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We present a numerical minimization procedure to determine the macroscopic ‘plastic col-
lapse strength’ of a tessellated cellular structure under a general stress state. The method is
illustrated with sample cellular structures of regular and hierarchical honeycombs. Based
on the deformation modes found by minimization of plastic dissipation, closed-form
expressions for strength are derived. The current work generalizes previous studies on
plastic collapse analysis of lattice structures, which are limited to very simple loading
conditions.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Strength and energy absorption capacity of lattice
structures are governed by buckling of the cell walls or
plastic yielding of cell wall material (Evans et al., 2001;
Evans et al., 1998; Ashby, 2006; Papka and Kyriakides,
1994; Jang and Kyriakides, 2009; Babaee et al., 2012).
However, the current state of the literature on collapse of
cellular lattice structures is limited to structures subjected
to simple loading conditions such as uniaxial, biaxial or
shear loading applied at special orientations (Gibson
et al., 1989; Gibson et al., 1982; Haghpanah et al., 2013;
Onck et al., 2001; Karagiozova and Yu, 2004; Zhu and Mills,
2000). In this article, we focus on plastic deformation, and
present a method that allows numerical and algebraic cal-
culation of plastic collapse strength under arbitrary states
of stress or strain. The presented method is based on min-
imizing the internal plastic dissipation inside a unit cell of
the tessellated structure (Chen et al., 2007). To illustrate
the method, two two-dimensional networks of rigid-plas-
tic beams are considered. First, a hexagonal network (hon-
eycomb) with sixfold rotational symmetry, and second, the
first iteration of the honeycomb structure in a hierarchical
refinement scheme in which all three–edge nodes are re-
placed with smaller, parallel hexagons defined by size ratio
c, with c ¼ 0 denoting a regular honeycomb. The latter
structure, also maintaining a microscopic sixfold symme-
try, is called first order hierarchical honeycomb (Ajdari
et al., 2012), see Fig. 1. The relations between macroscopic
stress and strain states and unit cell reaction forces and
displacements, respectively, are derived in Section 2 in a
convenient canonical position which is suitable for
threefold symmetrical structures. The minimization of
plastic dissipation inside the unit cell subjected to external
forces or displacements is detailed in Section 3. We then
exploit the observed unit-cell deformation patterns to de-
rive analytical expressions for strength, to permit efficient
computation and plotting. The results from the minimiza-
tion scheme and also the derived upper bounds of plastic
collapse are presented in Section 4. Lastly in Section 5, a
summary of the current work and conclusions are given.
2. Threefold definitions of stress and strain

We begin our analysis with threefold symmetric defini-
tions of both microscopic and macroscopic stress and
strain (note that for structures without a threefold symme-
try (e.g. square honeycomb) the conventional Cartesian
coordinate system can be used readily). To carry out the
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Fig. 1. (A) Schematics of regular and hierarchical honeycombs with one
level of hierarchy. (B) Images of regular and hierarchical (c ¼ 0:3)
honeycombs with L0 ¼ 2 cm fabricated using three-dimensional printing.
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analyses we select a unit cell, with associated tractions and
displacements, which tiles the plane to represent the
loaded lattice structure. The structural unit cell for our
hexagonal-based patterns encompasses one vertex of the
original hexagonal network, out to the midpoints of
the original hexagon sides (a distance L0=2), see Fig. 2(A).
The area associated with the unit cell is a triangle joining
the three hexagon center-points that surround this vertex,
with area 3

ffiffiffi
3
p

L2
0=4. The general state of stress is expressed

in terms of its normal components in the three in-plane
material directions a ¼ 0�; b ¼ 120� and c ¼ 240� :

raa; rbb; rcc . Given those three normal components, the
xy stress tensor can be written:
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Fig. 2. (A) Schematic of a hierarchical honeycomb where a unit cell of the str
hierarchical honeycomb.
where x and y axes are taken along the so-called armchair
(or ribbon) and zigzag (or transverse) directions.

