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Babak Haghpanah, Ramin Oftadeh,

Jim Papadopoulos and Ashkan Vaziri

Department of Mechanical and Industrial Engineering,
Northeastern University, Boston, MA 02115, USA

Hierarchical structures are observed in nature, and
can be shown to offer superior efficiency. However,
the potential advantages of structural hierarchy are
not well understood. We extensively explored a
bending-dominated model material (i.e. transversely
loaded hexagonal honeycomb) which is susceptible
to improvement by simple iterative refinement
that replaces each three-edge structural node with
a smaller hexagon. Using a blend of analytical
and numerical techniques, both elastic and plastic
properties were explored over a range of loadings
and iteration parameters. A wide variety of specific
stiffness and specific strengths (up to fourfold
increase) were achieved. The results offer insights into
the potential value of iterative structural refinement
for creating low-density materials with desired
properties and function.

1. Introduction
Two-dimensional cellular structures (honeycombs)
generally offer desirable out-of-plane mechanical proper-
ties, making them attractive candidates for applications,
including thermal isolation, energy absorption, structural
protection and as the core of lightweight sandwich panels
[1–7]. The in-plane properties (e.g. stiffness, strength and
energy absorption) of such structures are generally far
inferior to their out-of-plane properties. There have been
recent efforts, however, to use the low in-plane stiffness
and auxetic properties of honeycombs in designing
flexible structures for applications that require high
deformation under targeted loads [8–10]. One example
of such design using compliant, highly deformable
honeycombs is flexible microelectro-mechanical-system
structures [11–13], where it is difficult to use sliding or
revolving joints (such as hinges and axes), mainly owing

2013 The Author(s) Published by the Royal Society. All rights reserved.
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to tribological issues, friction, wear and the low overall reliability of these elements.
Micromechanisms, as a result, should be designed as compliant or flexible-link mechanisms
[12,14,15]. Compliant honeycombs have also been suggested for use in microdevices as versatile
motion transformers [12], microcapsules [16] and motion detectors [13]. One other example of
such flexible design is the morphing structures in aircrafts using honeycombs with negative
Poisson’s ratio to control aeroelastic and structural performance of wings, blades and flexible
skins in response to changing flight conditions [17–24]. Other applications for two-dimensional
cellular solids benefiting from their unique in-plane properties are honeycombs as analogues
of spokes in non-pneumatic tyres [25,26], molecular mechanisms [27], core of curved sandwich
shells [28] and vibration absorbers for sandwich panels [29–31]. Considering these emerging
applications requiring specific combinations of strength and stiffness or compliance, one goal
of this study is to achieve a class of hierarchical structures with tailorable in-plane properties
that allow for adjusting properties, based on functionality; for instance, lowering the value of
stiffness while increasing strength to obtain a cellular material that is easily deformed but resistant
to rupture, or increasing both stiffness and toughness to enhance the impact resistance and
load-bearing capacity, etc.

In this context, we looked at a particular refinement scheme: replacing each three-edge node
with a smaller, parallel hexagon. This procedure is iterative, in that it produces additional three-
edge nodes that can likewise be replaced by even smaller hexagons. As such, it allows us
to comprehensively explore iteration parameters and loadings, with the benefits and insights
afforded by analytical machinery. The results are of interest in two ways: first, there is a possibility
that the results we find could be of actual use to achieve some tailored combination of stiffness
and strength. Second, we see this study as providing a conceptual model for ways of optimizing
hierarchical structure, and for ideas of what kinds of improvements may be possible.

This iteratively refined structure is a type of self-similar hierarchical honeycomb capable of
achieving higher specific in-plane uniaxial stiffness than the regular honeycomb [32]. The
introduced hexagons may have a different wall thickness than the underlying grid, and an overall
thickness re-scaling is used to maintain a fixed amount of material per unit area. This substitution
can be iterated to generate ever-finer structural detail, while preserving both the structure’s
average density, and its sixfold symmetry (a sufficient condition for in-plane isotropy in the linear-
elastic regime [33]). Figure 1 shows visual schematics and three-dimensionally printed samples
of first- and second-order hierarchical honeycombs with uniform wall thickness. Such structures
can exhibit an in-plane Young’s modulus of up to two and 3.5 times that of regular hexagonal
honeycomb structure of the same mass (density), respectively [32].

Here, we present investigations for the plastic collapse of hierarchical honeycombs where
arbitrary normal stresses are applied along x (the so-called armchair or ribbon direction) and y
(the so-called zigzag or transverse direction), without any xy shear loading (figure 2a). Analytical
studies on plastic collapse are limited to hierarchical honeycombs with just one order of hierarchy,
as additional refinement significantly increases the difficulties of analytical study. In finite-
element investigations, we present results for hierarchical honeycombs with up to four orders
of hierarchy for plastic collapse strength, as well as in-plane stiffness (i.e. effective Young’s
modulus). It should be emphasized that instability along with plastic collapse are the two
general collapse mechanisms in cellular structures [34–37]. For example, for regular hexagonal
honeycombs under in-plane biaxial loading along ribbon and armchair directions, instability
could—based on the relative density of the structure—become the driving mechanism of collapse
when both principal stresses are compressive. However, plastic collapse could be the failure
mechanism under loadings where at least one of the principal stresses is tensile [37]. In this paper,
we focus on studying the plastic collapse in hierarchical honeycombs, and additional studies are
required to investigate their buckling behaviour.

