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Small and large deformation in-plane elastic response of a new class of hierarchical fractal-like honey-
combs inspired by the topology of the ‘‘spiderweb’’ were investigated through analytical modeling,
detailed numerical simulations, and mechanical testing. Small deformation elasticity results show that
the isotropic in-plane elastic moduli (Young’s modulus and Poisson’s ratio) of the structures are con-
trolled by dimension ratios in the hierarchical pattern of spiderweb, and the response can vary from
bending to stretching dominated. In large deformations, spiderweb hierarchy postpones the onset of
instability compared to stretching dominated triangular honeycomb (which is indeed a special case of
the proposed spiderweb honeycomb), and exhibits hardening behavior due to geometrical nonlinearity.
Furthermore, simple geometrical arguments were obtained for large deformation Poisson’s ratio of first
order spiderweb honeycombs, which show good agreement with numerical and experimental results.
Spiderweb honeycombs exhibit auxetic behavior depending on the non-dimensional geometrical ratio
of spiderweb.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The spider’s web is a highly efficient network of natural fibers
where the geometry plays a major role in unique properties such
as significant strength, toughness and reversible extensibility.
From the structural point of view, the current state of literature
on the spiderweb includes evaluation of the elastic properties of
spider silk (Blackledge et al., 2005a,b; Cranford et al., 2012;
Eisoldt et al., 2011; Koski et al., 2013; Qin and Buehler, 2013;
Termonia, 1994; Vollrath, 2010) and the out-of-plane mechanical
properties of the structure under various static, dynamic, and
impact loadings produced by wind, insects, or other natural
sources (Ko and Jovicic, 2004; Ortega-Jimenez and Dudley, 2013;
Pugno et al., 2013). In the current paper we incorporate the spider-
web structural organization into hexagonal honeycombs resulting
in a centrosymmetrical fractal-like pattern.

Recently, it has been shown that engineered self-similarity can
be exploited to control the mechanical properties of cellular struc-
tures (Ajdari et al., 2012; Banerjee, 2014; Fan et al., 2008;
Haghpanah et al., 2014b; Oftadeh et al., 2014a,b; Sun et al.,
2014; Sun and Pugno, 2013; Taylor et al., 2011; Vigliotti and
Pasini, 2013; Wegst et al., 2015). Haghpanah et al. (2013) carried
out a comprehensive study of hierarchical design which considered
multiple parameter enhancements of high order hierarchical hon-
eycomb lattices and showed that remarkably favorable combina-
tions of specific stiffness and specific strengths can be
simultaneously achieved via hierarchical organization. However,
unlike previously introduced geometries, the current topology
has the advantage of controlling the response through a critical
transition between two main structural responses in a cellular
solid, namely the stretching and bending dominated behaviors.
The transverse (i.e. in-plane) elastic modulus of a regular hexago-
nal honeycomb is governed mostly by the bending deformation
of cell walls and is related to the structure’s relative density
through the closed-form expression: E=Es ¼ 1:5q3, where E and Es

are respectively the Young’s moduli of the structure and cell wall
material, and q is the relative density of the structure (Gibson
and Ashby, 1997). On the other hand, in an equilateral triangular
honeycomb, the elastic deformation is dominated by the axial
extension or compression of cell walls, so that the resulting elastic
modulus is much higher than the regular hexagonal honeycomb
and is given as: E=Es ¼ ð1=3Þq (Gibson and Ashby, 1997).

To this end, we introduce spiderweb hierarchy by adding smal-
ler hexagons at the centers of cells in an underlying hexagonal net-
work and connecting the adjacent vertices by straight beams. This
procedure can be repeated at smaller scales to produce higher
orders of spiderweb structure, yet the thickness of the cell walls
is reduced simultaneously to conserve the overall relative density
of the structure. The resulting structural organization has an
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isotropic in-plane linear elastic response due to the preservation of
six-fold symmetry. Fig. 1 shows the evolution of a regular hexago-
nal honeycomb cell as the order of hierarchy is increased through
the introduction of successive spiderweb topology. The structural
organization of the spiderweb honeycomb at each order of hierar-
chy can be defined by the ratio of the newly added hexagonal edge
length (b for first order and c for second order spiderwebs), to the
original hexagonal edge length, a, as illustrated in Fig. 1 (i.e.,
c1 ¼ b=a and c2 ¼ c=a). For first order spiderweb honeycomb,
0 6 b 6 a and thus, 0 6 c1 6 1, where c1 ¼ 0 represents the equi-
lateral triangular grid and c1 ¼ 1 denotes the regular hexagonal
honeycomb structure where each cell wall consists of three sepa-
rate cell walls with a thickness equal to one third of the overall
wall thickness. For a second order spiderweb honeycomb,
0 6 c 6 b and thus, 0 6 c2 6 c1. The relative density (equal to area
fraction) can be given as:

q ¼ 6=
ffiffiffi
3
p
� ðt=aÞ n ¼ 0;1
q ¼ 2=
ffiffiffi
3
p
� ðt=aÞ � 3þ 2

Xn�1

i¼1

ci

 !
n P 2 ð1Þ

where t is the thickness of the cell walls and n is the order of
hierarchy. Using this equation, one can easily obtain the wall
thickness for a structure with specified geometry and relative
density. For instance, for a second order hierarchical structure

with c1 ¼ 1=6, c2 ¼ ð1=6Þ2, and 5% relative density, assuming the
original edge length to be equal to unity, Eq. (1) gives:
Fig. 1. Schematics showing the evolution of the unit cell in a regular hexa

