudinal crack has a
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Fig. 1. Computational models of a cylindrical shell with (A) a circumferential crack and (B) an axial crack created by employing a special meshing scheme at the crack
region proposed by Estekanchi and Vafai [16]. It should be noted that the actual mesh used in the finite element calculations was much finer than the mesh sizes shown in

this figure.
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Fig. 2. Buckling of a single cracked cylindrical shell. y, the buckling load normalized by that of an uncracked shell, versus crack length ratio, a/R, for cylindrical shells with
(A) a circumferential crack («=0°) and (B) an axial crack (¢=90°). The results are presented for three thickness to radius ratios.
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Fig. 3. (A) Global, transition and local buckling shapes for a circumferentially cracked (top left) and a longitudinally cracked (top right) cylindrical shell. (B) The transition

buckling shape for the two cases identified in Fig. 3A.

more profound effect on cylinder buckling behavior compared to
a circumferential crack. To study the transition from entire-
cylinder to near-crack buckling as the crack length increases, we
constructed buckling mode shape maps for cylinders with a
circumferential or a longitudinal crack, Fig. 3 A. Three different
distributions of buckling deformation were identified: (i) Global:
The buckling shape and load are approximately the same as those
of the counterpart uncracked cylinder (i.e. 0.95<7y<1 with
‘corrugations’ distributed over the entire shell); (ii) Transition:
The crack has an effect on both the buckling shape and the
buckling load, but the buckling shape is not localized (the mode
still involves most of the cylinder), see Fig. 3B. Depending on the
thickness of the shell, a transitional buckling load of the cracked
cylinder can be as low as 0.8 of the buckling load of the uncracked
counterpart cylinder. (iii) Local: Buckling deformation is localized

to the crack region, and the buckling load tends to be considerably
lower than the buckling load of the counterpart uncracked shell.
For the two studied crack orientations, the crack length associated
with the transition between each two buckling shapes changes
approximately linearly with the shell thickness, as shown by the
dashed lines in Fig. 3A. Here, we define a critical crack length, ac,
as the maximum crack length leading to a truly global buckling
shape as the first buckling shape of the cylinder. In this article, the
critical crack length, a., is quantified as the crack length corre-
sponding to the normalized buckling load equal to y=0.98.

Fig. 4A shows the normalized buckling load of a cracked
cylinder with t/R=0.006 as a function of crack length for different
crack orientations, o. The buckling load of a cracked cylinder
decreases as the crack changes from circumferential to long-
itudinal. In Fig. 4B, we have re-plotted the results to show the
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Fig. 4. (A) Normalized buckling load for a cylindrical shell with t/R=0.006 versus a/ R for different crack angles, «. (B) Normalized buckling load for a cylindrical shell with
t/R=0.006 versus the crack orientation. (C) Local buckling shapes for cracked-cylinders with different crack angles. Our analysis shows that the local buckling shape
depends primarily on the crack angle, and is insensitive to the crack length and shell thickness.

cylinder buckling load versus the crack orientation for different
crack lengths. The buckling load of a cracked shell with o < 30° is
approximately independent of the crack orientation. However, by
further increasing the crack angle, the buckling load reduces
significantly. Fig. 4C displays the buckling shapes of cylinders
with four different crack angles. The local buckling mode shape is
approximately independent of the cylinder thickness and the
crack length. The cylinders with =0° and «=30° have similar
buckling shapes with maximum outward and inward displace-
ments at the crack tips and the deformation is approximately
symmetric with respect to the crack. The buckling shape of a
cylinder with o=45° is quite different, with the shell bulging out
asymmetrically relative to the crack axis. In this case, the
deformation at the crack tips is almost zero. The cracked cylinder
with «=90° bulges out symmetrically relative to the crack axis. In
Fig. 5, we plotted the critical crack length (i.e. the length below
which the ‘global’ buckling pattern predominates) normalized by
cylinder radius, ac/R, versus the crack orientation «, for three
different cylinder thicknesses. The critical crack length changes
nonlinearly with the crack orientation, «, and is higher for thicker
cylindrical shells.