Our analytical models of plastic collapse strength for first-order hierarchical honeycombs
are based on upper- and lower-bound classical frame limit analyses [38,39] applied to a ‘unit
cell’ of the periodic structure (in crystallographic terms, this is in fact one half of the true unit
cell of the lattice). To establish their validity, we also carried out two kinds of finite-element

http://rspa.royalsocietypublishing.org/
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Figure 1. Hierarchical honeycombs. (a) Regular and hierarchical honeycombswith first- and second-order hierarchy. (b) Images
of hierarchical honeycombs fabricated using three-dimensional printing. (Online version in colour.)
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Figure 2. (a) A section of a first-order hierarchical honeycombunder biaxial loading,where the unit cell ismarked by bold lines.
(b) Free body diagram of the unit cell for both elastic and plastic analyses. Only half of the unit cell is analysed due to symmetry.
(Online version in colour.)

simulations of unit-cell plasticity, using beam elements with elastic-perfectly plastic moment-
curvature behaviour. Basic relations governing hierarchical honeycombs and the definition of
a unit cell for biaxial (x − y) loading are given in §2. Plastic collapse analysis methodology is
described in §3. Details of the finite-element models are given in §4. The results are presented and
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discussed in §5. First, results for first-order hierarchical honeycombs under uniaxial loading in
either the x- or y-direction, including the comparison between analytical models and simulations,
are presented in §5a. In §5b, the analytical collapse surface of a hierarchical honeycomb
under biaxial (x − y) loading is discussed, and compared with that of regular hexagonal
honeycomb. In §5c, the trade-off between specific strength and specific stiffness for different first-
order hierarchical honeycombs is discussed. Section 6 describes selected numerical results for
stiffness and strength in hierarchical honeycombs with orders 1–4, showing that a wide range
of stiffness and strength can be achieved by varying the hierarchical architecture of honeycombs.
Concluding remarks are provided in §7.

2. Hierarchical honeycombs: basic unit-cell relations
Figure 1a shows a schematic of the geometrical substitutions resulting in first- and second-order
hierarchical honeycombs. For each level i of hierarchy, two parameters, namely γi and ηi, are
used to define the substitution geometry. The length ratio, γi, is defined as the ratio of the new
hexagon side to the original hexagon side, Lo. The thickness ratio, ηi, is the ratio of new hexagon
wall thickness to the wall thickness of the remaining parts of the original hexagons. (After a
refinement step, this entire structure is reduced in thickness by a fixed fraction, while keeping
all ηi constant, so the total mass remains unchanged.) For example, for the first-order hierarchy
shown in figure 1a, γ1 = L1/Lo and η1 = t1/to. Here, Lo and to denote the length and wall thickness
of the underlying large hexagons, and L1 and t1 denote the length and wall thickness of the
introduced smaller hexagons, respectively. The replacement can be continued to any order of
hierarchy, n, as long as the inserted hexagons are not so large that they intersect each other or
previously created lower order hexagons (i.e. (

∑n
i=1 γi) ≤ 0.5 and (

∑n
i=j+1 γi) ≤ γj, 0 < j < n and

γi ≤ γj, i < j).
In much of this paper, we have limited our study to the plastic collapse strength of first-order

hierarchical honeycombs. Therefore, for the sake of simplicity, the geometrical parameters of a
first-order hierarchical honeycomb are named γ (= γ1) and η(= η1). The relative density (or area
fraction) of such honeycombs can be calculated as

ρ

ρs
= 2√

3
× to

Lo
× (1 + 2γ (2η − 1)) (2.1)

where ρ is the average density of the cellular structure and ρs is the wall material density.
The proportions of the wall material distributed in larger and smaller hexagons are equal
to (1 − 2γ )/(1 − 2γ + 4γ η) and 4γ η/(1 − 2γ + 4γ η), respectively. For a first-order hierarchical
honeycomb with η = 1 and γ = 0.3, 75 per cent of the mass of the structure is allocated to the
smaller honeycombs and only 25 per cent is in the remaining parts of the original hexagon.

Figure 2a shows a unit cell (circled) of the first-order hierarchical honeycomb, which is used
for plastic analysis of the infinite structure. In-plane biaxial loading is applied in the principal
structural directions x (parallel to a hexagon side) and y (perpendicular to a hexagon side). This
symmetrical loading allows us to consider just half of the unit cell for elastic and plastic analyses.
Owing to reflection symmetry about the x-axis of both loading and geometry, horizontal beams
are moment-free. Figure 2b shows the free body diagram of the unit cell, where external forces
F at an angle θ from the vertical are applied to the tips of the two oblique beams with thickness
to, and the reaction force 2F sin(θ ) is applied to the horizontal beam. Owing to the 180◦ rotational
symmetry of adjacent unit cells sharing an oblique member, those oblique-beam tips (midpoints
of the underlying hexagon edges) are also moment-free (see [32] for further discussion). Because
force F is applied to vertical and horizontal unit cell projected areas

√
3L/2 and 3L/2, respectively,

macroscopic normal stresses in the x- and y-directions, denoted by Sx and Sy, respectively, can be
obtained from

F × sin(θ ) = Sx ×
√

3L
2

and F × cos(θ ) = Sy × 3L
2

(2.2)

http://rspa.royalsocietypublishing.org/
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The angle, θ , of force F exerted on point 4 of the unit cell can be found from cot(θ ) = √
3Sy/Sx, and

thus parametrizes all loading directions in a biaxial stress space.