Fig. 2. (A) First order spiderweb honeycomb under biaxial loading in x and y directions.
effective area of the unit cell used in strain energy calculations. (B) Free body diagram of
reader is referred to the web version of this article.)
0:05 ¼ 2=
ffiffiffi
3
p
ðt=1Þ ð3þ 2 ð1=6ÞÞ, and then the thickness is obtained

as t ¼ 0:01299.
The rest of the paper is organized as follows: Analytical models

based on energy methods were provided in Section 2 to determine
the closed-form expressions of small deformation Young’s modu-
lus and Poisson’s ratio of first order spiderweb honeycombs. The
analytical results were then compared with finite element (FE)
simulations. We provided numerical results for small deformation
Young’s modulus of second and higher orders of spiderweb hierar-
chy in Section 3. Furthermore, large deformation elastic response
of first order spiderweb honeycomb was investigated in
Section 4. Conclusions were drawn in Section 5.
2. First order spiderweb honeycombs under small deformations

2.1. Theoretical investigations

In this section, an analytical approach based on energy methods
(Boresi and Schmidt, 2002) is used to determine closed-form
expressions for small deformation in-plane elastic moduli
(Young’s modulus and Poisson’s ratio) of the first order spiderweb
honeycomb. The cell walls of the structure were assumed to have
an isotropic linear elastic behavior with the Young’s modulus, Es.
A six-fold symmetry seen within the structure makes it to exhibit
macroscopic isotropy in the in-plane elastic behavior (Christensen,
1987). Therefore, for complete characterization of the in-plane
elastic behavior of first order spiderweb honeycomb, we only need
to determine two elastic constants. These constants can be
obtained by employing any type of in-plane loading. Here without
gonal honeycomb into first and second order spiderweb honeycombs.

A unit cell of the structure is shown by red. The area bounded by dotted lines is the
the unit cell. (For interpretation of the references to color in this figure legend, the
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loss of generality, we chose biaxial loading in the principal direc-
tions of the material, x and y in Fig. 2, to obtain the Young’s mod-
ulus and Poisson’s ratio.

To find the Young’s modulus of a first order spiderweb honey-
comb described earlier, we first imposed a far field biaxial state
of stress (rxx and ryy in the x and y directions, respectively) as illus-
trated in Fig. 2(A). Next, we choose the triangular area shown by
dashed lines in Fig. 2(A) as a structural unit cell of the structure.
This implies that we can restore the entire structure solely by
translating and/or reflecting this triangle. Considering small defor-
mations, we can assume that the deformation is symmetrical due
to inherent geometrical symmetries of the structure as well as
the symmetry of the applied macroscopic stresses (i.e. rxx and
ryy). Therefore, the chosen unit cell can only be utilized for this
part of the study and cannot be employed for large and unsymmet-
rical deformation analysis. A free body diagram (FBD) of the unit
cell is shown in detail in Fig. 2(B). We assigned numbers (1 through
5) to the mid-points of the edges in the unit cell cut by the dashed
lines, L1–L3. The horizontal edge in the unit cell with length
a=2þ ða� bÞ (see Fig. 2(B)) is an axis of symmetry for the unit cell.
Thus, any pair of mirror points with respect to this edge experi-
ences the same internal forces and moments, so same numbers
were assigned to them. Consider the edges cut at their
mid-points 1 and 3. Due to the 180� rotational symmetry of the
structure and the components of macroscopic stresses, no bending
moment is transmitted by these edges at their mid-points. For
example, if the bar at point 1 bulges ‘downward’, rotating the
structure in the x–y plane by 180� makes point 1 to bulge ‘upward’
breaking the symmetry of the structure and loading mentioned
earlier. Next, considering the mid-points 1 and 2 and their corre-
sponding edges, we can conclude that no vertical forces are trans-
mitted by these edges through their mid-points, because that
would again break the requirements of symmetry. For example,
if the bar at point 1 transmits a ‘downward’ vertical force, reflect-
ing the structure with respect to the x axis makes the vertical force
to point ‘upward’. Finally, symmetry of the structure also implies
that points 4 and 5 transmit same forces and moments as shown
in the figure. This is because point 5 can be mapped onto point 4
through a half plane rotation of the structure and loading around
the intersection of lines L1 and L2 in Fig. 2(A), followed by a rigid
body translation along the line L2 (in the down right direction by
the magnitude a

ffiffiffi
3
p
þ b

ffiffiffi
3
p

=2).
The unknown forces and moments being transmitted through

the points 1–5 are summarized in Fig. 2(B). They include four
unknown horizontal forces, Fx1–Fx4, two unknown vertical forces,
Fy3 and Fy4, and two unknown moments, M and M0, thus represent-
ing eight unknown variables, which would be uniquely determined
through eight appropriate equations.

