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Hexagonal honeycomb structures are known for their high strength and low weight. We construct a new
class of fractal-appearing cellular metamaterials by replacing each three-edge vertex of a base hexagonal
network with a smaller hexagon and iterating this process. The mechanical properties of the structure after
different orders of the iteration are optimized. We find that the optimal structure (with highest in-plane
stiffness for a given weight ratio) is self-similar but requires higher order hierarchy as the density vanishes.
These results offer insights into how incorporating hierarchy in the material structure can create low-density
metamaterials with desired properties and function.
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Hierarchically structured material systems are character-
ized by the existence of structure at different length scales
and often exhibit superior mechanical properties such as
enhanced stiffness [1,2], strength [2,3], toughness [4–6],
and negative Poisson’s ratio [7–9]. They are used in many
fields including polymers [10], composite structures
[11–13], sandwich panel cores [14,15], and biomimetic
systems [2,6,16]. Perhaps the simplest example of an object
whose stiffness is increased by structure is the simple
hexagonal honeycomb [17]: such objects are well known
to have relatively high stiffness for their low density. Recent
work has sought to improve the properties of such structures
by hollowing out the elements and replacing them with
repeating units [18]. Along these lines, we consider a new
family of honeycomb structures with a hierarchical refine-
ment scheme in which the structural hexagonal lattice is
replaced by smaller hexagons. This process can be repeated
to create honeycombs of higher hierarchical order (see
Fig. 1). As well as being a natural way to generate hierarchy,
a similar structure has previously been proposed as a natural
one for a two-dimensional soap froth to take [19–21] and is
reminiscent of micrographs of polymeric foam which
suggest two levels of hierarchy [2]. Such cellular solids
have previously been shown to have improved in-plane
stiffness and strength compared to the corresponding
regular honeycombs [1,22,23]. However, it is still unknown
whether such structures can be systematically optimized,
in particular by adjusting the number of hierarchies that
are used. In this Letter, the optimal configuration of
such hierarchical honeycombs in the sense of highest
elastic modulus is determined for various structural den-
sities using finite element simulation, scaling analysis, and
experiments.
The structural organization (a set of real numbers γi) is

defined by the ratio of the newly introduced hexagonal edge

length (li) to previous hexagon edge length (li−1) where i
varies from 2 to n (hierarchical order) (i.e., γi ¼ li=li−1). For
convenience, γ1 is defined as 2l1=l0 (see below). Some
geometric constraints on the hierarchically introduced edges
must be imposed to avoid overlapping with preexisting

FIG. 1 (color online). (a) Unit cell of regular (i.e., zeroth)
to fourth order hierarchical honeycombs fabricated using 3D
printing. The physical thickness of the structures is constant,
tn ¼ 2 mm, because of the limitations of the 3D printing. To
maintain the structure density, therefore, the size of this unit cell
increases as the order of the hierarchy increases. (b) Unit cell of
the hierarchical honeycombs with regular structure (left) and with
first order hierarchy (right). Here F is an arbitrary concentrated
force and N1 and N2 are the reaction forces at the midline.
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edges. For the nth hierarchical order (n > 1), 0 ≤ li ≤ li−1
and ln ≤ l0 −

P
n−1
i¼1 li, which can be written based on

structural organization parameters as

0 ≤ γn ≤ 1; and
Pn

i¼1

Qi

j¼1

γj ≤ 1; ð1Þ

which must hold for all hierarchical orders (n ≥ 1). For
simplicity, we assume that thewall thickness of tn is uniform
within a given structure; the relative density of the structure
compared to the material density ρs, i.e., ρ̄ ¼ ρ=ρs, can be
related to the length ratios fγig and tn=l0 via