We then examine the allowable external loads at num-
bered points 1, 4, 7 of the unit cell shown in Fig. 2(B). First
we argue that there are no moments applied at these
points: the 180� rotational symmetry of the tessellated
structure (and trivially the components of microscopic
stress) means that any upwards curvature at such a point
must become downwards curvature after the rotation,
and the only way these can be equal is to have the value
zero. Then, using the vertical cut line Da which intersects
horizontal sides with a spacing L0

ffiffiffi
3
p

, we deduce the value
of radial force Fa to be raaL0

ffiffiffi
3
p

, and similarly for radial
directions b; c. Note also that the arbitrary radial forces
Fa; Fb; Fc will not be in equilibrium so there must be
transverse forces Ga; Gb; Gc , defined as positive counter-
clockwise about the origin. Successively taking moments
of forces about pairwise intersections of Ga; Gb;Gc , we find
Ga ¼ ðFc � FbÞ=

ffiffiffi
3
p

, and cyclically.
Next, we consider relations between macroscopic strain

and relative displacements of the unit cell boundary
points. Given arbitrary radial and tangential displacements
of points 1, 4, 7, we can use rigid body displacements and
rotation to place the deformed unit cell uniquely in a
canonical position with the boundary points 1, 4, 7 still on
the a; b; c lines. In that unique placement, the boundary
point canonical radial displacements along the a; b; c lines
are named da; db; dc , where the segments 1–2, 4–5, 8–7
are generally no longer parallel to those lines. Since the
boundary loads are in equilibrium, the introduced rigid
body displacements and rotations do not affect the net
work.

Given da, the strain is uniaxial along a. Its magnitude is
the change in the unit cell x dimension divided by the ori-
ginal unit cell x dimension 3L0=4, in other words
�a ¼ 4da=3L0. Purely uniaxial strains in all three directions
can be superposed to define a general xy strain tensor:
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It can be shown that the contraction of stress with
strain, times unit cell area, times cell wall depth, equals
Fada þ Fbdb þ Fcdc , namely the work done on the unit cell
as it deforms. Transverse boundary forces do no net work
since transverse boundary displacements are zero.
3. Plastic collapse strength estimation

3.1. Numerical minimization of plastic work

According to the upper bound theory of plasticity, the
actual internal deformations of a rigid-plastic structure
subjected to given external displacements must minimize
the internal plastic work (Chen et al., 2007). In a network
of beams under macroscopic stress, all beams have the
maximum bending moment, and therefore the possibility
of a plastic hinge, only at their ends. Thus, for a 2D struc-
ture the degrees of freedom may be taken as the displace-
ments xi; yi and rotations Ni of each node i. The rotation of
each rigid-plastic beam connecting nodes i and j can be de-
fined uniquely from its end displacements as
~Rij ¼ ûij � ~Dij=Lij, where ûij is the beam unit vector pointing
from node i to node j; ~Dij is the vector displacement of
node j relative to node i, and Lij is beam length. Stretching
is determined as ûij � ~Dij.

The stretching work per unit depth for a beam of thick-
ness t and length Lij connecting nodes i and j with material
yield strength rY is calculated as rY tjûij � ~Dijj. We suppress
axial strain in our structure by elevating the axial collapse
strength, rY t, to about 1E6 times the plastic limit moment
divided by beam length, rY t2=4Lij. Therefore, the dissipa-
tion of interest is that at plastic hinges, which exist
wherever a beam rotates differently from an adjoining
node. If node i is the junction of three beams with rotations
Rij; Rik and Ril (as at nodes 2, 5 and 8), the plastic
dissipation at node i can be calculated as Wi ¼
Mo � ðjNi � Rijj þ jNi � Rikj þ jNi � Rilj) where Mo is the plas-
tic limit moment of the beam cross section. The nodal
rotations minimizing dissipation at a three-beam joint of
equal plastic hinge moment can be determined locally as
Ni ¼ medianðRij;Rik;RilÞ. For nodes that are junctions of just
two beams of equal plastic hinge moment with rotations
Rij; Rik (i.e. nodes 3, 6 and 9), the rotation of the node that
minimizes the plastic dissipation is equal to the rotation of
either beam (or to any rotation between those values), and
Wi ¼ MojRij � Rikj. Rotations of nodes 1, 4 and 7 are equal to
rotations of beam 1–2, 4–5 and 7–8, respectively since
there is no bending moment.

