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a b s t r a c t

Anisotropic hierarchical honeycombs of uniform wall-thickness are constructed by repeatedly replacing
each three-edge vertex of a base hexagonal network with a similar but smaller hexagon of the same
orientation, and stretching the resulting structure in horizontal or vertical directions to break the
isotropy. The uniform overall thickness is then adjusted to maintain the constant average density. The
resulting fractal-appearing hierarchical structure is defined by the ratios of replacement edge lengths to
the underlying network edge length and also the cell wall angle. The effective elastic modulus, Poisson's
ratio and plastic collapse strength in the principal directions of hierarchical honeycombs were obtained
analytically as well as by finite element analyses. The results show that anisotropic hierarchical
honeycombs of first to fourth order can be 2.0–8.0 times stiffer and at the same time up to 2.0 times
stronger than regular honeycomb at the same wall angle and the same overall average density. Plastic
collapse analysis showed that anisotropic hierarchical honeycomb has the larger plastic collapse strength
compared to regular hierarchical honeycomb of the same order at certain oblique wall angles. The
current work provides insight into how incorporating anisotropy into the structural organization can
play a significant role in improving the mechanics of the materials structure such as regular or
hierarchical honeycombs, and introduces new opportunities for development of novel materials and
structures with desirable and actively tailorable properties.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Materials with structural hierarchy over nanometer to millimeter
length scales are found throughout Kingdoms Plantae and Animalia.
Examples include bones and teeth [1,2], nacre (mother-of-pearl) [3],
gecko foot pads [4], Asteriscus (yellow sea daisy) [5], Euplectella
sponge [6], wood [2,7] and water repellent biological systems [8]. The
idea of using structural hierarchy in engineering structures and
materials goes back at least to Eiffel's Garabit Viaduct and then
Tower [9]. More modern examples include polymers [10], composite
structures [11–13] and sandwich panel cores [14,15]. The effect of
structural hierarchy on mechanical and chemical properties of
biological and biomimetic systems has been extensively documen-
ted [9–17]. The type and order of the hierarchy and the general
organization of these structures play a significant role in their
properties and functionality [16,17]. For example, Zhang et al. [16]
showed that increasing the level of hierarchy in biological materials
increases the toughness but decreases the strength, suggesting that
an optimal level of hierarchy could be defined.

Incorporating hierarchy into honeycomb lattice structures has been
the focus of a number of studies [15,18–21] and has significance with
regard to the application of honeycombs in impact energy absorption
and structural protection [22–26], thermal isolation [27] and as the
structural core of sandwich panels [28–32]. Recently, a new generation
of honeycombs with hierarchical organization was achieved by repla-
cing nodes in the regular honeycomb with smaller hexagons [18,19].
One or two orders of optimized hierarchical refinement offered up to
2 and 3.5 times the in-plane stiffness [18] and almost 2 times the
plastic collapse strength [19,20] of conventional honeycomb with the
same mass. Majority of these works address the mechanical and
thermal properties of isotropic honeycomb structures. However, there
are relatively little investigations on the mechanical properties of
honeycomb structure with stretched cells resulting in anisotropic
honeycomb structures. The present paper extends these previous
works by horizontally/vertically ‘stretching’ or reformulating the
underlying hexagonal network prior to the hierarchical refinement
steps, so that the developed structure is no longer isotropic (wall
thickness is maintained uniform, while being adjusted to have fix
overall average density as hierarchy is introduced).

In this work, anisotropic hierarchical honeycombs with various
oblique-wall angles are compared to hierarchical conventional
honeycombs (with θ ¼ 30o). The stretches not only alter the cell
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wall lengths, but it also changes the oblique wall angle, θ (which is
equal to 301 in the conventional isotropic honeycomb). Note that
uniform stretch leaves oblique cell walls still pointing at the
centers of hexagons above and below. Since equal vertical and
horizontal stretches would leave the hexagonal geometry undis-
torted, we ‘normalize’ the transformation: the length of an oblique
cell wall was taken as fixed, while its angle is selected within the
range 0oθoπ/2. The distorted hexagons of the underlying net-
work therefore have height 2l0cosðθÞ and horizontal edge length
2l0sinðθÞ (Fig. 1a). In hierarchically refined structures of uniform
thickness, the structural organization is uniquely defined by the
ratio of the introduced oblique edge lengths (l1 and l2, respectively,
for first and second order of hierarchy) to the original hexagon's
oblique edge length, l0. These are denoted γ1 ¼ l1=l0 and γ2 ¼ l2=l0 ,
etc., where l0, l1, l2 are defined in Fig. 1a. At each order of hierarchy
the introduced horizontal edge length conforms to hi ¼ 2lisinðθÞ,
where li is the introduced oblique edge length, θ is the oblique wall
angle and hi is the introduced horizontal edge length.

Here we explore up to four orders of hierarchy. The elastic proper-
ties of first and second order hierarchy are evaluated theoretically by
Castigliano's method and compared to a matrix frame analysis carried
out in MATLAB. The elastic moduli of third and fourth order hierarchy
are therefore evaluated numerically only. In Section 2, fabrication of
samples using 3D printing is outlined. In Section 3, elastic properties of
anisotropic hierarchical honeycombs using Castigliano's second theo-
rem are determined. In section 4, the numerical analysis which carried
out in MATLAB is outlined. In Section 5, the effective plastic collapse
strength for uniaxial in-plane loading in principal directions is deter-
mined using elastic–plastic beam elements in the finite element
package ANSYS. In Section 6, results and discussion are demonstrated.