3. Plastic collapse of the first-order hierarchical honeycomb:
analytical modelling

The plastic collapse strength of the first-order hierarchical honeycomb was evaluated by classical
plastic limit analysis. At the collapse load (or limit load) of a structure, plastic deformation
can increase indefinitely under a constant load. This behaviour presumes that the material
exhibits rigid-perfectly plastic behaviour with its associated flow rule. For our application, we
took the moment versus bend angle at a plastic hinge to be a fixed ‘plastic limit moment’
(extensional yielding is discounted). It is also assumed that the loaded structure undergoes
small enough displacements that the slope change of structural elements can be neglected in
equilibrium calculations. This theory gives no prediction as to whether the actual nonlinear
load–displacement curve is concave or convex.

We first describe a ‘lower-bound’ plastic collapse analysis of the hierarchical honeycombs. The
lower bound is based on finding an equilibrium distribution of moments at or below the collapse
moment, which balances the applied load. For this, we use the elastic moment distribution of a
unit cell, as outlined in §3a. The ‘upper-bound’ plastic collapse stress is estimated analytically in
§3b. This is based on finding the minimum collapse load (as determined by virtual work) among
various mechanisms of structural deformation involving different possible locations of the plastic
hinges. In our analyses, out-of-plane loads are ignored.

(a) ‘Lower-bound’ plastic collapse analysis
In a frame structure consisting of loaded beams, if bending moments in equilibrium with external
loads are less than or equal to the plastic hinge moment of each beam cross section, then the
structure either will not collapse or will be just at the point of collapse under those external loads
[38]. The plastic hinge moment per unit depth of a beam with a rectangular section of thickness h
and yield stress σys is equal to σysh2/4 (where the nonlinear contribution of axial force to collapse
moment has been neglected). For our lower-bound limit analysis, we used the distribution of
bending moments found via elastic analysis. The lower-bound collapse load was taken as the
load sufficient to bring the calculated elastic moment in at least one cross section up to the plastic
hinge moment of that cross section. Because the hierarchical structure is not statically determinate,
the need for compatibility affects the actual collapse strength. While compatibility is maintained
in the purely elastic regime, just one plastic hinge may not permit ongoing plastic deformation.
Therefore, in general, this lower bound based on elastic analysis is expected not to quite reach the
true collapse strength.

The elastic analysis used to determine the elastic moment distribution in the first-order
hierarchical honeycomb under biaxial loading is an extension of that presented in Ajdari et al. [32]
for uniaxial loading with uniform thickness, η = 1. The description here is abbreviated for reasons
of space. Consider the free body diagram of the upper half of a structural unit cell as shown in
figure 3a. Owing to symmetry about the x-axis, only the upper half of the unit cell was modelled,
with loading by force F at angle θ . The rotation and vertical displacement of nodes 1–3 are zero
because of symmetry. The reaction forces and moments acting on nodes 1 and 2 are denoted by
N1, N2, M1 and M2. By applying force and moment balance laws to the subassembly, N2 and
M2 can be written as linear functions of N1, M1 and F. Therefore, the bending energy stored in
the subassembly can be expressed as a sum over all the beams: U(F, M1, N1) = ∑ ∫

(M2/(2EsI))ds,
where M is the bending moment at location s along the beam, Es is the local elastic modulus of
the cell wall material and I is the beam’s cross-section moment of inertia at location s (cell walls

http://rspa.royalsocietypublishing.org/
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Figure 3. (a) Elastic reaction forces and moments exerted on the upper half of unit cell for elastic and lower-band plastic limit
analyses. (b) Locations of potential plastic hinges in the upper half of unit cell for upper-band plastic limit analysis. (Online
version in colour.)

are considered to have rectangular cross section with thickness, t and unit depth; i.e. I = t3/12).
The horizontal beam connecting nodes 2 and 3 can be excluded from the energy sum because it is
moment-free.

Using Castigliano’s method to set the displacement and rotation of point 1 to 0 (i.e. ∂U/∂N1 = 0,
and ∂U/∂M1 = 0), one can obtain the values of reaction forces and moments at point 1, N1 and
M1, in terms of applied force, F:

N1 = F sin(θ )(0.231 − 0.260/γ ) + F cos(θ )(0.533 + 0.150/γ )

M1 = Fα sin(θ )(0.029 − 0.202γ ) + Fa cos(θ )(0.283γ − 0.017)
(3.1)

These results permit the calculation of elastic moments at all potential plastic hinge locations
(i.e. beam ends) in the unit cell; for any given value of θ , the location and magnitude of the greatest
moment can be determined as a function of F, and thus the lower-bound plastic strength can be
described as a point in Sx, Sy space. Some lower-bound results may be seen in figure 5.

(b) ‘Upper-bound’ plastic collapse analysis
According to the upper-bound theorem of plastic limit analysis for frame structures, the structure
must collapse if there is a compatible pattern of plastic deformation for which the rate of work
carried out by the external forces equals or exceeds the rate of internal dissipation [38]. Setting
boundary work equal to internal dissipation (by the virtual work principle) permits a calculation
of the necessary boundary load magnitude.

In the case of a structure with straight beams connected and loaded only at their ends
(guaranteeing that the maximum bending moment occurs only adjacent to a joint), all compatible
deformations of interest involve plastic hinges located where beams join nodes that make the
structure a mechanism. Then, the upper-bound approach for finding collapse strength is based on
comparing different mechanisms compatible with the given boundary displacements, and finding
the mechanism or combination of mechanisms that minimizes the required load.