Note that based on the FBD of the unit cell (see Fig. 2(B)), two
out of three equations of equilibrium in the x–y plane, i.e.
RFy ¼ 0 and RM ¼ 0, are automatically satisfied. Thus, we only
need to take into account the x component of equilibrium equa-
tion; i.e. RFx ¼ 0. This gives us, Fx1 ¼ �ð2Fx2 þ 2Fx3 þ 4Fx4Þ. Then,
neglecting the contribution of shearing energy, the strain energy
stored in the unit cell can be written as a function of unknown
forces and moments as, U ¼ UðFx2; Fx3; Fx4; Fy3; Fy4;M;M0Þ, in which
the equations of equilibrium are already satisfied. Next, consider-
ing the cut line L1, the average force per unit length transmitted
through this vertical line is rxx, or in other words we can write
the following relation between rxx and the forces acting on L1:

rxx ¼
Fx1 þ 2Fx2

a
ffiffiffi
3
p ð2Þ

Similarly, ryy is related to Fy3 and Fy4 through the following relation:
ryy ¼
�ðFy3 þ 2Fy4Þ

3a=2
ð3Þ

Line L1 is an axis of symmetry for the structure. So, the unit
cell’s three horizontal lines which are cut in half by L1 through their
mid-points 1 and 2 must deform in a fashion in which their right
and left halves are mirror images with respect to line L1. This
implies that by fixing the coordinate system at the center of the
unit cell, point 2 must have zero displacement in the x direction
and zero rotation with respect to the z axis. These constraints
can be expressed mathematically using Castigliano’s theorem
(Boresi and Schmidt, 2002) as:

@U
@Fx2

¼ 0 and
@U
@M0 ¼ 0 ð4Þ

Again, symmetries seen within the structure impose identical
rotations of points 4 and 5. Since the direction of moment acting
at point 4 is opposite to the direction of moment acting on point
5, the total amount of rotation of these two points in the direction
of their moments must be equal to zero. Using Castigliano’s theo-
rem, this can be written as:

@U
@M
¼ 0 ð5Þ

To be able to reconstruct the structure using deformed unit
cells, points 3, 4, and 5, which are initially collinear must remain
so during deformation. It can be shown that this constraint will

be satisfied if the vector relation u3
!
¼ ðu4

!
þ u5
!
Þ=2 is satisfied, where

ui
!

is the displacement vector of point i and i ¼ 3;4;5. This equation
actually includes two separate equations, i.e. one in the x and the
other in the y directions as ux3 ¼ ðux4 þ ux5Þ=2, and
uy3 ¼ ðuy4 þ uy5Þ=2, where uxi and uyi are respectively the displace-
ments of point i (i ¼ 3;4;5) in the x and y directions. Using
Castigliano’s theorem, these relations can be expressed as:

@U
@Fx4

¼ 2
@U
@Fx3

@U
@Fy4

¼ 2
@U
@Fy3

ð6Þ

Eqs. (2)–(6), make a system of seven equations with seven
unknowns. We employed Matlab� (Mathworks Inc., Natick, MA)
to solve this system of equations using symbolic variables.

Note that under a uniaxial state of stress (i.e. rxx–0 and
ryy ¼ 0), the Young’s modulus of the structure is defined as
E ¼ r2

xx=ð2U0Þ, where U0 is the strain energy density stored in the

unit cell of the structure and is given as U0 ¼ U=ð3
ffiffiffi
3
p

a2=4Þ. Then,
closed-form relation for the Young’s modulus (to be normalized
by the Young’s modulus of cell wall material) is obtained as
follows:

E
Es
¼ 4

ffiffiffi
3
p

d3 f 1ðcÞ þ f 2ðcÞd2 þ f 3ðcÞd4

g1ðcÞ þ g2ðcÞd2 þ g3ðcÞd4 þ g4ðcÞd6 ð7Þ

where d ¼ t=a, c ¼ c1, and the functions appearing in the equation
are listed below:

f 1ðcÞ ¼ 6� 16cþ 12c2 þ 6c3 � 22c4 þ 24c5 � 12c6 þ 2c7

f 2ðcÞ ¼ 12� 23cþ 24c2 � 13c4 þ 4c5

f 3ðcÞ ¼ 6� 7c� c2 þ 2c3

g1ðcÞ ¼ 18c3 � 60c4 þ 72c5 � 36c6 þ 6c7

g2ðcÞ ¼ 36� 111cþ 88c2 þ 78c3 � 169c4 þ 132c5 � 60c6 þ 10c7
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g3ðcÞ ¼ 48� 100cþ 97c2 þ 6c3 � 59c4 þ 20c5

