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The authors introduce a new class of lattice materials, where a controlled simultaneous folding of the
lattice walls results in a significant size reduction while preserving the overall shape of the original
lattice. This reversible folding scheme results in 67 and 50% reduction in size at each level for lattices
with triangular and square grid topologies, respectively, while the design enables multiple levels of
folding to achieve a desired final size. The authors study the elastic properties and the phononic band
structure of the lattice at different stages of folding, using analytical and finite element methods. The
proposed concept provides new opportunities for the development of multifunctional deployable
structures through significant changes in the size and properties of lattice materials by folding.
The properties of traditional materials are primarily concerted programmability of a variety of properties and

determined by their atomic or molecular arrangements,
which are typically difficult to modify due to constraints on
sub-continuum forces in the material lattice and relatively
closely packed microstructure. Lattice materials, whose
structure is obtained through a tessellation of a fundamental
geometrical unit cell can be seen as analogs of natural crystals
at macroscale and, thus, serve as an excellent template for
metamaterial development.[1] More importantly, the meso-
level organization and abundant free space inside cellular
structures make imparting real-time geometrical changes in
their underlying structure (thus their overall properties) much
easier compared to traditional monolithic materials or
composites. Moreover, if the change in their size and shape
are brought about through a controllable mean, a systematic
control of their property can be affected, thereby, fostering
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responses.[2] Reflecting the importance of structural program-
mability, there has been a surging interest in recent times in
incorporating this concept across a number of scientific
disciplines including robotics,[3] foldable substrates,[4–6]

deployable structures,[7,8] advanced manufacturing,[9] lab-
on-a-chip systems,[10] and medical devices.[11]

In an early work, You And Pellegrino[12,13] proposed a
general concept for deployable structures based on a three
dimensional pantograph, that is, deployed and stiffened by
means of cables and applied it to the design of deployable
mast[12] and support structure for a large mesh reflector.[13,14]

There are also other technologies to deploy large booms
and masts for astrophysics missions’ applications,[8] such as
Telescopic and inflatable booms,[15] shape memory composite
booms,[16] and deployable truss structures,[17] as well as
deployable structures based on using scissor-like elements.[18]

More recently, designing foldable structures using origami
principles has attracted considerable attention.[19] Silverberg
et al.[4] developed a reprogrammable mechanical metamate-
rial that can be folded based on origami design principles, and
so its compressive modulus can be tuned reversibly. Same
concept has been used to propose programmable self-folding
structures[6,20] with applications in self-folding machines.[5]

The inherently low volume fraction and ordered tessellated
organization of lattice materials can be exploited to obtain
significant topological (and thus behavior) changes by folding
and unfolding of the individual segments of the lattice. In the
current paper, we introduce a novel self-replicating and
reversible folding scheme for lattice materials. This folding
scheme relies on the rotation of the segments that can be
achieved either unassisted or assisted with active actuating
units. This scheme can be envisioned on a 2� 2 tessellation of
erlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com (1 of 6) 1600646
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 square unit cells as shown in Figure 1a. The walls of the
unit cells are comprised of multiple one-dimensional sub-
segments connected through pin joints, which would allow
for their free relative rotation (See Supporting Information).
The folding scheme commences with opposite rotations of
adjacent vertices of each sub-grid square, as shown by the
colored arrows in Figure 1a-1. In the present study, rotations
have been applied manually, however, in principal it could be
done using servo motors or other actuators. As these rotations
progress, the entire lattice begins to morph to maintain
compatibility at the joints (Figure 1a-2). It is clear from this
figure that two of the opposing mid-points (pin-joints) of each
square begin to draw closer to each other, whereas the other
pair begin to separate from each other. Note that each point of
the mutually closing pair in each square simultaneously
serves as a point of mutually separating pair in an adjacent
cell, while the opposite is true for the mutually separating
pair. This transition continues until the mutually closing pair
of points meet, thereby, dividing each square in the original
lattice to two smaller squares at each folding level, as seen in
Figure 1a-3 (See video in Supporting Information). Note, the
distinct rotation of the axes of symmetry of the structure and
the unit cells by 45� at the end of the transition. This process
can be repeated (Figure 1a-4 and 1a-5) to yield further
reduction in the lattice area. There are certain distinctions
between the folding schemes of the square and triangular
grids, shown in Figure 1b. Compared to the case of a square
grid with one active hinge on each cell wall at each folding
level, every side of the triangular grid breaks into three equal
sized segments, requiring two active pin-joints on each cell
wall for each folding level. Furthermore, during the closure
phase of each folding level of a triangular grid a set of three
points, one hinge from each side of the triangles, touch each
other, resulting in more reduction in the size of the lattice
compared to a square lattice. Also, note the 30� rotation of
symmetry axes of the triangular lattice after each level of
folding.
Fig. 1. 3D printed specimens demonstrating the proposed folding scheme in square (a) and
effective area of the lattice at each level of folding, respectively.
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The described folding transitions result in 50 and 67%
reduction in the effective area of the square and triangular
lattices, respectively. This simple control on the final size and
shape of the lattice can be exploited to herald more complex
shapes and sizes, while still using relatively primitive base
lattice geometry. In Figure 2, we show an example of the
potential of this geometric transformation in expanding
complex large geometries (letters NU in the figure) from a
small base lattice. This figure shows schematics and the
corresponding experimental images of two different struc-
tures with square and triangle based lattices during two
orders of unfolding. This approach can be theoretically
utilized to find appropriate deploying plans for any given two
dimensional shape, as demonstrated for a tessellated lattice
representing the United States map in Figure 3. Although,
area reduction in the folding process does not depend on the
direction of rotation of the nodes (i.e., clockwise or counter
clockwise), it can affect the shape of the final folded structure.
For structures with relatively small number of mesh, the
sequence of rotation directionswill determine the shape of the
folded lattice, however, for large lattices the overall shape will
be nearly preserved during folding for all combination of
rotations (see the Supporting Information). In other words, for
an infinite lattice, the final shape does not depend on the
sequence of rotation directions, whereas for the case of a finite
lattice, the shape of the boundary of the final configuration is
indeed a function of the sequence of rotation directions. In the
supporting information, we present a numerical algorithm for
the design of reversible foldable lattice structures based on
square or equilateral triangular elements to achieve any target
geometry through folding. This high degree of geometrical
change can yield a correspondingly wide bracket of behavior.
In the following sections, we investigate the quasi-static
elastic and phononic behavior of square grid lattices during
different stages of folding and unfolding transition. While in
the rest of the paper, we focus on square grid lattices, similar
conclusions and discussions are applicable to lattice materials
triangular (b) lattices, which are folded twice, allowing 50 and 67% reductions in the
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Fig. 2. Schematic and counterpart fabricated specimens showing two lattices with square and triangle grids at different stages of unfolding demonstrating the reversibility of the
folding process. Complete unfolding of the triangular grid results in alphabet N, while unfolding of the square grid results in alphabet U (The design is inspired by the abbreviation
of Northeastern University–NU).
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with triangular grids. In calculating the quasi-static elastic
and phononic properties of these lattices, we assumed that
the structures are periodic and infinitely extended in
two-dimensional space (i.e., we employed periodic boundary
Fig. 3. Folding a tessellated lattice representing the United States map. Triangular grid