ρ̄ ¼ 2
ffiffiffi
3

p
�

1þ
Xn

i¼1

Yi

j¼1

γj

�
tn
l0
: ð2Þ

This relation is used to adjust the thickness tn to maintain a
fixed relative density ρ̄ as the number of hierarchies, and the
values of γi, are varied.
A hexagonal honeycomb network extending spatially to

infinity has sixfold rotational symmetry. Classic symmetry
arguments show that threefold symmetry is enough to
guarantee an isotropic in-plane linear response for a two-
dimensional solid [24]. The macroscopic in-plane elastic
behavior of a hexagonal honeycomb structure is therefore
isotropic and can be described by two elastic moduli, which
we take to be the Young’s modulus E and Poisson’s ratio ν.
In this Letter, we focus on characterizing the effective
Young’s modulus of the structure E, measured relative to the
Young’s modulus of the basic honeycomb structure E0. For
numerical and analytical analysis, the far-field uniaxial
stress in the vertical direction, σyy ¼ ð−2=3ÞF=l0, was
imposed to determine E. Here F is an arbitrary concentrated
force; the vertical stress is equivalent to applying a force F
in the vertical direction at the midpoint of every oblique
edge in the original (i.e., zero hierarchy) hexagons (refer to
the Supplemental Material for details [25]). To carry out the
analysis, the unit cell of the lattice [Fig. 1(b)] was selected to
represent the loaded lattice structure. Each beam in the
lattice can undergo stretching, shear, and bending.
In the bending dominated regime, the elastic modulus of
the first order hierarchical honeycomb can be written as
(see the Supplemental Material [25])

E1

E0

¼
ffiffiffi
3

p

4
fðγ1Þ

�
t1
t0

�
3

; ð3Þ

where E0=Em ¼ ð4= ffiffiffiffiffi
3Þp ðt0=l0Þ3 is the elastic modulus

of a regular honeycomb with the same density [17],
Em is the material elastic modulus, and fðγ1Þ ¼ffiffiffi
3

p
=ð0.75–1.7625γ1 þ 0.9γ21 þ 0.3625γ31Þ. The element

thickness ratio t1=t0 can be eliminated using Eq. (2), giving
the effective elastic modulus at fixed relative density as

E1

E0

¼
ffiffiffi
3

p

4ð1þ γ1Þ3
fðγ1Þ: ð4Þ

For higher order hierarchies, a finite element analysis
was implemented using MATLAB. This allowed us to
systematically change the geometry of the hierarchical
structure and, in particular, to find the geometry, i.e., the
set of fγig, that maximizes the effective elastic modulus of
the honeycomb at a given order of the hierarchy. Figure 2
shows the maximum effective elastic modulus, normalized
by the elastic modulus of a regular honeycomb with the
same density E0 ¼ 1.5ρ̄3Em, for different relative structural
densities (i.e., different values of ρ̄) as the order of the
hierarchy changes. As can be seen from this figure, the
maximum effective elastic modulus saturates above a
certain number of hierarchical orders. (We note that since
the lower order hierarchies are special case of higher orders,
the curves in Fig. 2 never reach a local maximum but
merely saturate.) For example, for 0.018≲ ρ̄≲ 0.026, the
maximum modulus is achieved for hierarchical orders ≥ 6.
This feature is confirmed by experiments in which unit cells
of hierarchical honeycombs with one to four hierarchies
were fabricated using 3D printing, maintaining a constant
relative density of 0.054 [see Fig. 1(a)]. The fabrication and
mechanical testing are described in the Supplemental
Material [25]. The experimentally measured effective
modulus shows good agreement with that predicted by
the numerical simulations, see the inset of Fig. 2.
Figure 2 also shows the behavior of hierarchical structures

in which the shear and stretching energies are eliminated
from the analysis (dashed curve), so that only the bending
energy remains. As the number of hierarchies increases, the