In Section 7, conclusions and potential for further performance
improvement of hierarchical honeycombs are presented.

2. Fabrication using 3D printing

Fig. 1b shows samples of both zero order and hierarchical regular-
hexagon honeycombs with relative density of ρ¼ ρ=ρs ¼ 0:10 and
l0 ¼ 20 mm, where ρ is the structural density and l0 is the oblique
hexagon edge length [18]. These samples were fabricated using 3D
printing (Dimensions 3D printer, Stratasys Inc., Eden Prairie, MN). The
regular honeycomb has t ¼ 1:75 mm; the honeycomb with one level
of hierarchy has γ1 ¼ 0:3 and t ¼ 1 mm; and that with two-level
hierarchy has γ1 ¼ 0:3; γ2 ¼ 0:12, and t ¼ 0:75 mm, where t is the
hexagons wall thickness. These were printed as three-dimensional
extruded shells from an ABS polymer (acrylonitrile butadiene styrene,
elastic modulus ¼ 2.3 GPa). Fig. 2a shows the images of 1st order
anisotropic honeycombs with θ¼ 10o; 30o and 70o and l0 ¼ 2 cm
fabricated using three-dimensional printing. All three structures have
γ1 ¼ l1=l0 ¼ 0:3.

3. Elastic properties of anisotropic hierarchical honeycombs:
analytical modeling

Some geometric constraints on the hierarchically introduced edges
must be imposed to avoid interfering with pre-existing members: in a
honeycomb with first order hierarchy, 0 r l1 r l0=2 (Fig. 1a) and
thus, 0 r γ1 r 0:5, where γ1 ¼ 0 denotes the regu-
lar honeycomb structure. For second order hierarchy, the two geome-
trical constraints are 0 r l2 r l1 and l2r l0=2� l1. For uniform wall

Fig. 1. (a) Sections of the non-hierarchical honeycomb structure (left) and honeycomb structures with one (middle) and two (right) orders of hierarchy. In order for the
intersections of newly generated hexagons lie on the edge of previous hexagons, hi ¼ 2li sin ðθÞ for i¼ 0;1;2;… should be satisfied. (b) Images of regular honeycombs with
l0 ¼ h0 ¼ 2 cm fabricated using three-dimensional printing ((b) is taken from [18]).
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thickness of t, the relative density of the structure (i.e., area fraction)
can be given as a function of the length ratios and t=l0:

ρ

ρs
¼ 1þ sin θ

3 sin θ cos θ
1þ2∑

n

1
3i�1γi

� �
� t
l0

ð1Þ

where ρs is the material density, θ is the oblique wall angle, and n is
the hierarchical order. This relation is used to adjust t, so that various
choices of θ and γi maintain a fixed relative density. A vertical stretch
makes the oblique walls much longer than the horizontal walls, as can
be seen by letting θ approach 0 in the above expressions (Fig. 2a). In
following sections, we mainly focus on results and find-
ings. For detailed description of analytical modeling please refer to
Appendix A.

3.1. Elastic modulus in principal directions

The effective elastic modulus (to be normalized by the material
elastic modulus, Es) is defined as the ratio of average stress
(sy ¼ �F=ð3l0sinθÞ ; sx ¼ �P=ðl0cosθÞ) and average strain (εy ¼
�2δy=ðl0cosθÞ, εx ¼ �2δx=ð3l0sinθÞ). l0 is the oblique wall length
of the underlying zero-order honeycomb, and θ is the oblique wall
angle. P and F are unit-cell boundary points forces in x and y
directions, respectively and δx and δy are the unit-cell boundary
point displacements (Fig. 2b and c). The cell walls of thickness t
consist of an isotropic elastic material with elastic modulus Es and
Poisson's ratio νs. Using the notation γ1 ¼ l1=l0, the elastic modulus
in x and y directions are finally obtained as Ex=Es ¼ t3=l30 � f xðγ1; θÞ
and Ey=Es ¼ t3=l30 � f yðγ1; θÞ where

Fig. 2. (a) Images of 1st order honeycombs of θ¼ 10o ; 30o and 70o with l0 ¼ 2 cm fabricated using three-dimensional printing. (b and c) Free body diagrams of the
subassembly of hierarchical honeycombs of 1st and 2nd order hierarchy used for finite element and theoretical analysis. Ni and Mi i¼ 1�3ð Þ denote the reaction vertical
forces and moments in the edges of the subassembly structures. Note that the solid lines represent the subassembly used for evaluating the elastic modulus/strength, while
the whole structure (both dashed and solid lines) is used for shear modulus analyses.

f xðγ1; θÞ ¼
12 sin θð sin θþ7Þ=ð cos θ ð1� sin θÞÞ

ð96 sin 2θþ596 sin θ�148Þγ13þð�48 sin 2θ�168 sin θþ312Þγ12þð�93 sin θ�165Þγ1þð4 sin 2θþ32 sin θþ28Þ
and

f yðγ1; θÞ ¼
4 cos θð sin 2θþ8 sin θþ7Þ=ð3 sin 3θÞ

ð192 sin 2θþ644 sin θ�196Þ γ13þð�96 sin 2θ �192 sin θ þ336Þ γ12þð�93 sin θ�165Þ γ1þð4 sin 2θþ32 sin θþ28Þ
:
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These expressions, are valid for any allowable γ1, in particular
for the case when γ1 ¼ 0, namely zero order hierarchy. Note also
that when θ¼ 30o, the resulting isotropy means these expressions
should be equal for all values of γ1.

