
Research Article
Decontamination of Surfaces Exposed to Carbon-Based
Nanotubes and Nanomaterials

Paul Su,1 Babak Haghpanah,2 William W. Doerr,1 Zahra Karimi,2 Syed Hassan,2

Louis Gritzo,1 Ahmed A. Busnaina,2 and Ashkan Vaziri2

1 FM Global, Norwood, MA 02062, USA
2Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA

Correspondence should be addressed to Paul Su; pocheng.su@fmglobal.com

Received 10 October 2013; Accepted 12 December 2013; Published 16 January 2014

Academic Editor: Aiying Wang

Copyright © 2014 Paul Su et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Contamination of surfaces by nanomaterials can happen due to accidental spillage and release or gradual accumulation during
processing or handling. Considering the increasingly wide use of nanomaterials in industry and research labs and also taking into
account the diversity of physical and chemical properties of different nanomaterials (such as solubility, aggregation/agglomeration,
and surface reactivity), there is a pressing need to define reliable nanomaterial-specific decontamination guidelines. In this paper,
we propose and investigate a potential method for surface decontamination of carbon-based nanomaterials using solvent cleaning
and wipes. The results show that the removal efficiency for single- and multiwalled carbon nanotubes from silicon wafers sprayed
with water-surfactant solutions prior to mechanical wiping is greater than 90% and 95%, respectively. The need for further
studies to understand the mechanisms of nanomaterial removal from surfaces and development of standard techniques for surface
decontamination of nanomaterials is highlighted.

1. Introduction

Nanomaterials (NMs) are becoming more involved in an
increasingly wide range of applications such as in composites,
electronics, and automotive, biomedical, and personal care
products due to their novel properties and functions [1–3].
Over the last decade, the global production of NMs has expe-
rienced a huge growth. For instance, the global production of
carbon nanotubes (CNTs) was increased from ca. 280 metric
tons in 2006 [4] to ca. 1000 metric tons in 2010 [5] and is
anticipated to reach thousands ofmetric tons in the following
decade [4, 6, 7]. The increasing production and application
of NMs highlight the need for development of preventive
measures and regulations to minimize NM exposure in case
of accidental release inside the workplace [2, 8–14].

Thepotential toxicity of nanomaterials has raised concern
about health and safety issues related to the production and
use of NMs and their environmental impact as well as poten-
tial for contaminated property damage or business interrup-
tion due to accidental release of nanomaterials [2, 8–21].
Preliminary toxicology studies on nanomaterials, including

in vitro cytotoxicity [22–24], small animal toxicology [25],
and extrapolation of these data to the human scale, reveal the
potentially toxic nature of thesematerials to humanbiological
systems [26–29]. There are several inherent physiochemical
factors including NM size, shape, chemical composition, sur-
face charge, surface modifications, and adsorption capacity
that can possibly affect the toxicity of nanomaterials [12].
Physical and environmental phenomena such as dissolution,
agglomeration, and disagglomeration are the other factors
that determine the toxic interaction of nanomaterials with
biological systems [28–30]. The three exposure possibilities
to NMs are respiration, dermal penetration through skin
contact with contaminated surfaces, and digestion [31, 32].
Thus, effective decontamination measures for removal of
nanomaterials from contaminated surfaces, air, and possibly
water supplies are needed. With regard to NM air decon-
tamination, high efficiency particulate air (HEPA) filters can
trap air suspended NMs with high efficiency through various
filtration mechanisms [33, 34]. As a first attempt to introduce
approaches to remove NMs from contaminated water, Yang
et al. reported that the CNTs suspended in the aqueous
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environment can be transformed into large micron size
aggregates in the presence of calcium ion (Ca2+) and then
effectively removed via paper filtration [35]. Concerning the
removal of NM from surfaces of solids, the strong attachment
of NMs to substrates by van der Waals forces [36–45] and
also their increased contact area make it difficult to remove
NMs [46, 47]. Their removal has to be through a physical
force that could be applied directly (wipe or brush) or through
a fluid (such as ultrasonic, megasonics, or a fluid jet) [48–
59]. A few studies [9, 34, 60–62] have provided some basic
surface cleaning recommendations for research laboratories
and workplace in case of accidental release and spillage of
nanomaterials. These recommendations include using vac-
uum cleaners fittedwithHEPAfilters on the exhaust to collect
the NMs and prevent their dispersion in the air [63]; cleaning
the liquid spills by applying absorbent materials/liquid traps
[60, 61]; use of walk-off mats such as a clean room mat
or “sticky mats” at access/egress points to limit propagation
of particles outside the premises [34, 60, 61]; and avoiding
the use of energetic methods such as dry sweeping and
compressed air for removing the deposited nanomaterials
[60–62]. After any visible NM contamination is removed, it
is suggested to use wet or electrostatic microfiber cleaning
cloths to remove residual NMs from the surfaces while
causing minimal dispersion into the air [64].