After eliminating nodal rotations as variables, the unit
cell of a regular honeycomb with fixed radial displace-
ments, da; db; dc , has only two degrees of freedom: the x
and y displacements of the center node. When a first order
of hierarchy is added, the twelve xi; yi displacements of six
internal nodes (i.e. nodes 2, 3, 5, 6, 8 and 9 in Fig. 2(A)) suf-
fice to compute the plastic work. Collapse strength analysis
proceeds as follows: define three radial boundary displace-
ments da; db; dc . Minimize the total dissipation over the
internal degrees of freedom to find WP

min. Since
WP

min ¼ Fada þ Fbdb þ Fcdc , (where the displacements are
known), possible failure loadings (Fa; Fb; Fc) are points on
a plane in (Fa; Fb; Fc) space, with intercepts Fa ¼WP
min=da,

etc. The envelope of sufficiently many of these planes con-
stitutes the convex failure surface. The above statements
apply equally to the stress and strain components raa

and �aa, etc., since these are proportional to Fa and da, etc.
Unfortunately this displacement-based approach is not

well adapted to the somewhat different problem of defin-
ing a ratio between load components – a desired direction
in radial force or normal stress space – and finding the
loading magnitude along that direction that causes col-
lapse. For determining the strength where normal stresses
(or equivalently, Fa; Fb; Fc) are applied to the structural unit
cell, a different approach may be employed. Now consider
that forces Fa; Fb; Fc , or more accurately forces exactly
proportional to these (i.e., kFa; kFb; kFc , where k is a dimen-
sionless multiplier) are applied, and the value of k is sought
at which failure occurs. This represents a force vector of
known direction but indeterminate magnitude in abc
space, and the task is to determine the value of the multi-
plier that will put the vector tip on the failure surface. If we
explored all choices for da; db; dc , and used the linear rela-
tions of the previous paragraph to solve for k from each
WP

min (i.e. finding the k value putting the force vector on
various failure-surface tangent planes) it is clear that the
correct value of k must be the least to be found by this ap-
proach. That is because the minimum length of the vector
along F ¼ ðFa; Fb; FcÞ, ending on a tangent plane, occurs
when that plane is tangent at the intersection of kF with
the failure surface. We therefore seek kmin ¼minðW=ðFada

þFbdb þ FcdcÞÞ, where the minimization is not only over
the twelve internal variables xi; yi as previously, but also
over the additional variables da; db; dc. Note, however, that
the minimized quotient is homogeneous of zero order in
the d vector, so a unique answer requires some kind of nor-
malization (for simplicity, we take da ¼ 1). Once kmin is
found, kminF may be taken as a point on the failure surface.
To perform this minimization in MATLAB, where both the
twelve interior displacements and the three external radial
displacements are variables, the fminsearch subroutine was
used. Since the absolute value function jf j essential to the
evaluation of plastic work has slope discontinuities making
convergence difficult, we adopted the expedient of approx-
imating it by a sequence of smooth functions jf ja, where a
is reduced incrementally from 2 to 1 in a hundred steps,
and the result of each step becomes starting point for the
next.

In Fig. 3 isometric views of plastic collapse surface in the
�raa �rbb; �rcc space for regular and hierarchical (c ¼ 0:5) hon-
eycombs obtained from the numerical analysis are shown.
The plots provide enough data for prediction of plastic col-
lapse strength of the structures under arbitrary 2D loading
conditions. Towards this goal, the geometry of 2D stress
states in the abc space deserves mention. It is well known
that the principal stresses S1 > S2 of arbitrary orientation,
h, map onto Mohr’s circle in the rxx; ryy; sxy space. Similarly,
they map onto a circle parameterized by h in the
raa; rbb; rcc space. The origin of this circle is a distanceffiffiffi