g4ðcÞ ¼ 12� 5c� 17c2 þ 10c3 ð8Þ

For the special case where c ¼ 0 (and d� 1), Eq. (7) reduces to
E=Es ¼ ð2=

ffiffiffi
3
p
Þd, which is equivalent to the relative Young’s modulus

of an equilateral triangular honeycomb reported in the literature
(Gibson and Ashby, 1997). Interestingly, for the other special case
where c ¼ 1 (and d� 1), Eq. (7) reduces to E=Es ¼ 4

ffiffiffi
3
p

d3, which
is three times the relative Young’s modulus of a regular hexagonal
honeycomb with thickness, t and edge length, a. This is because
when c ¼ 1, the structure geometrically transforms to a regular
hexagonal honeycomb with each cell wall consisting of three sepa-
rate cell walls with thickness, t, and three-fold bending rigidity.

As mentioned earlier, to completely identify the linear elastic
behavior of first order spiderweb honeycomb, we need to deter-
mine the Poisson’s ratio of the structure, m. We again use energy
methods and consider the same structure as in Fig. 2 under biaxial
state of stress. It should be emphasized that we ignored the contri-
bution of beam shear deformation in strain energy density of the
structure; however the bending and stretching terms are fully
considered.

Under equi-biaxial state of stress (i.e. rxx ¼ ryy ¼ r), the rela-
tion m ¼ 1� U0E=r2 can be used to obtain the Poisson’s ratio of
the structure (Boresi and Schmidt, 2002), where again U0 is the
strain energy density of the unit cell and E is the Young’s modulus
of the structure that was determined earlier (Eq. (7)). Therefore,
closed-form relation for the Poisson’s ratio of a first order spider-
web honeycomb can be derived as:

m ¼ 1� 4d2 f 1ðcÞ þ f 2ðcÞd2 þ f 3ðcÞd4

g1ðcÞ þ g2ðcÞd2 þ g3ðcÞd4 þ g4ðcÞd6 ð9Þ

We now rewrite the above equation as a function of the Young’s
modulus of the structure as (see Eq. (7)):

m ¼ 1� E=Es

d
ffiffiffi
3
p ð10Þ

Note that for two special cases where c ¼ 0 and c ¼ 1 (in both cases
take d� 1), Eq. (9) reduces to m ¼ 1=3 and m ¼ 1 which are the
Poisson’s ratio of equilateral triangular and hexagonal honeycombs,
respectively.

2.2. Numerical investigations

In this section, the finite element (FE) method was used to ver-
ify the analytical formulations of elastic response of first order spi-
derweb honeycombs derived in the previous subsection of this
paper. Commercially available FE software ABAQUS 6.11-2
(SIMULIA, Providence, RI) was used to carry out all the simulations
in this study. 3D models of first order spiderweb honeycomb struc-
ture were meshed using 4-node shell elements (S4R). A mesh sen-
sitivity analysis was also performed to ensure that the results are
not dependent on the mesh size. Cell walls were assumed to have
a rectangular cross section with unit length normal to the plane of
loading (i.e. normal to the x–y plane (see Fig. 2)) and the thickness
was adjusted to be consistent with the value of the relative density.
Linear elastic properties of aluminum were assumed for the cell
wall material with Es ¼ 70 GPa, and ms ¼ 0:3.

Fig. 3(A) shows the schematic diagram of the FE model con-
structed in ABAQUS for simulating static uniaxial loading on first
order spiderweb honeycomb. Vertical displacement of the top
and bottom nodes of the structure was coupled to the correspond-
ing rigid flat plates. A constant downward static displacement was
then assigned to the top plate, while the bottom plate was fixed. To
eliminate any boundary effects, periodic boundary conditions were
imposed to the structure on the right and left side nodes (Harders
et al., 2005). Also note that the horizontal displacement of an arbi-
trary node in the structure was constrained (i.e. set to zero) in
order to prevent rigid body motion of the structure in that direc-
tion. The out-of-plane degrees of freedom of the model were also
constrained to avoid the out-of-plane buckling of the structure.