4. Cylindrical shells with two longitudinal cracks

In this section, we investigate the buckling behavior of a
cylinder with two longitudinal cracks. The results provide insight
into the elastic instability of shells with multiple parallel cracks,
as will be discussed in Section 5. The choice of longitudinal cracks
was made because, per unit length, this type of crack has the most
detrimental effect on the buckling load of the cracked cylinder, as
discussed in Section 3. As a starting point, we consider a
cylindrical shell with two equal longitudinal cracks with length
a located at distance d from each other in the circumferential
direction, Fig. 6A. Fig. 6B shows the normalized buckling load of
the cracked cylinder as a function of crack length for different
crack separation distances. The buckling load of a cylinder with a
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Fig. 5. Normalized critical crack length versus the crack angle for different shell
thickness ratios, t/R. (The critical length is that below which a ‘global’ buckling
mode becomes relevant.).

single longitudinal crack is also shown for comparison. A cylinder
with two parallel cracks, which are located relatively far from
each other (e.g. d/R=0.33 in Fig. 6B), has a buckling load that is
approximately equal to the buckling load of the same cylinder
with a single longitudinal crack. In other words, once cracks are
separated by more than the maximum interaction distance, they
can be treated as isolated and the weakest (i.e. the one with the
lowest buckling load) controls the load and appearance of buck-
ling, The cylinder buckling load decreases somewhat when the
distance between the two parallel cracks is reduced. The behavior
at relatively small separation distance corresponds to buckling of
the slender strip between two cracks.
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Fig. 6. Local buckling of a cylindrical shell with two, longitudinal, co-centered cracks. (A) Schematic of the cracked cylinder and the meshing scheme used for analysis.
(B) Normalized buckling load of the cylinder versus the relative length of the two cracks, for a cylinder with t/R=0.006.
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Fig. 7. (A) Normalized buckling load versus the relative separation distance of two cracks for a cylinder with a/R=0.2 and t/R=0.01. The solid line correspondes to the first
(lowest load) mode of buckling, while the dashed line denotes the second mode. Red squares and blue diamonds correspond to the “M” (symmetric) and “N”
(antisymmetric) shapes of buckling, which perform an exchange at d/R=0.33. (B) “M” and “N” shaped local buckling deformations for double-cracked cylinders of different
crack separations, indicated in Fig. 7A. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In order to better understand the interactions of adjacent
cracks, we have studied the buckling mode shape as a function
of parallel offset separation. Fig. 7 shows the buckling loads and
mode shapes for the first two buckling modes of a cylindrical shell
with t/R=0.01, a/R=0.2 versus different normalized crack dis-
tances, d/R. Two distinct buckling shapes are observed which are

denoted as ‘M’ shape (symmetric) and ‘N’ shape (anti-symmetric).
In the ‘M’ shape, the cylinder bulges locally outward at both
cracks and the shell surface between the two parallel cracks
moves outward with some symmetric bending. When the two
cracks are located very close to each other (e.g. d/R=0.17, Case |
in Fig. 7), the area between the two parallel cracks buckles like a
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flat plate. For the ‘N’ shape, two local deformation peaks at the
cracks’ centers extend to opposite sides of the shell surface (i.e.
outward and inward displacements). The surface between the
two cracks deforms accordingly, as can be seen in cases Il and IV.
Half way between the two cracks there is a slope but no
deflection. In Fig. 7B, we plotted the load associated with each
mode as d/Ris varied for the cylinder with t/R=0.01, a/R=0.2. For
d/R < 0.35, the lowest-load buckling mode of the cylinder is an ‘M’
shape, while for a larger value of d/R, an ‘N’ shape is the dominant
(lowest load) mode of the cylinder buckling. An apparent dis-
continuity in lowest-mode shape is simply explained as a cross-
over between these two modes with geometry-dependent
eigenvalues. For d/R > 0.73, the interaction of the two cracks is
no longer significant and the buckling load is simply that of a
cylinder with a single crack of the same size. In this case, the local
mode consists of localized outward deformation of the crack
edges, similar to the buckling shape of a longitudinally cracked
shell—see Fig. 3C. The shell surface between the two parallel
cracks has approximately zero deformation and zero slope.
According to the above analysis, we defined a maximum interac-
tion distance between two cracks, denoted by d;, as the mini-
mum distance at which the two cracks display an independent
effect on the buckling behavior of the cylindrical shell. If the crack
separation is greater than the maximum interaction distance, the
buckling load of the cracked cylinder is determined purely by the
larger crack alone. In this case the Section 3 results suffice for
estimating the buckling mode shape and critical load based on the
length of the larger crack. For the cylinder discussed in Fig. 7, the
two cracks have the same size, a/R=0.2, and the normalized
cylinder thickness is t/R=0.01. For this case, di,/R=0.73.
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For a given configuration (e.g. longitudinal co-centered
cracks), the maximum interaction distance depends on the
cylinder dimensions and crack sizes. In Fig. 8, we studied the
buckling of a cylindrical shell with two longitudinal co-centered
cracks of non-equal length. The length of two cracks were
denoted by a and a,, and the larger crack size was kept constant
in the calculations and equal a/R=0.2. The size of the smaller
crack was varied systematically 0<a,/a<1, where ay/a=0
corresponds a cylinder with a single crack of length a. Fig. 8B
shows the dependence of the normalized maximum interaction
distance, d./R, on ay/a, for cylinders with three different thick-
ness, t/R=0.003, 0.006 and 0.001. These results were obtained by
performing a parametric study on the effect of crack distances on
the buckling load and shape of the cylinder. For each case, this
involves a set of calculations similar to the investigation dis-
cussed in Fig. 7. By increasing a,/a, the maximum interaction
distance increases nonlinearly. The maximum interaction dis-
tance is larger for thicker cylinders with the same crack size
ratio, a,/a, meaning that thick-cylinder results would be con-
servative compared to thinner cases. This outcome could per-
haps be explained by the increase of the natural ‘decay length’ of
a cylindrical shell which is proportional to </Rs«t. The maximum
interaction distance of the cracks also decreases as crack a, gets
shorter, as quantified for selected cases in Fig. 8B. To further
illustrate the effect of shell thickness on the maximum interac-
tion distance of two equal size interacting cracks, in Fig. 8C we
showed the normalized buckling load associated with the ‘M’
and ‘N’-shaped interactional local buckling in cylinders with two
cracks of equal length, a/R=0.2 and different thickness, t/
R=0.003, 0.006 and 0.01.
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Fig. 8. Local buckling of a cylindrical shell with two different-size co-centered longitudinal cracks. (A) Schematic of the cracked cylinder and the meshing scheme used for
analysis. (B) The maximum interaction distance versus the cracks size ratio. In this case the longer crack has a length ratio of a/R=0.2. (C) Normalized buckling load
associated with the “M” and “N” -shaped interactional local buckling in cylinders with two crack of equal length, a/R=0.2 and different thickness, t/R=0.003, 0.006