In this paper, we focus on the surface decontamination
of carbon-based NMs which are regarded as one of the
most common types of NMs.We propose chemical (solvents,
surfactants, etc.) cleaning as a potential method for surface
decontamination of carbon-based NMs. In Section 2, we
provide an overview of the current state of literature for
common categories of solving media and summarize the
solubility data for most carbon-based NMs. In Section 3, we
discuss our preliminary results on surface decontamination
of silicon wafers covered with single- and multiwalled CNTs
using a simple wiping procedure andwe quantify the removal
efficiency of different solvents using scanning microscope
imaging of samples before and after cleaning. Finally, conclu-
sions will be derived and the need for further studies will be
discussed in Section 4.

2. Chemical Cleaning

Chemical cleaning (or solvent cleaning) is used conven-
tionally for the removal of residues, contaminants, or soils
deposited on or attached to a substrate surface. The basic
concept of chemical cleaning is to dissolve or suspend the
contaminants and to eliminate them by the removal of the
cleaning media. Studies on the solubility of nanomaterials
have shown that many engineered NMs have minimal sol-
ubility and dispersibility in water or many common solvents
[65–68]. For example, CNTs are shown to be neither soluble
nor wettable by water or many other solvents, making them
hard to be physically dispersed which in addition to cleaning
is critical for obtaining individual CNTs for research and
other applications [69–71].Therefore, various surfactants [65,
69, 72–76], solvents [77–82], and polymers [83–85], as well as
DNA [86–88] have been explored to noncovalently dissolve
and disperse CNTs into a liquid phase. Figure 1 summarizes

the solubility of single-walled CNT in various solvents as
reported in the literature. In general, surfactants (short
for surface active agents) are more effective for dissolving
higher quantities of single-walled and multiwalled CNTs
in water compared to most available solvents. The use of
surfactants for the cleaning process is particularly of high
interest for a number of reasons; water is a safe and con-
venient substance and surfactants are cheap, commercially
available, and easy to use. The highest solubility is currently
reported for an aqueous solution of gum arabic (15%wt),
where 3%wt. (∼30mg/mL) solubility was obtained using
sonication at 50 W and 43 kHz for a relatively short duration
of 15–20 minutes [85]. We have also explored the available
data on solubility of other common carbon-based NMs. In
Figure 2, we have summarized the available results on the
solubility of C

60
fullerene in different solvents. Motivations

for studying the solubility of fullerenes in solvents include
exploring chemical reactions pathways for fullerene, their
purification methods, and extracting higher fullerenes [66,
89–101]. Also, the aqueous solubility of fullerenes with the use
of surfactants has been investigated for potential biological
applications and the results are included in Figure 2 [102–
106]. The differences in the reported solubility of fullerenes
in a specific solvent in different studies can be attributed to
the effects of temperature, illumination, or sonication during
the solving process. Extraordinary temperature dependence
is observed in the solubility of fullerene C

60
in some solvents,

reaching its maximummagnitude near 280K and decreasing
remarkably by increasing the temperature above this value
[97, 107, 108]. In addition, there are studies investigating
the solubility of higher-order fullerenes [90, 91, 93, 96–98]
or combinations of different-order fullerenes [93] in various
solvents. Studies performed on the solubility of fullerenes in
aqueous media suggest that the solubility rates of fullerene
in water-surfactants are several orders of magnitude less than
the solubility rates obtained by successful solvents.

Since CNTs are one of the most common carbon-based
NMs, we have discussed the efficiency of different solvents
for dissolving CNTs in the following sections in more details.

2.1. Surfactants as the Cleaning Media. Surfactants can
weaken the strong bond between particles and substrate
by reduction of the surface tension, prevention of particle
readhesion by creating a repulsive zone between the particles
and substrate, and suspension of the particles in the solution
by their amphiphilic mechanism [110]. When surfactants are
available in adequate concentrations in the solution, they
get adsorbed on the surface of CNTs, forming cylindrical
micelles or hemimicelles which make CNTs soluble in water
[111]. It is necessary that the amount of surfactant dissolved
in the aqueous media should be far exceeding the surfac-
tant critical micelle concentration to ensure that enough
surfactant molecules can be absorbed onto the surface of
the nanotubes to make them suspended and dissolved in
water. For example, Sun et al. [76] obtained the optimum
concentration of some surfactants for suspending CNTs as
equal to 10mg/mL. However, critical micelle concentrations
for these surfactants from the literature are far less than
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Figure 1: High concentration surfactant-, polymer-, and solvent-based suspensions of SWCNT as reported in the literature [69, 72, 75–81].
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Figure 2: Solubility of C
60
in the most effective C

60
solvents at 298∘ K, as reported in the literature [66, 89, 99–101, 108, 109].