Fig. 3(B) and (C) respectively show the normalized Young’s
modulus, E and Poisson’s ratio, m of first order spiderweb honey-
combs for all possible values of c1. The Young’s modulus is normal-
ized by the Young’s modulus of a regular hexagonal honeycomb
with same relative density, E ¼ 1:5Esq3. The results are presented
for three different values of relative densities, 1%, 5%, and 10%. In
the figures, solid lines represent the results obtained directly by
using the theoretical closed-form expressions derived in the previ-
ous subsection of this paper, and markers denote the FE results.
Excellent agreement between the analytical and numerical
approaches was observed even though the contribution of shearing
energy was neglected in the analytical method presented in the
previous subsection. For the values of c1 greater than c1 ffi 0:25,
the structure exhibits a bending dominated behavior (i.e.
E=Es / q3), with the normalized Young’s modulus independent of
the relative density E / q0. In contrast, for the values of c1 smaller
than c1 ffi 0:25, the honeycomb transforms into a stretching domi-
nated structure with E=Es / q or equally E / q�2. At c1 ¼ 0, the
normalized Young’s modulus is obtained as 2222, 89, and 22 for
the relative densities of 1%, 5%, and 10%, respectively. As the value
of c1 increases, since the structure transforms from stretching to
bending dominated one, its normalized Young’s modulus
decreases. At c1 ffi 0:35 the stiffness of the structure is about the
stiffness of a regular hexagonal honeycomb with same relative
density. After this point, the structure becomes more compliant
compared to a regular honeycomb. At the c1 ¼ 1 limit, the struc-
ture transforms into a regular hexagonal honeycomb with each cell
wall consisting of three separate cell walls. At this point the nor-
malized Young’s modulus can be obtained using Eq. (7) as,

4
ffiffiffi
3
p
ðq

ffiffiffi
3
p

=6Þ3=ð1:5q3Þ ¼ 1=9. Fig. 3(C) shows the Poisson’s ratio
of first order spiderweb honeycomb varying from 1=3 (equilateral
triangular lattice) to 1 (regular hexagonal honeycomb). With
decrease in the relative density, the Poisson’s ratio for a constant
value of c1 (c1–0) approaches unity.
3. Higher order spiderweb honeycombs under small
deformations – Young’s modulus

FE analysis was used to evaluate the small deformation elastic
response in higher order spiderweb honeycombs. Finite size, 3D
models of the structure were constructed in ABAQUS, and were
subjected to uniaxial static compression along y direction.
Material properties, FE models, boundary conditions, and loadings
are similar to those explained in Section 2. The overall relative den-
sity of the structures was fixed at 5%.

Fig. 4 shows the FE results on the Young’s modulus of second
order spiderweb honeycombs normalized by that of a regular
hexagonal honeycomb of equal relative density (E ¼ 1:5Esq3), ver-
sus c2. The results are plotted for four different values of c1 = 1/3,
1/2, 2/3, 5/6. Geometrically, the structural parameter c2 is bound
on the upper limit by the value of c1, i.e. c2 6 c1. Similar to the first
order spiderweb honeycombs, lower values of c1 result in higher
Young’s modulus at a constant value of c2. At a constant value of
c1, increasing the value of c2 decreases the Young’s modulus of
the structure since the bending compliance of the structure is
increased and less portion of the strain energy is stored through
the axial stretching of the beams.



Fig. 3. (A) Schematic of the finite element model of first order spiderweb honeycomb under in-plane compressive loading. (B) Normalized Young’s modulus, and (C) Poisson’s
ratio, versus c1 for honeycombs with three different relative densities (solid lines show the analytical estimates, markers show the finite element results).
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To investigate the Young’s modulus of higher order spiderweb
honeycombs, we introduced a scalar geometrical ratio, g, defined
as ci ¼ gi (e.g. c1 ¼ 1=6 and c2 ¼ 1=36 for a second order spiderweb
honeycomb with g ¼ 1=6). This relation in fact describes a subclass
of fractal-like spiderweb honeycomb with constant ratios between
successive hexagonal sides. The normalized Young’s modulus of
higher order spiderweb honeycombs (up to fifth order) with differ-
ent values of g is plotted in Fig. 5. The Young’s modulus of the
structures is normalized by the Young’s modulus of a regular
hexagonal honeycomb of equal relative density (E ¼ 1:5Esq3). For
honeycombs with g <� 0:8, increasing the hierarchical order
increases the Young’s modulus of the structure. However, for
g >� 0:8 a negative correlation is found between the hierarchical
order and Young’s modulus. In fact, the mechanical response in
spiderweb honeycombs is governed by the size of the smallest
hexagonal feature (i.e. gn for nth order of hierarchy). Therefore,
based on the results obtained for first order hierarchy (i.e.
c1 ¼ 0:25 as the boundary between stretching and bending domi-
nated behaviors), as well as the results shown in Fig. 5 for higher
order structures, we can define an empirical equation to estimate
the boundary between stretching and bending dominated behav-
iors of self-similar spiderweb honeycombs as gn ¼ 0:25. This
empirical condition states that the transition from stretching to
bending dominated behaviors occurs at increasing g value as the
order of hierarchy increases. For instance, g ¼ 0:25 and g � 0:76,
respectively for first and fifth orders of hierarchy. In general, in a
fully stretching dominated regime (lower values of g), a smaller
hexagon will result in a more stretching dominated structure and
increased Young’s modulus. However, in the fully bending domi-
nated regime (higher values of g), the increase in Young’s modulus
due to higher stretching energy is somewhat offset by the fact that
an addition to the order of hierarchy will only reduce the effective
bending rigidity of the cell walls (beams) due to conservation of
mass, resulting in a decreased Young’s modulus.
4. First order spiderweb honeycombs under large deformations

In this section, we investigated the large deformation elastic
response of first order spiderweb honeycombs under quasi-static
compressive loading. Material properties, FE models, boundary



Fig. 4. Normalized Young’s modulus versus c2 for second order spiderweb
honeycombs with different values of c1. The relative density of honeycombs was
kept constant as 5%.