3
p
ðS1 þ S2Þ=2 along the ð1;1;1Þ hydrostatic axis. The circle

lies in a deviatoric plane perpendicular to ð1;1;1Þ direction
and has a radius of

ffiffiffi
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p
ðS1 � S2Þ=

ffiffiffi
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. When hydrostatic load-
ing is tensile, the angle defined by three points: (1) the
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Fig. 3. Plastic collapse surface in the abc stress space for (A) regular (c ¼ 0) and (B) hierarchical honeycomb (c ¼ 0:5). Stresses are normalized according to
�r ¼ ðr=rY Þ=ðt=L0Þ2. The solid lines (�ra ¼ �rb ¼ �rc) represent the equi–biaxial state of stress in the abc space. The inset shows the plastic deformation
mechanism for the unit cell of a regular honeycomb.
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mapped point on the circle corresponding to state of
stress; (2) the origin of the circle; and (3) the closest point
on the circle to the positive raa axis, is equal to �2h, where
h is the angle in xy space between the greatest principal
stress (S1) and x (or a) axis. In general any fixed proportion
between principal stresses S1; S2 (e.g., S2=S1 ¼ 0 implies
uniaxial stress) represents a cone from the origin, centered
along the ð1;1;1Þ axis with a vertex half angle of
arctan 3=ð2

ffiffiffi
2
p
Þ � jðS2 � S1Þ=ðS2 þ S1Þj

� �
.

3.2. Upper bound estimation of plastic collapse

While the numerical results can be used for direct con-
struction of the failure surface, the observed deformation
modes can be also used to derive analytical formulae of
collapse strength. For regular and hierarchical honey-
combs, the modes of deformation found numerically for
different geometries and many loadings were examined.
Each collapse mechanism turned out to be a single degree
of freedom bar-hinge mechanism, with only enough hinges
to permit deformation. With an expectation that these
modes are the only ones to be activated by any loading,
we algebraically calculated the external work for each
deformation mode under arbitrary loading, and used the
equality of external and internal work to give a relation be-
tween load components at failure. The inner envelope of
these algebraic relations provides the failure surface.

For a regular honeycomb structure the plastic deforma-
tion mechanisms involve one plastic hinge at the inner end
of any of the three beams constituting the unit cell. Inset of
Fig. 3(A) shows the deformed shape of a unit cell with
one plastic hinge at the inner end of the beam along 0�.
By equating the expression of plastic dissipation at a
hinge, rY t2=4� da, to external work, jFc � Fbj=

ffiffiffi
3
p
� L0=2

�da, the external forces causing collapse must satisfy
jFc � Fbj ¼

ffiffiffi
3
p

=2� rY � bt2
=L0. Repeating this procedure

for the two other beams, the set of equations for plastic
collapse of the regular honeycomb structure is that any
one of jFa � Fbj; jFa � Fcj; jFb � Fcj equals
ffiffiffi
3
p

=2� rY�
bt2

=L0, which describe a hexagonal prism in the abc stress
space - see Fig. 3(A). The infinite extent of the failure prism
along the ð1;1;1Þ direction implies that the regular honey-
comb structure will not collapse under equi–biaxial
loading. This is reasonable, since regular hexagonal honey-
comb can sustain such loading with purely axial forces,
and beam axial plastic collapse is suppressed in the results
presented here by assigning infinitesimal thickness to the
beams inside the unit cell. By intersecting the cone repre-
senting uniaxial stress of arbitrary orientation with the
prism corresponding to the failure surface of a regular
hexagonal honeycomb, one can obtain a simple relation-
ship for estimating collapse strength of a regular honey-
comb under uniaxial loading, rc , at any angle h:

ðrc=rYÞh ¼
ffiffiffi
3
p

3 cos 2h0 � p
6

� � ðt=L0Þ2 ð3Þ

where h0 is the remainder (positive) of division of h by p=6.
The collapse strength of regular honeycomb structure
under pure shear loading, sc , at an angle h can be similarly
found and expressed by

ðsc=rYÞh ¼
ffiffiffi
3
p

6 cos 2h00 � p
6

� � ðt=L0Þ2 ð4Þ

where h00 is the remainder (positive) of division of
(h� p=12) by p=6.