FIG. 2 (color online). Maximum achievable elastic modulus
(elastic modulus limit) of hierarchical honeycombs for different
relative densities ρ̄ and different hierarchical orders n, normalized
by the elastic modulus of a regular honeycomb of the same
density. The numerically computed elastic modulus of hierarchi-
cal honeycombs with bending only is shown by the dashed
curve. The elastic modulus limit found from our scaling
analysis [Eq. (5)] is shown by (triangle) points. The inset
shows comparison with the experimental results for hierarchical
honeycombs with a density of ρ̄ ¼ 0.054.
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effective elastic modulus of this “bending-only” structure
increases without bound (as expected since the curvature
increases without bound and hence so does the bending
energy). We therefore see that at high orders of hierarchy,
shear and stretching “soften” the structure: a balance that is
crucial in determining the optimal structure. Figure 3 shows
how the optimal structural organization, i.e., the set fγig,
evolves as the relative density changes. As can be seen from
this figure, as ρ̄ → 0, the values of γi → 1=2 and n increases.
We now seek to understand these numerical results using

a scaling analysis: we seek the maximum amplification of
the effective elastic modulus, when replacing a Y-shaped
structure by a hexagon. Based on Fig. 3, we assume that
γi ¼ 1=2 in the limit ρ̄ ≪ 1, which also ensures that the
resulting structure is self-similar. Substituting γ1 ¼ 1=2 into
Eq. (3) shows that the effective elastic modulus of the first
order bending-only structure [right of Fig. 1(b)] is 1.598
times that of the regular honeycomb [left of Fig. 1(b)].
However, for the first hierarchical order, only three of the

four triangles [shown in pink, Fig. 1(b)] bear the applied
load; hence, in calculating the elastic modulus of the
composite structure, we must average over the entire area
of the composite triangle. Consequently, the amplification
of the elastic modulus from one generation to the next is
3=4 × 1.598 ≈ 1.2. Iterating this calculation (and making
use of perfect self-similarity) we expect the elastic modulus
in bending, normalized by the regular honeycomb, to be 1.2n

where n is the hierarchical order. Figure 3 suggests that
the assumption of perfect self-similarity with γ ¼ 1=2
holds only for n ≥ 5; we take the numerically determined
value for the elasticmoduluswith n ¼ 5 and propose that for
n ≥ 5 the bending modulus Eb satisfies

Eb

E0

¼ 9.2 × 1.2n−5: ð5Þ

Equation (5) gives an upper bound for n > 5 and agrees
well with the limiting elastic modulus found from finite
element simulations as shown in Fig. 2. Using the elastic
modulus of a regular honeycomb E0=Em ¼ 1.5ρ̄3 [17],
Eq. (5) can be written in terms of the bulk modulus Em as

Eb

Em ¼ 5.58 × 1.2nρ̄3: ð6Þ
Note that Eqs (5) and (6) are valid as long as cell walls
undergo only bending, which is relevant to the limit of
thin beams, i.e., vanishing density. Therefore, to determine
the maximum achievable elastic modulus for each order of
hierarchy, we also need to compute the shear-based and
stretching-basedmoduli of the structure. For this purpose,we
seek the shear energy and stretching energy stored in the zero
and first order hierarchical honeycomb. For zero order, the
projection ofF perpendicular to the beam isF=2. The stored
shear energycanbewritten as ½1=ð8= ffiffiffi

3
p Þ�rF2=ðEmρ̄Þ,where

r ¼ 2ksð1þ νÞ, ν is the Poisson’s ratio of bulk material, and
ks is the shear coefficient (equal to 6=5 for rectangular cross
sections [26]). Therefore, the corresponding stiffness is
ksh0 =E

m ¼ ð4 ffiffiffi
3

p
=rÞρ̄. For the first order (γ1 ¼ 1=2), all

the beams have the length l0=4. The reaction forces at the
midline are shown asN1 andN2 [Fig. 1(b)]. The shear energy
is determined as (

ffiffiffi
3

p
=8Þ½r=ðEmρ̄Þ�ðF2 þ N2

1 þ 5N2
2Þ. As

N1 þ N2 ¼ F, minimizing the energy with respect to N1

yields N1 ¼ 5F=6 and N2 ¼ F=6. Consequently, the shear
energy is ð11 ffiffiffi

3
p

=192ÞrF2=ðEmρ̄Þ, while the corresponding
stiffness is ksh1 =E

m ¼ ½32 ffiffiffi
3

p
=ð11rÞ�ρ̄. The shear modulus is

multiplied by the ratio ksh1 =k
sh
0 ¼ 8=11. As we saw in the

bending-only case, only 3=4 of the structure has its modulus
changed. So the shear-based modulus is multiplied by
ð3=4Þð8=11Þ ¼ 6=11 ≈ 0.545. The shear-based modulus
therefore takes the form

Esh

Em ¼ 2
ffiffiffi
3

p

ksð1þ νÞ 0.545
nρ̄; ð7Þ

where ks ¼ 6=5 for a rectangular cross section [26].