Fig. 5. Normalized Young’s modulus versus g for higher order spiderweb honey-
combs (up to fifth order). The relative density of honeycombs was kept constant as
5%.
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conditions, and loadings are similar to those discussed in the pre-
vious sections, and similar to the previous section the overall rela-
tive density of the structure was kept constant at 5%. Similar to
previous sections, a mesh sensitivity analysis was also performed
to ensure that the results are not dependent on the mesh size.
The deformation of first order spiderweb honeycomb with differ-
ent values of c1 was simulated up to at least 40% crushing strain.

It is well known (Gibson et al., 2010) that typical cellular solids
have a distinctive sequence of practically linear elastic behavior,
weakly stable or unstable collapse due to instability or plasticity,
followed by a significant restiffening caused by densification. The
latter regime occurs at 70–80% strain for low density cellular struc-
tures. The compressive stress–strain response of spiderweb honey-
comb obtained for different values of c1 is plotted in Fig. 6(A). For
c1 ¼ 0 (equilateral triangular honeycomb), the ‘‘stress plateau’’
regime begins at the very early stages of crushing (strain �0:1%)
as the result of elastic buckling (i.e. instability) of the cell walls.
This very low buckling strain is due to the highly
stretching-dominated behavior of the structure (Haghpanah
et al., 2014a). As the value of c1 increases, although the small defor-
mation Young’s modulus of the structure decreases dramatically,
instability occurs at higher strains. For example, for c1 ¼ 1=4 the
instability occurs at 8% crushing strain. This effect would cause
the structures with c1 equal or greater than 1/3 to not experience
instability until 40% crushing strain. In fact, the large static defor-
mation along with large lateral load components in the cell walls
would entirely suppress instability in these structures
(Haghpanah et al., 2014a). At c1 ¼ 1=3, although the small defor-
mation stiffness is much lower than that of the triangular honey-
comb, the structure is much stronger in crushing strains greater
than 7.5%.

The load–displacement response of the spiderweb honeycombs
promises potentially enhanced values of toughness and energy
absorption at certain geometries, which we will investigate next.
Fig. 6(B) shows plots of the strain energy density versus crushing
strain. Note that the strain energy density shown in this figure is
equivalent to the area of the region bounded by the graph of stress
and x axis in Fig. 6(A). Smaller values of c1 correspond to the higher
elastic energy storage in the structure at small deformation range
(e < 2.5%). For c1 6 1=3, this behavior is reversed as deformation
proceeds to larger strains. For example at 40% crushing strain,
the elastic energy storage capacity of spiderweb honeycombs with
c1 ¼ 1=4 and c1 ¼ 1=3 is equally about 40% greater than that of a
triangular honeycomb (c1 ¼ 0). The noticeable difference between
energy storage performance for structures c1 ¼ 1=3 and c1 ¼ 1=4 is
due to cell wall buckling in the latter structure starting at e = 8%. At
40% strain, the spiderweb structure with c1 ¼ 1=3 has not experi-
enced instability, yet it has the greatest strain energy density
among all the values of c1 studied (equal to c1 ¼ 1=4).

As previously observed, occurrence of instability could signifi-
cantly influence the deformation mechanisms and large deforma-
tion elastic response of first order spiderweb honeycombs. For
further studying this effect, the effect of large deformation elastic-
ity on Poisson’s ratio is studied next. In Fig. 7(A), Poisson’s ratio is
plotted against the crushing strain. The solid lines denote the FE
results and the dashed lines represent the Poisson’s ratio estima-
tions at 100% crushing strain obtained by a geometrical estimation
which will be discussed shortly in this section. The markers show
the experimental data for c1 ¼ 0, c1 ¼ 1=5, and c1 ¼ 1=2, which are
in good agreement with numerical results. For the experimental
investigations, the specimens were fabricated using PolyJet 3D
printing (Objet24 3D printer, Stratasys Inc., Eden Prairie, MN) with
VeroWhitePlus� (see Appendix A for material’s stress–strain
response). The specimen with c1 ¼ 0 has an overall size of
245 mm * 243 mm with wall thickness of 0.5 mm and wall length
of 35 mm. The specimens with c1 ¼ 1=5 and 1=2 have an overall
size of 225 mm * 243 mm with wall thickness of 0.4 mm and wall
length of 28 mm. All specimens maintain a relative density of 5%.
The specimens were then tested under uniaxial compression using
an Instron 5582 testing machine at the rate of 5 mm/min (i.e. strain
rate of 2%/min). Images of deformed configurations were taken to
obtain the values of Poisson’s ratio in the section of the structure
far from the boundaries. For each specimen the measurement were
repeated 4 times. The figure shows that the value of Poisson’s ratio
for each structure at very small strains is equal to the value pre-
dicted by theoretical analysis presented in Section 2.1. As the



Fig. 6. Nonlinear elastic response of first order spiderweb honeycombs under large deformations. (A) Normalized stress (with respect to the Young’s modulus of cell wall
material), and (B) strain energy density of the honeycombs versus crushing strain plotted for first order spiderweb honeycombs with different values of c1. The relative
density of honeycombs was kept constant as 5%.