ADVANCED ENGINEERING MATERIALS 2017, 19, No. 2, 1600646 © 2017 WILEY-VCH Ve
conditions). Therefore, the sequence of rotation directions
does not affect the “representative volume element“ (i.e., RVE
or unit cell) (see Supporting Information) of the structures
and so the claculated properties.
was used and four levels of folding were performed.
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 First, we present a closed-form analytical model to link the
topology of lattice structure at different folding transition
stages to its elastic constants (i.e., Young’s modulus, Poisson’s
ratio, and shear modulus). Frame boundary conditions were
imposed on the joints to keep the structure fixed at desired
level of folding.We used the energymethod (i.e., Castigliano’s
second theorem[21]) for a representative square grid lattice
under in-plane loads, yielding the following closed-form
expression of elastic properties of the square grid lattice
during i-th level of folding:

Ex

Es
¼ 1

cos ui=2ð Þð Þ2= t=Lið Þ þ sin ui=2ð Þð Þ2= 8=5ð Þ t=Lið Þ3
� �� � ð1Þ

nxy ¼ �
sin ui=2ð Þð Þ2= 8=3ð Þ t=Lið Þ3

� �� �

cos ui=2ð Þð Þ2= t=Lið Þ þ sin ui=2ð Þð Þ2= 8=5ð Þ t=Lið Þ3
� �� �

ð2Þ

Gxy

Es
¼ 0:5

cos ui=2ð Þð Þ2= t=Lið Þ3 þ sin ui=2ð Þð Þ2= t=Lið Þ
� � ð3Þ

where Ex, nxy, and Gxy are, respectively, the Young’s modulus,
Poisson’s ratio, and shear modulus of the structure measured
within the x-y coordinate system aligned with the axes of
symmetry of the original structure (i.e., principal directions)
throughout folding transition. Es is the Young’s modulus
of the parent material, ui is the rotation of the pin-joints,
and t=Li is the thickness-to-length ratio of the cell walls at
the beginning of the folding (ui ¼ 0). Finally, the Young’s
modulus, along the directions parallel to lattice members
was calculated from the transformed compliance tensor of the
structure (see Supporting Information for more details). Note
that plugging ui ¼ 0 into Equations 1–3 will result in t=Li, 0,
and 0:5 t=Lið Þ3, which are the normalized Young’s modulus,
Poisson’s ratio, and shear modulus of a square grid with
thickness-to-length ratio of t=Li subjected to a uniaxial load
along the cell walls.[22] The results are graphically plotted in
Figure 4a,where the solid lines show the analytical calculations
while the markers represent FE results (see Supporting
Information for details). The response of the structure at the
beginning of the folding transition is characterized by a sharp
decrease in Young’s modulus due to a transition from a fully
stretching-dominated structure (i.e., structures, in which
stretching is the dominant deformation mechanism of cell
walls) at ui ¼ 0� (i.e., a squaregridwithanapplied loadalong the
cell walls) to a bending-dominated structure (i.e., structures in
which bending is the dominant deformationmechanism of cell
walls) at ui ! 90�. As the folding proceeds to higher levels, the
difference between theYoung’smodulus at ui ¼ 0� and ui ! 90�

decreases dramatically (e.g., more than two orders of magni-
tude for the first level of folding compared to one order of
magnitude for the third level). This behavior stems fromhigher
1600646 (4 of 6) http://www.aem-journal.com © 2017 WILEY-VCH Verlag GmbH & C
thickness-to-length ratio of the lattice at higher levels of folding,
lowering the difference of effective stiffness in the stretching-
and bending-dominated structures at ui ¼ 0� and ui ! 90�.
Moreover, since the Young’s modulus of stretching- and
bending-dominated structures is, respectively, proportional
to their thickness-to-length ratio and its cube,[23] higher folding
levels (i.e., greater thickness-to-lengthratio,where the thickness
is constant, but the length is shorter) will lead to a shift in the
entire profile of the Young’s modulus to higher values.

In addition to bearing loads, lattice materials can also
exhibit rich band structure property during the propagation of
small-amplitude elastic waves.[24] Thus, the proposed folding
scheme can also be used to tune the band structure[25] for
multifunctional applications. Here, we investigate the evolu-
tion of bandgaps during the folding transition of square gird
lattices. To this end, we assume the structure to be infinitely
extended in a two-dimensional space. We investigate the
propagation of small-amplitude elastic waves in the lattice
structures using FE method and Bloch wave analysis[26]

(see Supporting Information for details). In our numerical
simulations, we neglect the effects induced by the degrees of
freedom of the joints through imposing frame boundary
condition on the joints to keep the structure fixed at desired
stage of folding – same assumption used in calculating the
elastic properties. The lattice members were modeled as
Timoshenko beam elements[27] with rectangular cross sections
of unit depth. The constituent material was assumed to be
aluminum with Young’s modulus, Es ¼ 71GPa, Poisson’s
ratio, ns ¼ 0.33, and density, rs ¼ 2 700 kgm�3. The relative
density (i.e., area fraction: density of the structure divided by
the density of the parrent material) of the original square grid
was 8%. The frequency of the propagating wave, v was
normalized with respect to the first flexural frequency of a
simply supported beam, with length and thickness of those
of the original square grid, that is, V ¼ v=v0, where

v0 ¼ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Est2= 12rsl1

4
� �r

, where t and l1 are thickness of the

structure and length of the original square grid, respectively.
We quantify the topological change of the structure, using

the rotation of pin-joints at different levels of folding, u1, u2,
and u3. In Figure 4b, we present the evolution of bandgaps for
a square based lattice as the values of u1, u2, and u3 increase,
respectively, forfirst, second, and third levels of folding for the
range of frequencies 0 � V � 34:46. As expected, significant
variation of the band structure is evident between folding
levels and during the transition. The first folding level shows
the presence of distinct band gaps across a large spectrum of
frequencies at various stages of the evolution of geometry.
This behavior changes completely, as the level of folding
advances to the third level. In this level, band gaps disappear
completely at lower angles of lattice members and widen and
shift to higher frequencies.

The current study proposes a simple and reversible yet
effective way to change geometry of the lattice materials
dramatically in a controllable fashion. We showed that the
proposed folding scheme can be reversibly and numerously
o. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2017, 19, No. 2, 1600646



Fig. 4. (a) Young’s modulus (normalized with respect to the Young’s modulus of the original square grid) and (b) band structure frequency (normalized with respect to the first
flexural frequency of a simply supported beam with edge length and thickness of the original square grid) plotted against u1, u2, and u3 (change of angle between lattice members).
The relative density of the original square grid is 8%. The red dots on lattice configurations just before u1¼ 90�, u2¼ 90�, and u3¼ 90� denote the unconnected frame parts.
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repeated, until a desired shape of the lattice material is
reached. This size-changing concept provides an alternate
technique for controlling the underlying topology rapidly
and reversibly through simple collapse or expansion of the
base lattice. Such dramatic change of size points to potential
applications for deployable structures, which can
simultaneously benefit from the inherent lightweight and
multifunctional characteristics associated with lattice
architectures.

However, the main limitation of our proposed lattices is
that the hinges must be locked in place for the material to
perform structurally as presented, here, for tunable elastic and
phononic applications. One possible locking mechanism is to
use servo motors in the joints to fold or fix them as needed.
Another solution could be using electromagnets in joints and
turn them on/off selectively to perform the folding process.
However, using these method will add a limitation to the
mechanical performance of these lattices due to limitations on
electromagnetic holding forces and servo motors maximum
torque.
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