To find the value of γ1 ¼ l1=l0 which yields the maximum x or y
elastic modulus for a given relative density ρ=ρs, Eq. (1) must be used

to express t=l0 as a function of ρ=ρs. For the first order of hierarchy,
n¼ 1, this results in t=l0 ¼ 3 sin θ cos θ=ð1þ sin θÞ � ρ=ρsð1þ2γ1Þ.
(Note that t approaches zero when θ approaches either 0 or 90.)
Substituting this into the modulus expressions yields

Ex;y
Es

¼ 3 sin θ cos θ
1þ sin θ

� �3 ρ

ρs

� �3

f x;yðγ1; θÞ
1

1þ2γ1

� �3

ð2Þ

where Ex;y represents Ex or Ey, and f x;y correspondingly represents f x
or f y. The analytical tool of MATLAB was used to obtain γ1 which
maximized Eq. (2). A similar procedure can be used to derive elastic
moduli of anisotropic honeycomb structures with two orders of
hierarchy (Fig. 2c). The elastic moduli in the principal directions were
obtained by finding displacements at location of applied forces, F and
P. These moduli are function of γ1, γ2 and θ and can be presented as:
Ex=Es ¼ t3=l30 � f xðγ1; γ2; θÞ and Ey=Es ¼ t3=l30 � f yðγ1; γ2; θÞ. To find the
optimal values of γ1 and γ2 at any constant density ratio ρ=ρs, the
t=l0 term is expressed as a function of density ratio ρ=ρs. From (1):
t=l0 ¼ 3 sin θ cos θ=ð1þ sin θÞ=ð1þ2γ1þ6γ2Þ � ρ=ρs. Substituting
this into the elastic modulus expressions yields

Ex;y
Es

¼ 3 sin θ cos θ

1þ sin θ

� �3 ρ

ρs

� �3

f x;yðγ1; γ2; θÞ
1

1þ2γ1þ6γ2

� �3

ð3Þ

For the sake of conciseness, both Ex and Ey are shown in one
equation with f x;y representing f x or f y.

3.2. Effective shear modulus and Poisson's ratio

To fully characterize the linear elastic behavior of horizontally
or vertically stretched hierarchical honeycombs, the orthotropic
shear modulus Gxy and Poisson's ratio νyx should be obtained as a
function of θ and the hierarchical dimension ratios. We applied
Castigliano's second theorem to the full subassemblies of Fig. 2b
and c to find shear modulus Gxy and Poisson's ratio νyx.

The effective shear modulus (normalized by the material shear
modulus Gs) is defined as the ratio of average shear stress
τ¼ �P= ð3l0 sin θÞ) to average shear strain (εxy ¼ 2δy= ð3l0sinθÞþ
2δx =ðl0cosθÞ). The result can be presented as

Gxy=Gs ¼
3 sin θ cos θ
1þ sin θ

� �3 ρ
ρs

� �3
g1ðγ1; θÞ

1
1þ2γ1

� �3

ð4Þ

where g1 is a complex function of γ1and θ. For a first-order hierarchical
structure the maximum shear modulus occurs when γ1 ¼ 0:34, vir-
tually regardless of wall angle θ. However its magnitude depends on θ.

Similarly, for the case of the structure with two hierarchical
orders (Fig. 2c), the effective shear modulus can be defined as

Gxy=Gs ¼
3 sin θ cos θ
1þ sin θ

� �3 ρ

ρs

� �3

g2ðγ1; γ2; θÞ
1

1þ2γ1þ6γ2

� �3

ð5Þ

where g2 is a function of γ1; γ2 and θ. Differentiating (5) with
respect to γ1 ¼ l1=l0 and γ2 ¼ l2=l0 at constant density shows that
the maximum normalized shear modulus occurs at γ1 ¼ l1=l0 ¼ 0:3
and γ2 ¼ l2=l0 ¼ 0:14.

The Poisson's ratio νyx can then be obtained from νyx ¼ δx=
ð3 tan ðθÞδyÞ, which results in

Performing the same procedure for the second order hierarchy
structure of Fig. 2b, we can obtain νyx as a function of oblique wall
angle θ, γ1 and γ2 (i.e., νyx ¼ νyxðθ; γ1; γ2Þ).