Fig. 7. (A) Poisson’s ratio versus crushing strain for first order spiderweb honeycombs under large deformations. The solid lines show the finite element results and dashed
lines denote the geometrical predictions at 100% crushing strain for honeycombs with different values of c1. The markers show the experimental results for c1 ¼ 0, c1 ¼ 1=5,
and c1 ¼ 1=2. (B) Undeformed (e ¼ 0) and deformed configurations of specimens at two different crushing strains, e ¼ 0:2 and e ¼ 0:4. The specimen with c1 ¼ 0 has an
overall size of 245 mm * 243 mm with wall thickness of 0.5 mm and wall length of 35 mm. The specimens with c1 ¼ 1=5 and 1=2 have an overall size of 225 mm * 243 mm
with wall thickness of 0.4 mm and wall length of 28 mm. All specimens maintain a relative density of 5%.
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crushing proceeds, Poisson’s ratio decreases. The rate of reduction
is higher for smaller values of c1. Fig. 7(B) shows the undeformed
and deformed configurations of the experimental samples at two
different stages, e ¼ 0:2 and e ¼ 0:4, where two different behaviors
are observed which will be discussed shortly. For values of c1

greater than 1/3 the Poisson’s ratio remains positive. On the other
hand, an auxetic behavior (i.e. negative Poisson’s ratio) is seen for
the structures with c1 less than 1/3. c1 ¼ 1=4 seems to be a thresh-
old value of c1 in which the deformation mechanism of the struc-
ture completely changes. To understand the difference between
these two behaviors, we studied deformation mechanism of the
structures at 40% strain. Schematics of undeformed configuration
for the unit cell of spiderweb structures with eight different values
of c1 are shown in Fig. 8. FE results on deformed configurations at
40% strain are also depicted in this figure. Two different types of
deformation mechanism were seen within the structures. In mech-
anism #1, the structure deformation is mostly governed by static
deflection in the cell walls. No instability (i.e. elastic buckling) is
observed in the structures deforming based on this deformation
mechanism, which is dominant in the structures with c1 > 1=3.
All nodal rotations are zero (or very close to zero approaching
c1 ¼ 1=3) due to the reflection symmetry of the structure and
loading. The second mechanism takes place in the structures with
c1 < 1=3 (i.e. stretching dominated) and is mostly governed by
elastic buckling of cell walls and rotation of the smaller hexagons
which remain almost intact. The limit structure is the case of
c1 ¼ 0, where the periodic deformation is characterized by the
equal rotation of all nodes in a row, while adjacent rows have
opposite rotations.

To estimate the Poisson’s ratio at 100% crushing strain for the
structures whose deformation is governed by deformation
mechanism # 1, we considered an undeformed unit cell of the
structure with the geometrical ratio c1 ¼ b=a as shown in Fig. 8.
The simplified geometry of deformed unit cell at 100% strain is
also shown in the bottom of Fig. 8. Using this, the transverse engi-
neering strain (ex) is obtained as ðð3aþ bÞ � ð3aÞÞ=ð3aÞ ¼ b=ð3aÞ,
while the axial engineering strain (ey) is given as

ð0� a
ffiffiffi
3
p
Þ=ða

ffiffiffi
3
p
Þ ¼ �1. Thus, the Poisson’s ratio can be estimated

as �ðb=ð3aÞÞ=ð�1Þ ¼ b=ð3aÞ ¼ c1=3. Regarding the deformation
mechanism # 2, an undeformed unit cell of the structure with
the geometrical ratio c1 ¼ b=a is shown in Fig. 8. Simplified
deformed configuration is also shown in this figure. Based on FE
observations at 100% crushing strain, the midpoints in beams ori-
ented initially at 60� (or 120�, based on rotation direction) become



Fig. 8. Nonlinear elastic response of first order spiderweb honeycombs under large deformations. Two different types of deformation mechanism are seen in the honeycombs
under uniaxial compression. For each c1, the schematic of undeformed unit cell and finite element result of deformed unit cell at 40% crushing strain are shown (two top
rows). For each deformed mechanism, the schematic of undeformed unit cell and predicted configuration of deformed unit cell at 100% crushing strain are also shown (two
bottom rows).