The amount of plastic energy dissipation at each hinge is given by Mph × |dα|, where dα is the
change in angle across the plastic hinge, and Mph is the positive plastic hinge (limit) moment of
the cross section. A statement of virtual work for the plastically deforming structure is WE(F) =∑

Mi
ph|dαi|, where WE(F) is the work of external forces and the sum includes dissipation at all

plastic hinges. While our lower-bound calculations are expected to underestimate the collapse
strength, the upper-bound calculations are likely to be exact. (Because straight-beam structures
develop their hinges only adjacent to the finite number of joints, if all possible end-hinged
deformations are considered, the actual global minimum of the required load will be found.)

http://rspa.royalsocietypublishing.org/
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Table 1. Dominant deformation modes for the plastic collapse of first-order hierarchical honeycombs under uniaxial loading
in x- and y-directions. The corresponding plastic collapse loads in terms of geometrical parameters γ and η are also given for
each mode.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Primary basis mechanism

I
∣∣∣∣ Sxcσys

∣∣∣∣ = 1

4
∣∣∣1 − cot θ√

3

∣∣∣ (1 + 2γ (2η − 1))2(0.5 − γ )

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II
∣∣∣∣ Sxcσys

∣∣∣∣ = η2

2
∣∣∣1 − cot θ√

3

∣∣∣ (1 + 2γ (2η − 1))2(0.5 − γ )

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III
∣∣∣∣ Sxcσys

∣∣∣∣ = 3η2

|√3 cot θ (0.25 + γ ) − 0.75|(1 + 2γ (2η − 1))2

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IV
∣∣∣∣ Sxcσys

∣∣∣∣ = 3η2

|√3 cot θ (0.25 − γ ) + 6γ − 0.75|(1 + 2γ (2η − 1))2

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V µ 4II – III + 3IV

V
∣∣∣∣ Sxcσys

∣∣∣∣ = 3η2

4γ (1 + 2γ (2η − 1))2

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Six plastic hinge locations are possible for the upper-half unit cell of a first-order hierarchical
honeycomb. As shown in figure 3b, plastic hinges i, j, k, l, m are at the beam ends of the small
hexagon with thickness t1, and the plastic hinge n is at the lower end of the oblique beam with
thickness to. Examining subsets of these six hinges, a total of nine plastic deformation mechanisms
having just a single degree of freedom were identified for the half-cell, as given in tables 1 and 2.
The deformed shape and plastic hinges for each mechanism are shown by grey lines and bullets,
respectively. As shown later, mechanisms presented in table 1 are the actual deformation modes
under uniaxial loading in the x- or y-direction for all values of γ , η. The mechanisms presented in
table 2 are observed under various biaxial loading states oriented along x, y (i.e. Sy

c/Sx
c �= 0 or ∞).

Note that of nine plastic hinge mechanisms presented in tables 1 and 2, there are only four
independent deformation mechanisms, as explained below. The angular deformations at the six
possible hinges (i.e. increments of the six relative angles αi, αj, αk, αl, αm, αn, in figure 3b) form
a vector space. These deformation angles are not independent, because the five involved in the
closed circuit hexagon are subject to requirements of symmetry (i.e. zero vertical displacement

http://rspa.royalsocietypublishing.org/


8

rspa.royalsocietypublishing.org
ProcRSocA469:20130022

..................................................

 on June 6, 2013rspa.royalsocietypublishing.orgDownloaded from 
Table 2. Dominant deformation modes for plastic collapse of first-order hierarchical honeycombs under biaxial loading in
x- and y-directions. The corresponding plastic collapse loads in terms of geometrical parameters γ and η are also given for
each mode.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VI µ 12II – 3III + IV

VI
∣∣∣∣ Sxcσys

∣∣∣∣ = 9η2

8|√3 cot θ (0.25 − γ ) + 3γ
2 − 0.75|(1 + 2γ (2η − 1))2

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VII µ –4II + III

VII
∣∣∣∣ Sxcσys

∣∣∣∣ = η2

|√3 cot θ (0.25 − γ ) + 2γ − 0.75|(1 + 2γ (2η − 1))2

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VIII µ 3II – III

VIII
∣∣∣∣ Sxcσys

∣∣∣∣ = 9η2

4|√3 cot θ
(
0.25 + γ

2

) + 3γ
2 − 0.75|(1 + 2γ (2η − 1))2

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IX µ –III + 3IV

IX
∣∣∣∣ Sxcσys

∣∣∣∣ = 9η2

4|√3 cot θ
(
0.25 − γ

2

) + 9γ
2 − 0.75|(1 + 2γ (2η − 1))2

(
ρ

ρs

)2

Syc = cot θ√
3
Sxc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and rotation of node 1 lying on the line of symmetry). The changes in angles αi to αn,
therefore, satisfy

dαi + dαj + dαk + dαl + dαm = 0 (sum of angles in a loop)

4dαi + 3dαj + dαk + dαl = 0 (vertical displacement of node 1). (3.2)

Therefore, for the five variables dαi to dαm, only three can be chosen independently. (Note
that mechanism I is uniquely independent because it alone involves hinge n.) For mechanisms
I–V, the changes in angle at plastic hinges i − n, represented in the form [dαi, dαj, dαk, dαl, dαm,
dαn], are proportional to [0,0,0,0,0,1], [0,0,1,−1,0,0], [1,0,0,−4,3,0], [3,−4,0,0,1,0] and [2,−3,1,0,0,0],
respectively. Deformed configurations illustrating mechanisms I–IV are shown in figure 4. We
have selected I–IV as a convenient primary basis for all deformations, and tables 1 and 2 describe
each additional mechanism in terms of these.