10mg/mL [76]. In the use of surfactants as the cleaningmedia
combined use of surfactants and mechanical removal might
be necessary to fully overcome the adherence of NMs to
substrates [110, 112].

Islam et al. [69] investigated the solubility of single-walled
CNTs in water with different anionic, cationic, and nonionic
surfactants by using a long-duration (16–24 hr) sonication
procedure. They showed that the anionic surfactants sodium
dodecylbenzene sulfonate (NaDDBS) and the close chemical
relative, sodium 4-n-octylbenzene sulfonate (NaOBS), had
high solubility of single-walled carbon nanotubes, with the
solubility of up to 20mg/mL and 8mg/mL of CNTs, respec-
tively. Using a different solubilization technique, Moore et al.
[75] reported the relatively high ability of NaDDBS, and a
close relative sodium dodecylsulfonate (SDSA), and sodium
dodecyl sulfate (SDS) to individually suspend nanotubes in
water [113]. However, of much interest for the purposes of
cleaning, they showed that the difunctional block copolymer
nonionic surfactants with high molecular weight have high
suspendbility (19.2–28.2mg/mL) but relatively lower individ-
ual dispersion quality compared to other surfactants. They
concluded that the high dispersion rate of copolymers such
as Pluronic F 98 and PEO-PBO-PEO triblock copolymer
(EBE) is related to the enhanced steric stabilization by
long polymeric groups. The solubility of multiwalled carbon

nanotubes in SDS was studied by Zhou et al. [40]. They
reported 1.4 wt% (14mg/mL) as the maximum concentration
of multiwalled CNTs that can be homogenously dispersed
in the aqueous solution. It is noteworthy that the reported
quantities for a single surfactant in different studies might
be significantly different due to various factors related to
the amount of surfactant used, test temperature, mechanical
forcing and CNT type and manufacturing method.

2.2. Polymers as the Cleaning Media. Polymers appear as
promising options for dissolving CNTs in aqueous media
in high concentrations with relatively low agitation [75, 83–
85]. O’Connell et al. [84] studied the solution of SWNTs in
water by noncovalently associating them with linear poly-
mers such as polyvinylpyrrolidone (PVP) and polystyrene
sulfonate (PSS). They suggested that the high concentration
solution of CNTs (2%wt.,∼20mg/mL) can be obtained by the
robust association/wrapping of polymer layers with/around
the nanotubes.

2.3. Solvents as the Cleaning Media. The use of solvents as
cleaning agents to remove nanomaterials is questionable for
a number of reasons. First, many of the solvents proposed to
disperse nanotubes have some level of toxicity. Second, the
solubility/dispersibility of many of the proposed solvents is
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Figure 3: (a)MWCNT removal efficiency of SDS, SDBS, CaCl
2
, gum arabic (GA), water, and dry wiping as discussed in Section 3. (b) Sample

SEM image of the surface of multiwalled carbon nanotubes deposited silicon wafers before cleaning (AD = 36%) and after wipe cleaning with
purewater (AD= 12.5%), gumArabic (AD=8.5%), and SDBS surfactant (AD= 1.5%).The average precleaning areal densitywas approximately
34% for all samples.

below 0.1mg/mL, far less than the solubility of surfactants.
Parra-Vasquez et al. [81] investigated the solubility of SWNTs
obtained by different methods of production in superacids
(e.g., fuming sulfuric and chlorosulfonic acids) and showed
that high concentrations (>100mg/mL) of SWNTs are spon-
taneously dispersed in acidswithinminutes.However, the use
of acids as the cleaning media in the cleanup process does
not seem reasonable because of the hazards in handling and
usage and removal of acids and also the potential damage to
the substrate.

3. Experimental Investigation: Removal
Efficiency of CNT Chemical Cleaning

In this section, experimental investigations were performed
to assess the removal efficiency of CNTs deposited on the
surface of silicon wafers using different cleaning media.
The CNTs used for this study were combustion chemical
vapor deposition (CCVD) grown, acid purified carbon nan-
otubes dispersed in polyvinylpyrrolidone (PVP) surfactant.
The average length and diameter of the MWCNTs used
in this study were measured to be 250 nm and 15 nm,
respectively. The averaged length and diameter of SWNCTs
were 200 nm and 1.2 nm, respectively. In the experiments,
carbon nanotubes in the form of pristine liquid solution were
deposited on surface of siliconwafers ((111) orientation, nitro-
gen/phosphorus doped, P/E surface, and with mechanical
grading) using the spin coating process. The wafers were 3
in diameter and the spin coating was performed for 1min
at 3000 RPM. After spin coating, the CNT deposited wafers
were heated at 105∘C for 90 sec. in order to dry the wafer
surface completely. A total number of 30 images with equal
magnification and resolution were taken from different spots
of each wafer surface using scanning electron microscope
(SEM) imaging. The CNT surface aerial concentration for
each image was then determined using an image processing

program incorporated in MATLAB software. Average CNT
aerial density from 30 different images of each wafer was
obtained and used in the analysis. The average aerial density
of the wafers, denoted by AD, was approximately 34% for
SWCNTs and 36% for MWCNTs after the spin coating.