4. Elastic analysis: numerical simulation

To explore the effect of hierarchical order greater than 2, a matrix
frame analysis procedure was implemented in MATLAB. Shear and
stretching were included in the governing equations for each beam
[33]: d=dxðA � Es � du=dxÞ ¼ 0 for stretching, d=dx½ks � A � Gs

ðdv=dx�ϕÞ� ¼ 0 for shearing, and d=dxðE � I � dϕ=dxÞþks � A � Gsðdv=
dx�ϕÞ ¼ 0 for bending, where A is the cross sectional area, I is the
second moment of area, Es and Gs are the elastic and shear moduli of
the cell wall material, ks is the shear coefficient (equal to 5/6 for a
rectangular cross section [33]), u, v are the longitudinal and
transverse displacements, and ϕ is the beam cross-section rotation
about the z-axis. Transformation matrix is calculated for each beam
to transform its stiffness matrix to global coordinates and points
3 and 4 were clamped in Fig. 2b and c, respectively. This program
was highly efficient and allowed us to systematically change geo-
metry of the hierarchical structure in order to find unique geometry
which maximized desired mechanical properties. Compared to the
commercial FEA software, the developed program was faster and
more flexible. We explored the whole range of γ to determine the
elastic modulus range at each hierarchical order.

5. Plastic collapse strength analysis

In this section, Finite Element simulation is performed to study
the in-plane uniaxial plastic collapse strength of hierarchical
honeycombs with up to four orders of hierarchy. Using beam
element, a subassembly of the structure, as defined in Fig. 2b and
c, was modeled in ANSYS. The modeled structure was then
meshed using plastic 2D cubic beam element (Beam 23) with
plastic, creep, and swelling capabilities. Elastic-perfectly plastic
behavior was assigned to the chosen material, and element length
was taken as l0=500, where l0 is the length of an oblique wall
(short elements are needed to capture localized plastic hinges).
The simulations were performed with uniaxial loading separately
applied in x and y directions. The elastic modulus, Poisson's ratio
and yield strength of material used in the simulations were
ES ¼ 70 GPa, ν¼ 0:3 and sy ¼ 130 MPa, respectively. The relative
density of the structure used for plastic collapse strength analysis
was 0.01.

The modeled subassembly of the structure was subjected to
compressive displacement-controlled loading (i.e., on the points

νyx ¼ �

� cos 2θðð�112 sin 2θ�564 sin θ þ 196Þ γ13
þð72 sin 2θþ180 sin θ�324Þ γ12þð93 sin θþ165γ1Þ γ1� 4 sin 2θ�32 sin θ�28Þ
3 sin 2θðð192 sin 2θ þ644 sin θ � 196Þ γ13
þð� 96 sin 2θ � 192 sin θ þ336Þ γ12þð�93 sin θ�165Þ γ1þ 4 sin 2θþ32 sin θþ28Þ

: ð6Þ
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4 and 5 in Fig. 2b and points 5 and 6 in Fig. 2c) with free transverse
expansion. Strength was defined as the stress associated with the
plateau level in the force–displacement curve. The values of
collapse strength in each direction are denoted by Sy;θ and Sx;θ ,
where x or y denotes the strength direction and θ is the oblique
wall angle.

6. Results and discussion

6.1. Elastic modulus properties

Fig. 3a and b shows the achievable elastic modulus range in the
y and x directions as a function of wall angle, for up to 4 hier-
archical orders. The computed orthotropic elastic moduli are
normalized by the isotropic elastic modulus of zero order
unstretched honeycomb (i.e., E030). As can be seen from these
two figures, by increasing θ, elastic modulus in the y-direction
decreases to zero, while normalized x-direction modulus ðEx=E030Þ
increases to approximately 6. (The opposite behavior is seen as θ
decreases to zero.) These results are explained by the fact that as θ
approaches either 0 or 90, beam thickness reduces and bending
stiffness rapidly approaches zero. In contrast axial stiffness con-
tribution increases resulting in an overall finite modulus.

Fig. 3a and b also shows that as hierarchical order is increased, not
only the maximum elastic modulus but also the elastic modulus
range covered by each additional order increases. Values of γ for
maximum elastic modulus at each hierarchical order are provided in
the figures. These values are approximately independent of θ and the

selection of x or y. For third order hierarchy we found γ1 ¼ 0:27;
γ2 ¼ 0:13; γ3 ¼ 0:06 and for fourth order we found γ1 ¼ 0:26;
γ2 ¼ 0:13; γ3 ¼ 0:06; γ4 ¼ 0:03. The trend in γ values suggests that
when increasing the hierarchical order, the inserted edge length
which gives the stiffest structure tends to be half the edge length of
the previous hexagons (i.e., γiþ1 ¼ γi=2).

Fig. 3c compares normalized elastic moduli in the x- and
y-directions ðEy=E030 versus Ex=E030). The θ-constant contours in this
figure are shown with solid lines. As can be seen from the figure,
by increasing the order of hierarchy (n) the covered area of the
map increases. Also, for θo30o the value of Ex=E

0
30 is less than

Ey=E
0
30 so that for θo10o the value of Ex=E

0
30 is negligible

compared to Ey=E
0
30 and for θ460o the opposite is true. Therefore

the design region for bi-axial loading should be within the range of
15ooθo50o.