The single degree of freedom mechanisms VI–IX shown in table 2 minimize load only
under some non-uniaxial loadings only (i.e. Sy

c , Sx
c �= 0). The change in angle at plastic hinges

i − n for these mechanisms is proportional to [0, 1, −3, 0, 2, 0], [1, 0, −4, 0, 3, 0], [0, 1, 0, −3, 2, 0],
[2, −3, 0, 1, 0, 0], respectively.
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(a) (b)

(c)
mechanism I mechanism II

mechanism III mechanism IV

(d)

Figure 4. (a–d) Deformed configurations of plastic collapse for hierarchical honeycomb according to the mechanisms I–IV,
involving different plastic hinge locations marked by bullets. (Online version in colour.)

Algebraic expressions for the normalized x-direction plastic collapse stress corresponding to
each mechanism are also presented in tables 1 and 2. These are derived as follows: parametrizing
each mechanism in terms of the plastic hinge angular deformation vector [dαi, dαj, dαk, dαl, dαm,
dαn] one can express the x, y displacements of node 4 with respect to node 3 as

dx = −
[√

3
4

,

√
3(0.5 − γ )

2
,

√
3(0.5 − γ )

2
,

√
3(0.5 − γ )

2

]
Lo · [dαi, dαj, dαk, dαn]

dy =
[(

1
4

+ γ

)
,
(

1
4

+ γ

2

)
,
(

1
4

− γ

2

)
,
(

1
4

− γ

2

)]
Lo · [dαi, dαj, dαk, dαn].

(3.3)

Then, the work of force F at angle θ is represented as W(F) = −F sin θdx − F cos θdy. Plastic
dissipation can be expressed as

PD = σys
t2
1
4

× (|dαi| + |dαj| + |dαk| + |dαl| + |dαm|) + σys
t2
o
4

× |dαn| (3.4)

Setting equal the expression of internal dissipation and external work, the critical force per unit
depth, Fc, required to deform each mechanism can be given as a function of θ .

For example, for mechanism I, parametrized as [0,0,0,0,0,1], the required force is obtained as

Fc = σyst2
o/4

Lo| sin(θ − π/6)|(0.5 − γ )
(3.5)

By substituting the expression for density (equation (2.1)) and the relationship between applied
biaxial stresses and load (equation (2.2)), the components of stress activating this mechanism are
found in terms of θ as∣∣∣∣ Sx

c
σys

∣∣∣∣ = 1

4
∣∣∣(1 − cot θ√

3

)∣∣∣ (1 + 2γ (2η − 1))2(0.5 − γ )

(
ρ

ρs

)2

Sy
c = cot θ√

3
Sx

c

(3.6)
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Figure 5. Normalized plastic collapse strength of uniform thickness hierarchical honeycombunder uniaxial loading in (a) x- and
(b) y-directions as a function of length ratio, γ . The plastic collapse load is normalized by that of a regular honeycomb of the
same density. The actual strength is on the curvesmarked by circles (where least upper bound happens tomatch unconstrained
finite-element analysis). (Online version in colour.)
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Figure 6. Normalized plastic collapse strength for the first-order hierarchical honeycomb under uniaxial loading in (a) x- and
(b) y-directions, as determined analytically from upper-bound analysis. Strength is normalized by that of a regular honeycomb
of the same density and plotted as a function of length ratio, γ , and thickness ratio, η. The numbered areas correspond to
different (least) upper-bound mechanisms from table 1. (Online version in colour.)

These expressions are entered into the first row of table 1. Mechanism I is the well-known simple
mechanism involved in the plastic collapse of a regular honeycomb structure [39].

Note that plastic collapse strength is proportional to the square of the relative density, which
is consistent with the classical relationships for strength of bending-dominated cellular structures
[39]. By numerically or algebraically finding the lowest calculated upper-bound strength, it is
possible to determine which mechanism controls the collapse behaviour for any specific structural
parameters and loading. Over the entire admissible range of η > 0, 0 ≤ γ ≤ 0.5, mechanisms I–VIII
yield the minimum collapse load at certain loading/geometry combinations, and therefore are
the dominant mechanisms over certain ranges of η, γ . (Mechanism IX never yields the minimum
collapse load and thus is not dominant under any biaxial loading or honeycomb geometry.) Under
uniaxial loading in the x-direction, only four mechanisms, I, II, IV and V are potentially dominant
over the entire admissible range of η and γ (figures 5 and 6). Similarly, for uniaxial loading in the
y-direction, the three potentially dominant mechanisms are I, II and III.
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4. Plastic collapse analysis: numerical simulations
Finite-element simulations were carried out to confirm the analytical upper-bound results of the
previous section. A unit cell of the structure was modelled and meshed (100 elements per beam)
using elastic—perfectly plastic two-node cubic beam elements (B23) in ABAQUS. Two kinds of
study were performed: (i) pre-selecting locations for plastic hinges according to each specific
deformation mechanism, thereby evaluating its associated collapse load; (ii) simulating plastic
collapse of the structure with plastic hinge locations unspecified, and finding a plateau in the
load. We limited these simulations to uniaxial loading in either x- or y-directions. The unit cell was
subjected to displacement-controlled compression in the direction of loading, with free expansion
in the transverse direction. Strength was defined as the stress associated with the level plateau
in the force–displacement curve. In the finite-element results presented in this paper, the elastic
modulus and Poisson’s ratio were taken as Es = 200 GPa and ν = 0.3, respectively.

(a) Finite-element simulation of individual plastic collapse mechanisms
To model each individual plastic collapse mechanism, we permitted plastic behaviour only at
certain hinges specified for that mechanism. To achieve this, individual elements at the desired
hinge locations (just the first or last of 100 elements along that beam) were given elastic-perfectly
plastic bending relations, whereas the remaining elements of that beam were specified as linear
elastic with the same modulus. This permitted direct comparison with the upper-bound analytical
result for that mechanism.