FIG. 3 (color online). Topology of the stiffest hierarchical
honeycombs at different relative densities. The results show
the values of γ corresponding to the optimum structure of the
hierarchical honeycombs at different relative densities. Maximum
achievable hierarchical order and selected topologies of the
stiffest hierarchical honeycombs in the specified relative density
range are also shown at the top.
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The above scaling relations show that if the order of
hierarchy increases, the bending-based modulus increases
while the shear-based modulus decreases. We expect that
the elastic modulus of the combined structure should be
optimal when Esh ∼ Eb, yielding

n ¼ ⌊−2.54 ln ρ̄þ c⌋; ð8Þ

where ⌊ · ⌋ is the floor function (since n is an integer).
The constant c can be found from numerical data as
−3.03. Figure 4(a) shows the optimum hierarchical order
for different structure densities ρ̄ and shows that the
results of our scaling analysis are in good agreement

with the results of finite element simulations especially
for small densities (R2 ¼ 0.93). Replacing the value
of n from Eq. (8) in the elastic modulus of Eq. (6)
gives the maximum reachable elastic modulus at each
density as

E=E0 ¼ c1ρ̄−0.46 þ c2; ð9Þ
where c1 ≈ 2.15 and c2 ≈ −3.19 can be found from
numerical data. Figure 4(b) shows the maximum achiev-
able elastic modulus as a function of relative density.
The results of scaling analysis are in good agreement with
finite element simulations, especially for small densities
(R2 ¼ 0.99). (In this analysis, we have neglected the
contribution of stretching energy in comparison with the
shear energy since the effective spring constant of shear is
softer than that for stretching in the limit of large n.)
Although our focus has been on optimizing the

modulus of the structure, our results also show that the
effective modulus can be tuned by varying ρ̄ and n.
Figure 5 shows these achievable elastic moduli for
n ≤ 10; the upper bound of this range (dashed curve)
shows the maximum achievable elastic modulus for
different densities, and is equivalent to that shown in
Fig. 4(b). As can be seen from this figure, increasing the
hierarchical order while preserving the structural density
can significantly increase the effective elastic modulus
of the hierarchical structure. Similarly, the maximum
achievable hierarchical level is increased by reducing
the structural density.
In summary, a new class of fractal-appearing cellular

metamaterials is introduced. Our results show that the
effective elastic modulus of the developed cellular material
can be increased significantly by increasing the hierarchical

FIG. 4 (color online). (a) The order of hierarchy that yields the
stiffest hierarchical honeycomb as a function of the relative
density. The results of numerical analysis (solid line) are shown
together with scaling analysis results [Eq. (8)] (dashed line).
(b) The limiting elastic modulus of the hierarchical honeycomb
versus the relative density. The results of numerical analysis
(circle markers) are shown together with scaling analysis results
[Eq. (9)] (dashed curve).

FIG. 5 (color online). Elastic modulus range for different order
of hierarchy n versus relative density. Dashed curve shows the
limiting elastic modulus of the hierarchical honeycomb for
specified relative density [Eq. (9)].
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order while preserving the structural density. The optimal
hierarchical level is also shown to be increased by reducing
the structural density. This particular case of hierarchical
refinement can be seen as a promising realization of
enhancing performance by adding structural hierarchy.
Moreover, the current work provides insight into how
incorporating hierarchy into the structural organization
can play a substantial role in improving the properties
and performance of materials and structural systems and
introduces new avenues for development of novel meta-
materials with tailorable properties.
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