In order to understand the effect of hierarchical structure on
the elastic moduli of the structure, the elastic modulus for various
hierarchical structure are normalized respect to elastic moduli of
the non-hierarchical structure for various wall angle θ. Fig. 4a and
b shows the x and y elastic moduli of a first-order hierarchical
structure, now normalized by Eox;θ and Eoy;θ , the non-hierarchical
structure of the same wall angle, using data shown by a dark line
in Fig. 3a and b. Here we divided the stiffness by the stiffness of
the zero order value at the same wall angle θ, unlike Fig. 3 in which
it is divided by a constant (E030). Surprisingly, the maximum
normalized elastic moduli occur in a very narrow range of
γ1 ¼ 0:3147�0:3232 as θ varies from 0 to 90. At γ1 ¼
l1=l0 ¼ 0:32, Ey=E

o
y;θ ¼ 2ð sin 2θþ8 sin θþ7Þ=ð1:02 sin 2θþ8:12

sin θþ7:02Þ � 1:98, which varies less than 1% over the entire

Fig. 3. (a and b) The elastic modulus bandwidth of specific 1st–4th order hierarchical honeycombs, normalized by the zero-order modulus of isotropic honeycomb (i.e.,
301 wall angle) for y and x direction. (c) Surface plot of maximum x-direction and y-direction normalized elastic modulus of zero to fourth order hierarchical honeycomb.
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range of wall angle θ. The maximum elastic modulus in the
y-direction for the first order honeycomb is thus about twice that
of non-hierarchical honeycomb with the same density ratio, for all
θ angles. In contrast, while the x-direction peak elastic modulus
occurs for essentially the same hierarchical structure (same choice
of γ1), its value does depend significantly on anisotropy, i.e., θ. Both
x and y results clearly show that hierarchical refinement with
in some range of γ values always increase elastic modulus (i.e.,
exceed 1.0), regardless of the wall angle.

The data markers in Fig. 4 show the results of computational
analyses on the upper half of the subassembly defined in Fig. 2b
and c. They represent the MATLAB frame analysis results for four
different oblique wall angles and five different γ1. The results were
obtained by clamping point 3 in Fig. 2b and allowing points 1 and
2 to move horizontally due to structural symmetry. Similarly in
Fig. 2c, point 4 was clamped and points 1, 2 and 3 were confined to
move horizontally. The frame computation results show good
correlation with the theoretical results (maximum erroro1%).
The analytical results were based on using bending energy only.
In contrast frame analysis was based on considering all deforma-
tion energies, (bending, shear and stretching). The agreement
could be justified by considering that the bending energy is
dominant energy for small relative density of less than 0.01.

Fig. 4c and d shows the normalized elastic modulus for second
order hierarchy in the y- and x-directions. The results for the first
order hierarchy can be inferred from the plots in Fig. 4a and b at
γ2¼0. The derivatives of (3) with respect to γ1 ¼ l1=l0 and γ2 ¼ l2=l0

at constant density show that the maximum normalized elastic
modulus in the x- and y-directions occur at γ1 ¼ l1=l0 ¼ 0:29 and
γ2 ¼ l2=l0 ¼ 0:135, respectively (virtually independent of θ), where
Ey=E

o
y;θ � 3:52ðρ=ρsÞ3. As can be seen in Fig. 4c, the maximum

normalized elastic modulus in y-direction for γ1 ¼ 0:29 and for all
different oblique wall angles is the same. The maximum elastic
modulus in the y-direction is almost four times greater than the
elastic modulus of a regular honeycomb structure with the same
density ratio. In contrast, the maximum normalized elastic mod-
ulus in the x-direction depends on the wall angle θ. There is also a
good correlation between frame analysis results and theoretical
results (maximum erroro1%).

6.2. Shear modulus and Poisson's ratio

Based on the numerical frame analysis in MATLAB, Fig. 5a shows
the shear modulus bandwidth (Gxy=G

0
30Þ of the structure versus

oblique wall angle, θ for up to 4 hierarchical orders, where G0
30 is

the shear modulus of zero order isotropic honeycomb ðθ¼ 30oÞ.
Fig. 5a shows that by increasing hierarchical order, the possible range
of shear modulus increases and the maximum shear modulus is also
increases. The oblique wall angle for the maximum shear modulus is
approximately θ¼ 28o, for all hierarchical orders. Values of γ for
maximum modulus at each hierarchical order are virtually indepen-
dent of θ. For third order hierarchy this occurs at γ1 ¼ 0:27;
γ2 ¼ 0:13; γ3 ¼ 0:06 , and for the fourth order at γ1 ¼ 0:27; γ2 ¼
0:13; γ3 ¼ 0:06; γ4 ¼ 0:03γ3 ¼ 0:06; γ4 ¼ 0:03. The enhancement in

Fig. 4. (a and b) Normalized elastic moduli of 1st order hierarchical honeycomb for y and x direction. (b and c) Normalized elastic moduli of 2nd order hierarchical
honeycomb with γ1 ¼ 0:29, at y and x direction. The elastic moduli is normalized by that of zero order honeycomb with the same oblique wall angle θ. Data markers are the
numerical frame analysis results. Note that Ex and Ey are the same for θ ¼ 30o.
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the normalized shear modulus is noticeable as it increases from 2.59
and 5.04 for 1st and 2nd order hierarchical honeycombs to 7.87 and
10.78 for 3rd and 4th order. Just as in the previous section on the effect
of hierarchical order on the elastic modulus, the trend in γ values
which maximized the shear modulus tends to be half the edge length
of the previous hexagons (i.e., γiþ1 ¼ γi=2). Frame analysis results are
also shown which were obtained by applying the same loading
conditions as those in the analytical analysis.