(b) Finite-element simulation of the general plastic collapse
Finite-element analysis (FEA) was also used to compute the deformation without mode pre-
selection. The simulations were analogous to the simulations described in the previous section
except that elastic/perfectly plastic bending behaviour was assigned to all elements, so hinge
locations could be found by the finite-element computations.

5. Results: plastic collapse of first-order hierarchical honeycombs
Here, the analytical and numerical results for plastic collapse strength of the first-order
hierarchical honeycomb under uniaxial (§5a) and biaxial loading (§5b) are presented. The trade-
off between stiffness and plastic collapse by introducing of the first level of hierarchy is discussed
in §5c.

(a) Plastic collapse under uniaxial x, y loading
The above-described analytical and numerical models were used to estimate the plastic collapse
strength under uniaxial loading in the x- and y-directions. The values of collapse strength in each
direction, after being normalized by the collapse strength of a regular honeycomb of the same
density, are denoted by S̄x

c = Sx
c/Sc and S̄y

c = Sy
c/Sc, where Sc denotes the collapse strengths of a

regular honeycomb. Note that both the x and y collapse strengths of a regular honeycomb equal
Sc = 0.5σys(ρ/ρs)2 [39].

The normalized uniaxial collapse strength (in both x- and y-directions) of the uniform thickness
(η = 1) first-order hierarchical honeycomb structure is shown as a function of γ in figures 5a and b,
respectively. These graphs present the results of four kinds of analysis:

— the solid lines show the analytical upper-bound strengths of each named deformation
mechanism shown in tables 1 and 2 (i.e. plots of the strength expression derived for each
table entry.);
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— the square points represent constrained FEA (§4a), and fall perfectly on the solid
analytical lines of the modes they represent. This agreement of manual analysis and FEA
for the same plastic hinges implies that both approaches were carried out without error;

— the dashed line shows the analytical lower-bound strength based on an elastic moment
distribution. It is nowhere above the solid upper-bound curve. Over the range of 0 ≤
γ < 0.36 for x loading, and 0 ≤ γ < 0.32 for y loading, it falls exactly on the upper-bound
curve for deformation mode I—such equality of upper- and lower-bound calculations
implies an ‘exact’ calculation of strength. But relative to deformation modes III and VII,
the lower-bound result is well below the upper-bound result. As explained earlier, we
anticipate that when lower- and upper-bound disagree, the upper bound is more likely
correct; and

— circular points represent ‘unconstrained’ finite-element results from simulating the actual
structural response (§4b). It may be observed that these numerical results fall precisely on
the lowest upper-bound curves.

In summary, we take both the analytical upper-bound method (when the deformation mode with
least required load for the given boundary displacement is selected), and the unconstrained FEA,
as providing equally accurate collapse strength estimations.

These results show that when η = 1, the structure fails according to deformation mode I over
the range 0 ≤ γ < 0.375 for x loading and 0 ≤ γ < 0.35 for y loading. For greater γ values, mode IV
is controlling for uniaxial loading in the x-direction, and III for uniaxial loading in the y-direction.
Note that the values of collapse strength according to some of the mechanisms in tables 1 and 2
are too great to appear in the figures as currently scaled. That is because the collapse strengths
according to mechanisms I and II approach infinity as γ approaches 0.5, because, in each case,
the displacement of the point on which the external force F acts (figure 3b) approaches zero in
the relevant (horizontal or vertical) direction. For any mechanism, the computed strength may
approach infinity if some value of γ can make the denominator vanish. Compared with regular
honeycombs, the plastic collapse strength of the first-order hierarchical honeycomb of uniform
thickness shows a maximum-normalized value of 1.3 and 1.15 in uniaxial loading in x- and y-
directions, occurring at γ = 0.375 and γ = 0.35, respectively. Also, the plastic collapse strength
reaches the minimum value of two-thirds at γ = 0.375 driven by mechanism III.

Figure 6 introduces the effects of thickness-ratio variation (i.e. varying η) on uniaxial x and
y strength, as calculated by upper-bound analysis. The plots represent the lower envelope of
strength for the previously defined mechanisms, for thickness ratios 0 < η ≤ 2, and length ratios
0 ≤ γ ≤ 0.5. The strength is again normalized by that of a regular honeycomb with the same
density. Under uniaxial loading in the x-direction (figure 6a), the four mechanisms I, II, IV and
V are the dominant mechanisms over the entire admissible range of η and γ —this was observed
by plotting the upper-bound strength expressions in the finite domain, and then was proved by
algebraic comparison of the derived strength expressions. The five boundary segments denoted
by A, B, C, D and E bordering the five regions are found by equating the strength expressions of
adjoining deformation modes to give:

A : γ = 3
10

0 < η <
1√
2

B : η = 1/
√

2 0 < γ < 3/10

C : η =
(

2γ

3 − 6γ

)0.5 3
10

< γ <
3
8

D : γ = 3
8

0 < η < 1

E : η =
(

8γ − 1
8 − 16γ

)0.5 5
16

< γ < 0.5.

http://rspa.royalsocietypublishing.org/


13

rspa.royalsocietypublishing.org
ProcRSocA469:20130022

..................................................

 on June 6, 2013rspa.royalsocietypublishing.orgDownloaded from 
The maximum-normalized plastic collapse load, S̄x
c = 1.6, occurs at the optimal values of