For first order hierarchical honeycombs, based on the
numerical investigation just five plastic hinge mechanisms
appear to govern collapse of a hierarchical honeycomb for
all macroscopic state of loading and for all geometries. The
dominant mechanisms of collapse are shown in Table 1.
The deformed unit cell is shown by dashed lines and the
plastic hinge locations are indicated by red dots. For each
deformation pattern an arbitrary piece of the unit cell
may be considered ‘grounded’. Since the unit cell has
threefold symmetry, we do not show the equivalent
deformation patterns derived by rotations of 2p=3. Each



Table 1
Dominant mechanisms of plastic collapse for hierarchical honeycombs shown for a structural unit cell which are determined from numerical analysis. The
locations of plastic hinge for each mechanism are marked by red bullets. The deformed unit cell walls are shown by dashed lines.
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collapse mechanism turns out to be a single degree of free-
dom bar-hinge mechanism, with only enough hinges to
permit deformation. With an expectation that these modes
are the only ones to be activated by any loading, we
algebraically calculated the external work for each defor-
mation mode under arbitrary loading, and used the equal-
ity of external and internal work to give a relation between
load components at failure. For arbitrary Fa; Fb; Fc the vir-
tual work equality is most easily derived by considering
fixed or instant centers for the loaded, moving substruc-
tures. The inner envelope of analytical strength formulae
obtained from upper bound analysis coincides with the
numerically obtained plastic collapse surface given in
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version of this article.)
Fig. 3(B). Fig. 2 of the supplemental material illustrates
the deformed configurations of the first order honeycomb
structure according to the mechanisms given in Table 1.

3.3. Finite element analysis

The finite element method is used here to validate
strength estimates from the upper bound expressions
and the minimization code. 2D rigid-plastic beam element
models of the unit cell were constructed using the finite
element software ABAQUS. Each cell wall consisted of
100 elements. These were subjected to external load sets
derived from arbitrary states of macroscopic stress. Plastic
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collapse under increasing external loads was recognized by
large displacements and the failure to converge.

4. Plastic collapse strength under various loadings

Given the bounding algebraic relations between abc
stress components at failure, the failure condition for any
desired state of loading is easily found. Fig. 4 illustrates
the normalized value of first principal stress, �S1, causing
plastic collapse as a function of loading direction for three
different honeycomb structures under three different ratios
of principal stresses, �S2=�S1 ¼ 1;0;�1. These stress ratios
correspond to states of uniaxial, equi-biaxial and pure shear
loading, respectively. For each polar plot, the radial value
denotes the magnitude of normalized first principal stress,
S
�

1, causing plastic collapse and the angular value represents
the first principal stress angle, h, as shown in Fig. 4. Stresses
are normalized according to �S1 ¼ ðS1=rYÞ=ðt=L0Þ2. The upper
bound estimates of strength from analytical formula are
shown by red lines, with different lines corresponding to
different collapse mechanisms (see the supplemental
material for estimations of strength and deformed configu-
rations based on each collapse mechanism.) The inner
envelope of the upper bound estimates of strength matches
the results from numerical minimization analysis, which is
marked by a black dashed line. There is also an agreement
between the strength estimates from the finite element
analysis, indicated by black bullets, and the minimization
analysis. A lower bound estimate for strength is also shown
by blue line, which is derived by elastic beam analysis and
in which the maximum elastic moment reaches the col-
lapse moment. This is a relatively weak bound because
the moment distribution with collapse at multiple points
usually does not match the elastic moment distribution.
The lower bound estimate of strength is detailed in the sup-
plemental material. For special cases of c ¼ 0 or �S1 ¼ �S2 the
results from upper and lower bound analyses coincide,
therefore the plotted result presents the exact value of plas-
tic collapse. Moreover, the plots of collapse strength versus
orientation have a twelvefold symmetry for regular (c ¼ 0)
and the hierarchical honeycomb with c ¼ 0:5. This results
in equal plastic collapse strength in x and y directions.
The numerical method can be used to obtain a full map of
plastic collapse describing the plastic collapse of the lattice
-1-1 10.50-0.5
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Fig. 5. Contours showing the magnitude of first principal stress causing plasti
various ratios of principal stresses, �S1= �S2, and loading direction, h. Stresses are n
structure under various loading conditions. Fig. 5 shows
contours for normalized value of first principal stress
causing plastic collapse in regular and hierarchical hon-
eycombs (c ¼ 0:5) as a function of loading direction, h,
and ratio of principal stresses, �S2= �S1, obtained from
upper bound analysis. Taking into account the reflection
and rotational symmetries a stress orientation range of
p=6 is sufficient for numerical trials. As the value of
�S2= �S1 approaches 1 (equi-biaxial loading) the collapse
strength of regular honeycomb increases by orders of
magnitude since it is stretching-dominated (Gibson
et al., 1989; Gibson et al., 1982). However, hierarchical
honeycombs have a bending-dominated plastic collapse
under all states of loading, due to the two-edge nodes
in their lattice structure. For plotting the figures, the
intersections of cones of fixed principal stress ratio in
the abc space with the failure surfaces from different
mechanisms and the numerical method were obtained
as closed curves. The loading intensity at each point
on the curve corresponding to a loading direction is
proportional to the distance to cone vertex (i.e. origin).