Fig. 5b shows the shear modulus for first order hierarchical
structures, normalized by the modulus of the zero order structure
with that same angle. As the oblique wall angle increases, the
normalized shear modulus (Gxy=G

o
θ ) is increased slightly. When

γ1¼0.34, the shear modulus of the first order hierarchical honey-
combs increases two times of the non-hierarchical honeycombs
regardless of wall angle.

Fig. 5c shows the normalized shear modulus for second order
hierarchical structure. The maximum normalized shear modulus is
moderately dependent on oblique wall angle θ. Trends are the
same as those for structures with first order hierarchy. Adding the
second order of hierarchy makes the shear modulus almost 2 times
greater than for first order hierarchy.

Fig. 6a shows the Poisson's ratio of 1st order hierarchical
honeycomb normalized by the Poisson's ratio of zero order
honeycomb structure at the same wall angle, θ (i.e., νoyx;θ ¼
cos 2θ=ð3 sin 2θÞ). For isotropic honeycomb (θ¼ 30oÞ and γ1 ¼ 0,
νyx is equal to one. This can be attributed to the deformation of

these structures under hydrostatic pressure. Under hydrostatic
loading, beams in these structures experience only axial loading.
Since these beams are assumed to be inextensible, the Poisson's
ratio should be equal to one. However, for honeycomb with other
values of oblique wall angle, 2D hydrostatic loading results in a
different loading in beams, and thus different values for Poisson's
ratio. Furthermore, any hierarchical replacements lead to beam
bending (hence strain) so Poisson's ratio must be reduced. It was
found, νyx=νoyx;θ ffi0:5 at γ1 ¼ 0:5 for all values of θ, with the

minimum value of 0:39 for θ¼ 10o and 0:33 for θ¼ 70o at
γ1 ¼ 0:4. Fig. 6b shows the normalized Poisson's ratio of 2nd order
hierarchical honeycomb (i.e., νyx=νoyx;θÞ in y-direction with γ1 ¼ 0:29

versus γ2 for different values of oblique wall angle, θ. The value of
νyx=νoyx;θ is between 0:74 and 0:78 at γ2 ¼ 0 and between 0:35 and

0:38 at γ2 ¼ 0:21, with the minimum value between 0:29 and 0:34
at γ2 ¼ 0:17. As can be seen from these two figures, the curves
intersect at a point which correspond to locations in which
maximum elastic modulus occurs (i.e., γ1 ¼ 0:32 for the 1st order
and γ1 ¼ 0:29, γ2 ¼ 0:135 for 2nd order). Frame computations in
MATLAB are also provided for comparison with the analytical
solution. The results show a good agreement between analytical
results and the frame analysis. Although the frame analysis
considered all deformation modes in the structural components,
analytical and frame analysis are in good agreement because
bending energy is the dominant energy for low density structures.

Fig. 5. (a) The normalized shear modulus bandwidth of 1st–4th order hierarchy. (b and c) Normalized shear modulus of 1st and 2nd order hierarchy versus γ1 and γ2,
respectively. For (a) the shear modulus is normalized by that of zero order regular honeycomb (θ¼ 30oÞ, whereas for (b) and (c) it is normalized by that of zero order
honeycomb with the same oblique wall angle θ; Data markers are the MATLAB frame analysis results.
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6.3. Plastic collapse strength

Fig. 7a and b shows the normalized plastic collapse bandwidth
of 1st–4th order hierarchical honeycomb versus oblique wall

angle, θ, for y- and x-directions respectively. Here, the plastic
collapse strength is normalized by that of zero order regular
honeycomb (i.e., θ¼ 30o). These two figures show that the max-
imum achievable plastic collapse strength saturates at the 3rd

Fig. 6. (a) Poisson's ratio of 1st order hierarchical honeycomb in y-direction versus γ1 for different values of oblique wall angle, θ. (b) Poisson's ratio of 2nd order hierarchical
honeycomb in y-direction with γ1 ¼ 0:29 versus γ2 for different values of oblique wall angle, θ. Star points are the numerical frame analysis results. Note that the results are
normalized by non-hierarchical Poisson's ratio at the same angle, which varies significantly with anisotropy.

Fig. 7. (a and b) The normalized plastic collapse bandwidth of 1st–4th order hierarchical honeycomb for y and x direction (c and d) The normalized plastic collapse of 1st
order hierarchical honeycomb for y and x direction. Plastic collapse mechanisms for different values of γ are shown on the top. Note that for the plastic collapse of structure in
y-direction with oblique angle of θ¼ 10o, only two mechanisms in left and right are dominant for the whole range of γ. For (a) and (b) the plastic collapse strength is
normalized by that of zero order regular honeycomb (θ¼ 30oÞ, whereas for (c) and (d) it is normalized by that of zero order honeycomb with same oblique wall angle, θ.
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order for both y- and x-direction. The maximum plastic collapse
strength for different hierarchical orders occurs at approximately
θ¼ 28o for y-direction and at θ¼ 45o for x-direction and is nearly
independent of hierarchical order. The values of γ at which maximum
plastic collapse strength occur in each hierarchical order are virtually
independent of θ. For the second order hierarchical structure it