γ = 0.3 and η = 1/
√

2 ≈ 0.71, where curves A, B and C join. Along the η = 0.71 line, the normalized
plastic collapse load of structure is greater than 1 over a relatively wide range of γ (0 < γ < 0.4).
This contrasts with the uniform thickness structure (figure 5a) where for 0 < γ < 0.3 and 0.42 <

γ < 0.5 the collapse load of the structure is below 1.
For y direction uniaxial loading (figure 6b), the dominant mechanisms of plastic collapse are

I, II and III. The relationships defining the three border lines of the dominant mechanisms, as
denoted by F, G and H, can be derived as:

F : γ = 0.25 0 < η <
1√
2

G : η = 1√
2

0 < γ < 0.25

H : η =
(

4γ + 1
−16γ + 8

)1/2
0.25 < γ < 0.5

The maximum-normalized plastic collapse load, S̄y
c = 1.37, occurs at the optimal values of

γ = 0.25 and η = 0.71 at the meeting point of curves F–H.
Along the η = 0.71 line, the normalized y-direction plastic collapse strength exceeds 1 for

honeycombs with 0 < γ < 0.35, compared with the uniform thickness structure (i.e. η = 1) where
in the range of 0 < γ < 0.3 and 0.39 < γ < 0.5, the normalized plastic collapse strength of the
structure is less than 1.

These x, y strength results show that the collapse behaviour of the hierarchical honeycomb can
be improved by introducing different thickness ratios (i.e. departing from η = 1). The collapse
strength of hierarchical honeycombs with thickness variation in the x and y directions can be
increased by almost 23 and 22 per cent, respectively, compared with the hierarchical honeycomb
of uniform thickness.

(b) Plastic collapse surface under biaxial x, y loading
The foregoing collapse strength results were for uniaxial stress in either the x- or y-direction.
However, our analytical upper-bound calculations (which we take to be exact) also encompass
simultaneous application of differing S̄x and S̄y. As before, the values of biaxial collapse strength
in x- and y-directions are normalized by the x and y uniaxial collapse strength of a regular
honeycomb of the same density, respectively.

For particular values of γ and η, the least of all the analytical upper-bound strengths can be
plotted on a failure locus in S̄x, S̄y space. Figure 7 gives the convex normalized collapse boundary
for a first-order hierarchical structure, which is found by varying θ in the equations given in
table 1, and constructing the innermost boundary of their union. Curves are given for several
values of γ (0 = no hierarchy, 0.25, 0.31, 0.5) and two values of η (1 = uniform thickness and 0.71).

The plastic collapse surface of a regular honeycomb structure (γ = 0) forms two parallel 45◦
lines, because only the difference in S̄x, S̄y causes bending of the beams, which are taken to
have infinite axial strength. As expected, at η = 0.71, the plastic collapse surface is wider in
all directions than the case of η = 1. Each facet of the plastic collapse ‘polygon’ for any given
value of γ corresponds to a mechanism from table 1, but to minimize clutter these have not
been indicated. (For example, for the first-order hierarchical honeycomb with γ = 0.25 and η = 1,
the mechanisms [I,VI,VIII,I,VI,VIII,I] are dominant over entire range of biaxial loading, starting
from the horizontal axis intercept and continuing anticlockwise around the polygon to reach the
starting point.)

Hierarchical honeycombs demonstrate a bending-dominated behaviour under any biaxial
loading, not just those with SX �= SY. This is obvious from a simple geometrical argument: in a
hierarchical honeycomb, every other vertex of each introduced hexagon is a junction of only two
non-collinear beams, which experience bending under any direction of end loading.
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Figure 7. Plastic collapse surface of first-order hierarchical honeycombs under biaxial loading in horizontal and vertical
directions for different values of γ and (a) η = 1 and (b) η = 0.71. The plastic collapse load is normalized by that of a regular
honeycomb of the same density. (Online version in colour.)

(c) Stiffness-uniaxial collapse strength
Using the elastic analysis method described briefly in §3a, the effective Young’s modulus was
evaluated for a first-order hierarchical honeycomb including thickness variation:

E
Es

/(
to

Lo

)3
= (40

√
3)η3

(30 − 180γ + 360γ 2 − 240γ 3)η3 + 39γ − 216γ 2 + 356γ 3 , (5.1)

for a first-order hierarchical honeycomb with uniform wall thickness, η = 1, this yields,

E
Es

/(
to

Lo

)3
=

√
3

0.75 − 3.525γ + 3.6γ 2 + 2.9γ 3 . (5.2)

In figure 8, we have plotted the analytically determined (upper-bound calculation) normalized
plastic collapse strength versus the normalized Young’s modulus for honeycombs with varying
thickness ratio parameter, η. Plastic collapse strength and stiffness were normalized by the plastic
collapse strength and stiffness of a regular honeycomb of the same density. The plots are formed
by superposing a large number of space curves with coordinates Ē and S̄x

c or S̄y
c , each representing

a different value of η while γ is varied over its entire feasible range (0 ≤ γ ≤ 0.5). Figure 8a shows
the Ē, S̄x

c view, whereas figure 8b shows the Ē, S̄y
c view. Note that when γ reaches its limits, there

is no influence of η, so all the different space curves emerge from points representing γ = 0 and
0.5. As is seen most clearly for figure 8b, the curve for η = 1 emerges from γ = 0, switches to a
different mode at γ = 0.35, and ends at γ = 0.5.