and 0.01.
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analysis. (B) Normalized buckling load versus the distance of the two cracks for a cylinder with t/R=0.01 and a/R=0.2. The solid line correspondes to the first buckling
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(C) “N” and “M” shaped local buckling deformations for double-cracked cylinders of different crack distance, indicated in Fig. 9B. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

In Fig. 9, we repeated similar calculations for a double cracked
cylindrical shell with two equal-size longitudinal collinear cracks.
Analogously to the results presented in Fig. 7, two buckling shapes
were identified which resemble the ‘M-shape’ and ‘N-shape’ modes
discussed before. In this figure, d is again defined as the distance
between the centers of the two cracks (thus, d > a in order to have
two separate cracks). In Fig. 9B, we plotted the buckling load
associated with each of the above buckling shapes (‘M’ and ‘N’
shapes) for the cylinder with t/R=0.01, a/R=0.2 and different crack
distances, d. For cylinders with d/R < 0.52 or 0.66 < d/R, the N-shape
buckling mode is the first buckling shape and for two cracks with
0.52 < d/R < 0.66, the M shape of buckling becomes the first buck-
ling mode. Also in this case, the normalized maximum interaction
distance of d/R ~ 0.8 was obtained, which is slightly larger than the
maximum interaction distance of the counterpart cylinder (same
thickness and crack size) with parallel offset cracks.

5. Cylindrical shells with multiple longitudinal cracks

Based on the maximum interaction distance d;,, of adjacent
longitudinal cracks, it seems reasonable that the behavior of many
equally spaced cracks might also be understood based on that
same distance — particularly, if the spacing is greater than di, the
buckling load will be that of just one isolated crack of the
same size. Fig. 10A shows the normalized buckling load versus

the normalized thickness of cylindrical shell of thickness t and
radius R, for three different crack configurations: (i) one longitudinal
crack, (ii) two parallel longitudinal cracks of equal size located at
distance d=0.39R, and (iii) multiple parallel longitudinal cracks (for
a total of 16) at a fixed distance from each other, d=0.39R. The
results are presented for fixed crack length, a=0.2R. For cylinders
with many cracks and with a relatively thin shell (e.g. t/R < 0.0033 at
this crack length), the local buckling deformation at each crack
opening is not influenced by the presence of other cracks. With this
spacing, the buckling loads of cylinders with single, double, and
multiple cracks are practically identical. By increasing the thickness
of the shell (t/R > 0.0033 in this set of calculations), d;;,, grows and
the cracks begin to interact: the buckling deformation near each
crack is influenced by its neighbor. As a result, cylindrical shells with
a greater number of interacting cracks have lower buckling loads in
the local interactive buckling regime. As the shell thickness further
increases, the buckling of the shell becomes transitional and then
global. In the latter case, the buckling load of the cylindrical shells
for the three configurations is y~1. In Fig. 10B the local buckling
shape for two thickness ratios of t/R=0.002 and 0.01 are shown for
cylindrical shells with 1 and 16 cracks. At t/R=0.002 due to the lack
of interaction between the cracks, there is nearly no difference in the
local buckling deformation at the crack opening between the two
cases. In this case, the buckling pattern at the cylindrical shell with
16 cracks has a 16-fold rotational symmetry. However, for the
cylinder with t/R=0.01 the cracks interact in a way that favors anti-
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Fig. 10. (A) Normalized buckling load of a cylinder with single, double and multiple cracks of fixed distance, d/R=0.39, versus the shell thickness ratio. The crack size is
fixed and equal to a=0.2R. (B) Local buckling modes corresponding to cylinders with 1 and 16 cracks and with the shell thickness ratios of t/R=0.002 and 0.01.

symmetric modes, resulting in only 8-fold rotational symmetry (this
phenomenon requires an even number of cracks).