was found the maximum x-direction collapse strength occurred
when γ1 ¼ 0:29; γ2 ¼ 0:14 for y-direction and γ1 ¼ 0:29; γ2 ¼ 0:15
for x-direction. For the third order, the maximum strength was
achieved at γ1 ¼ 0:27; γ2 ¼ 0:14; γ3 ¼ 0:07 for both x- and y-direc-
tion strengths. The trend in γ values show that by increasing the
hierarchical order the edge length of newly generated hexagons
tends to be half the edge length of the previous hexagons (i.e.,
γiþ1 ¼ γi=2). These results show that the collapse behavior of the
hierarchical honeycomb can be improved up to the 3rd order by
increasing the hierarchical order. However, further refinement does
not make any improvement in collapse strength.

Fig. 7c and d shows the normalized x and y direction plastic
collapse strengths of a first-order hierarchical structure versus γ1 for
different values of oblique wall angle, θ. The plastic collapse strength
is normalized by that of a zero order honeycomb with same oblique
wall angle θ. The results suggest that the γ1 values corresponding to
the maximum normalized plastic collapse strength in x- or y-direc-
tion are not fixed for different oblique wall angles. For y direction, the
maximum occurs between γ1 ¼ 0:33�0:36 for the range of oblique
beam angle varying between θ¼ 70o and 10o, while for x direction it
occurs between γ1 ¼ 0:34 and 0:35 for the same range of angle. For
each curve corresponding to a fixed oblique wall angle, θ, there are
two points with slope discontinuity for the plastic collapse in the y
direction (Fig. 7c), and one point for plastic collapse in the x direction
(Fig. 7d). These points represent the locations in which the failure
mechanism and the location of plastic hinge points change by
increasing the value of γ1. Corresponding plastic collapse mechan-
isms and locations of plastic hinges for different range of γ are shown
on top of Fig. 7c and d. For the plastic collapse in the y direction as θ
decreases, the normalized plastic collapse strength increases. The
maximum normalized plastic collapse for θ¼ 10o is equal to 1.37
whereas for θ¼ 70o is equal to 1.08. Fig. 7d shows that θ¼ 30o gives
the largest normalized plastic collapse Sx=S

o
x;θ which is equal to

1.2 for the 1st order hierarchy structure.
Having the maximum plastic collapse strength at θ¼ 28o for the y

direction and at θ¼ 45o for the x direction suggests a map comparing
plastic collapse to elastic modulus. Fig. 8a and b shows the maps of
normalized collapse strength versus of normalized elastic modulus for
zero to 4th order honeycombs for θ¼ 28o in y direction and for
θ¼ 45o in x direction, respectively, obtained from the finite element
analysis. It should be noted that an nth order hierarchical honeycomb
is a special configuration of honeycombs with higher order of
hierarchy. For example, a 1st order hierarchical honeycomb is a special
configuration of 2nd order hierarchical honeycombs with, γ2 ¼ 0.
Thus, the entire colored area in Fig. 8 shows the range of achievable
elastic modulus and strength with four orders of hierarchy. Compared
to previous data given in [19] for isotropic hierarchical honeycombs,
current graphs show a larger range of achievable elastic modulus and
plastic collapse strength by stretching the structure in vertical/
horizontal direction.

Fig. 8. Plastic collapse strength versus elastic modulus for 1st, 2nd, 3rd, and 4th
order hierarchical honeycombs under uniaxial loading for (a) y-direction and
θ¼ 28oand (b) x-direction and θ¼ 45o. The plastic collapse strength and elastic
modulus are normalized by those of regular honeycomb of same density. Note that
the 1st order is shown by solid line, while higher orders are shown by areas of
different shade.

Table 1
Summary of maximum elastic modulus/strength of anisotropic hierarchical honeycombs.

Order Exðθ¼ 90oÞ Eyðθ¼ 0oÞ Gxyðθ¼ 28oÞ Sxðθ¼ 45oÞ Syðθ¼ 28oÞ

Zero Value 6.75 6.02 1.02 1.21 1.01
1st Property value 10.77 11.98 2.86 1.44 1.15

γ Values [0.32] [0.32] [0.34] [0.35] [0.34]
2nd Property value 17.48 21.20 5.04 1.67 1.27

γ Values [0.29, 0.13] [0.29, 0.13] [0.30, 0.14] [0.29, 0.15] [0.29, 0.14]
3rd Property value 25.48 32.01 7.87 1.79 1.29

γ Values [0.27, 0.13, 0.06] [0.27, 0.13, 0.06] [0.27, 0.13, 0.06] [0.27, 0.14, 0.07] [0.27, 0.13, 0.07]
4th Property value 33.92 43.5 10.78 1.79 1.29

γ Values [0.26, 0.13, 0.06, 0.03] [0.26, 0.13, 0.06, 0.03] [0.26, 0.13, 0.06, 0.03] [0.26, 0.13, 0.07, 0.03] [0.26, 0.13, 0.07, 0.03]

Maximum elastic modulus/strength values of anisotropic hierarchical honeycombs, Ex for Ex=Eo30, Ey for Ey=Eo30, Gxy for Gxy=G
o
30, Sx for Sx=S

o
30 and Sy for Sy=S

o
30.
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7. Concluding remarks

Mechanical properties of anisotropic hierarchical honeycombs
were investigated, where the term ‘anisotropic’ represents the
change of honeycomb's oblique wall angle by uniform horizontal
or vertical stretching of the underlying network, and the term
‘hierarchical’ represents the replacement of each three-edge ver-
tex of base hexagon structure with a smaller hexagon of same wall
angle. The oblique wall angle of the honeycombs and the relative
side lengths of newly generated hexagons are two key parameters
which determine the stiffness and strength of the structure, at any
fixed relative density.