The highest achievable value of normalized stiffness (observable in both figures) is 2.15,
obtained at γ ∼= 0.30 and η = 0.76. At that point the x and y normalized strengths are 1.46 and
1.21, respectively. The greatest normalized uniaxial x-direction strength is 1.60, at that point
the normalized stiffness is 2.14, and the y normalized strength is 1.17. By contrast, the greatest
normalized y strength is 1.37, and at that point the normalized stiffness is 1.93 and the x strength
is 1.37. Therefore, if we ask for equal x and y strength, the greatest normalized value seems to be
1.37, where normalized stiffness is 1.93. The presented graphs show that a wide range of in-plane
uniaxial stiffness and uniaxial collapse strength values can be obtained for first-order hierarchical
honeycombs by varying the geometrical parameters, γ and η.
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Figure 8. Plastic collapse strength versus stiffness of first-order hierarchical honeycombs under uniaxial loading in (a) x- and
(b) y-directions, respectively. The plastic collapse strength and stiffness are normalized by those of a regular honeycomb of the
same density. (Online version in colour.)
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by that of a regular honeycomb of the same density. (Online version in colour.)

6. Stiffness and plastic collapse of higher-order hierarchical honeycombs
Motivated by the increasing trend in the maximum values of stiffness and collapse strength
observed for first-order honeycombs in comparison with the counterpart regular honeycombs,
we extended our study to higher-order honeycombs. The analytical estimation of plastic collapse
strength was not practical because of the increase in the number of possible mechanisms of
collapse caused by introducing additional beams for each level of hierarchy. Instead, the finite-
element method explained in §4b was used on honeycomb unit cells to simulate the plastic
collapse of honeycombs with perfectly plastic material properties. Finite-element models with
varying geometries were created in MATLAB, and were solved using ABAQUS.

Figure 9a,b shows the normalized plastic collapse of second-order honeycombs with varying
γ1 and γ2 values and uniform thickness (η1 = η2 = 1) under uniaxial loading under x- and
y-directions, respectively. The maximum value of normalized collapse strength is S̄x

c = 1.5 and
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Figure 10. Plastic collapse strength versus stiffness for first-, second-, third- and fourth-order hierarchical honeycombs of
uniform thickness (η = 1) under uniaxial loading in (a) x- and (b) y-directions, respectively. The bullets specify the geometries
for each order of hierarchy resulting in the maximum attainable specific strength. Plastic collapse strength and stiffness are
normalized by those of a regular honeycomb of the same density. (Online version in colour.)

S̄y
c = 1.28 in x- and y-directions, occurring at (γ1, γ2) = (0.29, 0.15) and (γ1, γ2) = (0.29, 0.14),

respectively. The minimum value of normalized collapse strength along x- and y-directions is
0.5 which occurs at γ1 = 0.125 and γ2 = 0.125.

Figure 10a,b shows maps of normalized collapse strength versus normalized stiffness for
regular, first-, second-, third- and fourth-order honeycombs of uniform thickness in x- and
y-directions, respectively, obtained from the FEA. It should be noted that a nth-order hierarchical
honeycomb is a special configuration of honeycombs with higher order of hierarchy. For example,
a second-order hierarchical honeycomb is a special configuration of third-order hierarchical
honeycombs with, γ3 = 0. Thus, the entire coloured area in figure 10 displays the range of
achievable stiffness and strength with introducing four orders of hierarchy in the architecture
of a regular honeycomb. The graphs show the large increase in the achievable range of stiffness
and plastic collapse strength permitted by increasing the order of hierarchy. The enhancement in
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the normalized stiffness is more notable with the maximum-normalized stiffness increasing from
2 and 3.5 for first- and second-order hierarchical honeycombs to 5.3 and 7.1 for third- and fourth-
order hierarchical honeycombs. The maximum value of plastic collapse strength experiences an
increase of [30, 50 and 68%] in x- and [15, 28 and 30%] in y-directions for [first, second and
third] orders of hierarchy in comparison with a regular honeycomb of the same mass. Introducing
the fourth order of hierarchy does not result in significant increase in the maximum-normalized
strength in either loading condition.

7. Conclusions
A regular hexagonal honeycomb structure is iteratively modified at successively smaller length
scales to create a novel class of self-similar hierarchical honeycombs. The modification consists of
replacing each three-beam joint with a small hexagon, aligned parallel to the original honeycomb.
By adjusting the side length and side thickness of the small replacement hexagons, a rich class of
structures is created. First and second iterations of such hierarchical honeycombs with uniform
wall thickness were recently shown to provide up to two and 3.5 times the specific stiffness of the
regular honeycomb of the same density [32].

To understand the multi-axial limit strength of hierarchical honeycombs and its relationship
with the honeycomb architecture, first, we investigated the plastic collapse strength of first-order
hierarchical honeycombs using upper-bound analytical models. Finite-element simulations were
also carried out to validate the proposed analytical models. Depending on the substitution ratios
for length and thickness, the resulting structure can exhibit many possible stiffness-strength
properties relative to regular honeycombs of the same density, including (stiffer/stronger),
(stiffer/weaker) and (more compliant/weaker) properties. The significance of these results is
most evident when examining the amount of improvement, relative to the counterpart regular
honeycomb of the same mass per unit area, in both uniaxial stiffness and uniaxial limit strength
simultaneously.

Our study is unique in exploring (partly analytically and partly numerically) a substantial
region of parameter space. This includes length and thickness substitution ratios up to
fourth order of hierarchy, and the entire range of principal stress ratios. Beyond the specific
improvements afforded by this particular case of hierarchical refinement, we suggest that this
comprehensive study involving a truly iterative substitution scheme may serve as a useful
illustration of hierarchical behaviour. The findings of this study therefore suggest new avenues
for the understanding and development of novel materials and structures with desirable and
perhaps actively tailorable properties.
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