6. Post-buckling response of cracked shells

It should be noted that the eigenvalue analysis does not
necessary predict the overall collapse of the cylinder. For example,
in the case of cylinder with two parallel cracks, the eigenvalue
analysis may obtain the eigenvalue that corresponds to the
premature local buckling deformation of the curved strip between
two cracks. This does not necessarily result in the overall collapse
of the cylindrical shell [39]. To illustrate this, we carried out a
preliminary post-buckling analysis of longitudinally cracked cylin-
ders with a single crack using finite element analysis. The post-
buckling response of the cracked shells was obtained by using a
stabilizing mechanism based on automatic addition of volume-
proportional damping [40,41]. For each set of calculations, the
damping value was decreased systematically to assure that the
response is insensitive to this change [40]. No initial geometric or
material imperfection was included in the computational models.
The post-buckling analysis showed that the force-strain response
of an elastic cracked shell is almost linear before and after local
buckling until the overall collapse of the structure. Fig. 11 shows
the results of our preliminary study on the buckling of a cylind-
rical shell with a longitudinally oriented crack with a/R=0.2, using
both eigenvalue and post-buckling analyses. In this figure the
normalized buckling loads of the cracked cylinder is plotted as a
function of the crack size ratio, a/R. In the case of a perfect cylinder
the buckling load is almost equal to 1 and the buckling shape is
global. For the a cracked cylindrical shell with a/R<0.06, the
buckling deformation is axisymmetric and sinusoidal along
the axial direction (global buckling). For values of 0.06 <a/
R < 0.18 the buckling deformation first occurs locally at the crack
region but does not considerably affect the overall response of the
cylinder. The collapse occurs at =1 accompanied by the axisym-
metric sinusoidal wrinkling of the cylindrical shell (global buck-
ling). In the range of 0.18 < a/R < 0.26 the buckling first happens
locally at the crack region and then the buckling deformations are
increased until they cause the entire structure to collapse at the
load ratio y < 1. For a/R > 0.26 the eigenvalue and post-buckling
load of the cylindrical shell coincide and the structure will collapse

0.5

0 005 01 015 02 025 03
al/R

Fig. 11. Normalized buckling load versus crack size from post buckling (blue line)
and eigen value (red line) analysis of the cracked cylinderical shell with a/R=0.2.
The normalized shell thickness is t/R=0.006. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

as soon as the local buckling at the crack region occurs. Further
post-buckling analysis is required to provide a complete under-
standing of the role of cracks on the overall collapse load of
cracked shells.

7. Concluding remarks

We performed eigenvalue analysis to explore the linear buck-
ling behavior of cylindrical shells with single or multiple cracks
under axial-compression. For a cylinder with a single crack, a
thorough parametric study on the effect of crack length and angle
on the buckling load and shape of the cylinder has been carried
out. The current investigation complements previous studies on
the behavior of single cracked cylinders [16,19] and more speci-
fically highlights the role of crack angle. Based on eigenvalue
analysis, a longitudinal crack has the most detrimental effect on
the buckling load of a single-cracked cylindrical shell. The local
buckling shape mainly depends on the crack angle and is
insensitive to the crack length and shell thickness.
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For cylinders with two cracks, the buckling behavior is
influenced not only by the buckling behavior of each individual
crack but also by the interaction between the cracks. By increas-
ing the separation between the two cracks above a particular
separation distance called the maximum interaction distance,
crack-interaction effects on the buckling load vanish. The max-
imum interaction distance in the two basic cases of two long-
itudinal cracks with co-centered (i.e., parallel offset) or collinear
orientations was shown to decrease by reducing the size of the
two cracks or the thickness of the shell. Finally, the case of a
cylindrical shell with multiple cracks with and without interac-
tion was studied. If the crack separation distances are all larger
than the maximum interaction distance, then the buckling beha-
vior is regulated by the largest crack. In this case, the buckling
load of the cylinder is approximately equal to the buckling load of
a counterpart single-cracked cylinder containing only the largest
crack. The results provide insight into the buckling behavior of
shells with defects and more specifically cracks.
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