D. Mousanezhad et al. / International Journal of Solids and Structures 66 (2015) 218–227 225
in contact with midpoints of initially horizontal beams. Therefore,
we considered that the smaller hexagon rotates 60� in the plane of
loading at 100% crushing strain. It was also assumed that the
deformation (u) in edges that are originally horizontal in the unde-
formed configuration will be a cubic function of the position (s)
along the beam (i.e. @4u=@s4 ¼ 0), since there is no distributed load
acting on the edges. Using these assumptions it can be shown that
a horizontal edge with length L will bend such that its final length
in horizontal direction will be 0:8L (see Appendix B). So the trans-
verse engineering strain (ex) is obtained as ðð0:8ða� bÞ � 2
þ0:8ða=2Þ � 2þ bÞ � 3aÞ=ð3aÞ ¼ �0:2ð1þ c1Þ. The axial engineer-
ing strain (ey) is again evaluated as �1. Thus the Poisson’s ratio is
estimated as �ð�0:2ð1þ c1ÞÞ=ð�1Þ ¼ �0:2ð1þ c1Þ. Note that the
value of c1 in this deformed configuration is smaller than 1/3, so
we can estimate the Poisson’s ratio to be �0.2 for all the structures
following this deformation mechanism. A very good agreement is
observed between the FE results and the values estimated by
geometrical predictions.
5. Conclusions

The effect of spiderweb hierarchical organization on the
in-plane elastic response of honeycombs in small and large defor-
mation regimes was studied. Analytical closed-form formulas for
the Young’s modulus and Poisson’s ratio for the first order spider-
web honeycomb were obtained and verified numerically. It was
shown that a relatively broad range of linear elastic response, vary-
ing from bending to stretching dominated, can be achieved by tai-
loring the structural organization of spiderweb honeycombs. While
the geometrical parameters influence the linear elastic moduli in
small deformations, they also significantly influence the mecha-
nisms of deformation in large deformation regime. In structures
with c1 > 1=3, large deformation is symmetrical and is formed by
the static deflection in the cell walls. When c1 < 1=3 (i.e. stretching
dominated structures), deformation is nonlinear, asymmetric and
is accompanied by elastic buckling of cell walls and rotation of
the nodes. The latter mechanism is not unique for a given macro-
scopic state of stress and is influenced by boundary conditions
(Haghpanah et al., 2014a). Furthermore, a geometrical estimation
for the large deformation Poisson’s ratio of spiderweb honeycombs
at 100% crushing strain was presented. Large deformation auxetic
behavior was observed in first order spiderweb honeycombs with
c1 less than 1/3.

A unique feature in the spiderweb honeycomb is a combination
of high stiffness and toughness. Toughness of the spiderweb hon-
eycomb – a measure of structure’s ability to absorb energy under
quasi-static loading – is greater than that of a stretching domi-
nated structure (e.g. triangular lattice). In a stretching dominated
cellular solid under crushing, the capacity of the structure to
absorb energy is limited by the early onset of buckling occurring
at low crushing strains. A bending dominated structure, on the
other hand, has a relatively low relative stiffness which makes it
unsuitable for many in-plane applications. Spiderweb design can
therefore provide required stiffness and toughness, as the geomet-
rical parameters can be tuned to create a sweet spot between
bending and stretching dominant responses. The elastic energy
storage capacity of the spiderweb honeycombs with c1 ¼ 1=4 and
c1 ¼ 1=3 was shown to be about 40% greater than triangular hon-
eycomb (c1 ¼ 0) at 40% crushing strain.
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Appendix A. Material properties

For the experiments we used VeroWhitePlus� material with
the stress–strain response shown in Fig. A1.



Fig. A1. (Left) 3D printed dog-bone specimen for uniaxial tension test. (Right) Engineering stress vs. engineering strain for the tested material.
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Note that five dog-bone samples (Fig. A1 (left)) were tested
under uniaxial tensile loading to obtain the stress–strain response
of the material (engineering stress vs. engineering strain). The ten-
sion tests were based on ASTM-D638-10 standard, which is the
standard test method for tensile properties of plastics.
Appendix B. Geometrical estimation

As shown in Fig. B1, consider a horizontal line with length L
under a loading in which it bends such that it forms a cubic
Fig. B1. Undeformed and deformed line with original length L.
function (i.e. y ¼ ax3 þ bx2 þ cxþ d where x here denotes position
along beam direction) with the slope of �60� at both ends. Also
assume that the length of the curved line remains L and the hori-
zontal distance between two ends is L0. The following geometrical
boundary conditions can be written based on the assumptions:

yð0Þ ¼ 0; y00ð0Þ ¼ 0; yðL0=2Þ ¼ 0; y0ðL0=2Þ ¼ �
ffiffiffi
3
p

ðB:1Þ

where y0 and y00 are respectively the first and second derivatives of y
with respect to x. Solving Eq. (B.1), the unknown constants appear-
ing in y are obtained as, b ¼ d ¼ 0, a ¼ �2

ffiffiffi
3
p

=L2, and c ¼
ffiffiffi
3
p

=2.
Using the assumption that the length of the curved line remains L
we can finally obtain the unknown length L0 by using the following
relation:

2
Z L0

2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx ¼ L ðB:2Þ

Solving this equation will result in L0 ¼ 0:8L.
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