5. Summary and discussion

A numerical scheme is proposed to obtain the plastic
collapse mechanism and strength of cellular structures
under arbitrary loading conditions. The method mini-
mizes the plastic dissipation inside the unit cell of the
structure under given state of loading, and is illustrated
for regular and hierarchical honeycombs. The proposed
method is also used to obtain closed-form formulas of
plastic collapse strength, enabling us to obtain a com-
prehensive plastic collapse surface for the lattice struc-
ture. Based on an underlying hexagonal network,
regular and hierarchical honeycombs have sixfold sym-
metry in their in-plane properties. For linear properties,
such as linear elastic behavior, or thermal conduction
along network segments, this means isotropy (Love,
1920), but for nonlinear properties this simply means
sixfold symmetry. For the cases of c ¼ 0 and c ¼ 0:5,
however, the failure surface of the material plotted in
the abc stress state happens to exhibit sixfold symme-
try; this results in a twelvefold symmetry in plots of
strength versus loading angle. If a lower-symmetry
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material is investigated (e.g. a vertically squashed hex-
agonal network), the same plotting conventions will be
informative, although the symmetry will be lost.

The periodic boundary conditions impose no con-
straints on deformations of the unit cell of regular and
hierarchical honeycombs based on the defined geometry
of the unit cell in this article. This means that for every
arbitrary set of displacements of outer nodes of the unit
cell (i.e. nodes 1,4,7 in Fig. 2(B)), a tessellated structure
with no gap or beam overlap can be achieved by assem-
bling the unit cells and their 180� rotated counterparts
next to each other. When this is the case, simply the
minimization of the plastic dissipation function over no
constraints is performed. However, for unit cells that are
constrained by periodic boundary conditions, the minimi-
zation of plastic dissipation inside the unit cell should be
performed over the deformation of all (i.e. internal and
external) nodes of unit cell which are constrained by peri-
odic boundary conditions on the external nodes (for
numerical implementation in MATLAB see help section
‘finding the minimum of constrained multivariable
functions’).

Based on the numerical analyses, the upper bound
theorem of plastic collapse provides a more accurate
estimation of plastic collapse strength of lattice struc-
tures compared to the lower bound theorem. This can
be attributed to the possibility of considering multiple-
hinged collapse mechanisms for the unit cell in the
upper bound analysis as opposed to only one plastic
hinge for unit cell in the lower bound analysis. Multi-
ple-hinged collapse mechanisms are most likely the ac-
tual mechanisms of collapse for relatively more
complex unit cells of lattice structure, as seen for first-
order hierarchical honeycomb from the minimization
analysis. For a regular honeycomb lattice with only one
plastic hinge in its dominant mechanism, the upper
bound and lower bound theorems yield identical results
under all states of loading. Given the fact that possible
mechanisms of collapse for a unit cell of a structure
are not mathematically finite, the numerical minimiza-
tion method discussed in the current work is critical to
determine the dominant mechanism(s) of collapse under
various loading conditions. The proposed numerical
method provides a simple and efficient way to estimate
the collapse strength of 2D and 3D lattice structures un-
der a general loading condition, and thus has far reach-
ing implications in designing lightweight and
multifunctional structures.
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