First, we have assessed the multiwalled CNT removal
efficiency of two surfactants (i.e., SDBS (sodium dodecyl-
benzene sulfonate) and SDS (sodium dodecyl sulfate)), one
polymer (gum arabic), one mineral salt (calcium chloride),
and pure water in a simple wipe cleaning method. The
concentrations of SDBS, SDS, CaCl

2
, and gum arabic (GA)

were 1.5%, 4%, 11%, and 10%wt, respectively. The mineral
salt calcium chloride was specifically chosen since it was
shown to be capable of transforming dispersed CNT in
aqueous environment into aggregates [35]. The CNT-coated
wafers were first treated by different cleaning media and
then cleaned with a piece of nonwoven polyester/cellulose
fabric. In the experiments, first the cleaning medium was
sprayed on the surface of the wafer. After 2minutes, the wafer
was manually wiped once unidirectionally. The estimated
hand pressure and wiping duration were 2 kPa and 5 sec.,
respectively. The wafer was dried using nitrogen gas after the
cleaning. After cleaning, the wafers were imaged using SEM
and the average final area density for each wafer was obtained
by postprocessing the images as explained above.The removal
efficiency was defined as the difference between the initial
and the final average CNT aerial densities. Figure 3(a) shows
the quantitative comparison of MWNT surface removal
efficiency by different cleaning media used in this study.
Figure 3(b) shows the SEM images of MWCNT-coated wafer
surfaces before and after cleaning using different cleaning
media.The two surfactants used in the experiments, SDS and
SDBS, showed the highest MWCNT removal rates among all
the solvent cleaning media with removal efficiency greater
than 95%.The high removal efficiency in using the surfactant
as the cleaning media can be attributed to the role of
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Figure 4: (a) SWCNT removal efficiency of SDS, SDBS and water as discussed in Section 3. (b) Sample SEM image of the surface of SWNTs
deposited silicon wafers before cleaning (AD = 38%) and after wipe cleaning with pure water (AD = 14.7%), SDBS (AD = 3.2%), and SDS
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surfactantmicelles in suspending theCNTs in aqueousmedia
and increasing the soaking ability of water by decreasing the
water surface tension. Pure water has the removal efficiency
of almost 65% on the silicon wafer substrate. Gum arabic and
CaCl
2
have comparable removal efficiency of approximately

76% and 80%, respectively, standing between the removal
efficiency of pure water and that of surfactants solutions.

As the next step, we measured the single-walled CNT
removal efficiency of two surfactants (i.e., SDBS (sodium
dodecylbenzene sulfonate) and SDS (sodium dodecyl sul-
fate)), and pure water in the same wipe cleaning method.The
two surfactants were chosen since they showed the highest
efficiency for the removal of MWCNTs from the surface
of silicon wafer in the last section. The same deposition
and wiping methods were used. In Figure 4(a) a quantitative
comparison of SWNT surface removal efficiency by different
cleaning media is given. The two surfactants showed high
SWCNT removal capability with efficiency greater than 90%.
Wiping after pure water spray resulted in a removal efficiency
of approximately 61%. Figure 4(b) shows sample SEM images
of SWCNT-coated wafer surfaces before and after cleaning.

4. Conclusions

We proposed solvent cleaning as a technique for surface
decontamination of carbon-based NMs such as CNTs, which
can potentially be used for removal of nanomaterial adhered
to surfaces caused by unwanted spillage and release or the
gradual accumulation during the processing or handling.
The role of cleaning media (i.e., surfactants, solvents, etc.)
in facilitating the mechanical removal of single- and mul-
tiwalled CNTs from contaminated surfaces was discussed.

The challenges associated with this technique include the
high levels of agglomeration of CNTs and extremely low
solubility in water and many common solvents, which tend
to lower the efficiency of this method. Based on our pilot
study presented in Section 3, the removal efficiency of single-
andmultiwalled carbon nanotubes using two different water-
surfactant solutions from a highly smooth surface of a silicon
wafer through wiping is greater than 90% and 95%, respec-
tively. The higher removal efficiency for multiwalled carbon
nanotubes can be attributed to the larger value of the binding
energy density holding the nanotube aggregates together
for MWCNTs compared to SWCNTs [114]. Surfactants are
economical, commercially available, and easy to use. These
factors make surfactants a good candidate for the removal
of CNTs deposited on surfaces. However, more studies are
needed to determine the effectiveness of CNT removal using
the solvent cleaning technique for CNTs obtained by various
production methods, with different chemical modifications
or attached on different substrates.
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