The effective elastic modulus, Poisson's ratio and plastic collapse
strength of anisotropic hierarchical honeycombs were obtained as a
function of dimension ratios and wall angles of the structure. The
analytical results for the elastic part were based on Castigliano's
second theorem, and numerical frame analysis was used to validate
the analytical approach, and explore higher orders of hierarchy. The
results show that a wide range of elastic modulus and strength ratio
can be obtained for anisotropic hierarchical honeycombs by varying
geometrical parameters. Table 1 summarizes the maximum elastic
modulus/strength values of anisotropic hierarchical honeycombs at
different hierarchical orders. Increasing the hierarchy order improves
the structural performance in terms of its elastic modulus and plastic
collapse strength.
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Appendix A. Analytical modeling of elastic properties

Elastic modulus in principal directions

we use Castigliano's second theorem [34] to determine analy-
tically the elastic moduli of first and second order hierarchical
stretched honeycombs in their principal directions. The cell walls
of thickness t consist of an isotropic elastic material with elastic
modulus Es, Poisson's ratio νs and yield stress sY . Since a conven-
tional hexagonal network extending to infinity has six-fold rota-
tional symmetry, any linear second order tensorial operator (e.g.,
thermal conductivity) or linear fourth-order operator (e.g., elastic
modulus) must be isotropic. However when anisotropy is present,
the resulting ‘material’ has only two-fold rotational symmetry, and
an orthotropic elasticity tensor. The macroscopic in-plane elastic
behavior of an orthotropic material can be described by 5 constants
(i.e., Ex; Ey; νxy; νyx andGxyÞ , of which four are connected by the
reciprocal relation [35]: Exνyx ¼ Eyνxy. Here Ex and Ey are the elastic
moduli in the x and y directions normalized by material elastic
modulus Es, and νxy and νyx are orthotropic Poisson's ratios in the x
and y directions, defined as (�strain in second index direction)/
(strain in first index direction) due to uniaxial stress in first index
direction. Thus, for network angles other than 301, instead of two
elastic constants governing in-plane deformation, the structure
has four.

For the analytical investigation, each cell wall is treated as an
Euler–Bernoulli beam, and the stored bending energy is evaluated
based on the loading conditions. The modulus is determined
from unit-cell boundary point displacements. Following [18], the
far-field uniaxial stresses syy ¼ �F= ð3l0 sin ðθÞÞ or sxx ¼ �P=
ðl0 cos ðθÞÞ were imposed to determine the y- and x-direction
elastic moduli, where l0 is the oblique wall length of the under-
lying zero-order honeycomb, and θ is the oblique wall angle.

Vertical stress is equivalent to applying a vertical force F at every
cut point of a horizontal line passing through the mid-points of
oblique edges in a row of underlying (i.e., no hierarchy) hexagons
(such as points H and H' in Fig. 1a). Horizontal stress is equivalent
to applying a horizontal force P at every cut point of a vertical line
passing through the midpoints of oblique edges in a row of
underlying (i.e., no hierarchy) hexagons (such as points
V ;V

0
;V 00 and V 000 in Fig. 1a). Due to 1801 rotational symmetry, these

cut points are moment-free for any choice of uniform remote
stress components (i.e., syy; sxx and τ).

Fig. 2b shows a unit cell with 1st order hierarchy subjected to
both vertical (syyÞ and horizontal loading ðsxxÞ, however in this
section they are analyzed separately. Due to the geometrical and
force symmetry, we may apply Castigliano's method to a reduced
subassembly, namely the upper half of the unit cell. For loading in
the x- and y-directions, point 4 is subjected only to force �P in the
x direction or force �F in the y direction. (For shear loading, to be
considered later, the bottom half of the unit cell is also needed, as
shown with dotted lines, and non-symmetrical forces as shown
are also required.) Due to the structural symmetry, point 3 is
clamped for all the analysis [18]. At the subassembly centerline cut
points 1 and 2, the y-direction forces acting on the upper
subassembly are denoted by N1 and N2, and moments are denoted
by M1 and M2. There can be no horizontal force acting on the
upper half-assembly at point 1 because of reflection symmetry
about the x axis.

For the first order hierarchy, the elastic bending energy stored
in the statically indeterminate subassembly can be expressed as a
function of the external force F or P, and the force and moment N1

and M1, applied to the structure at point 1: UðF or P; M1;

N1Þ ¼∑all beams
R ðM2=ð2EsIÞÞds. Here M is the bending moment at

the location s along a cell wall, and I is the beam's area moment of
inertia, which is constant because of the uniform-thickness refine-
ment. To simplify the analysis, we have assumed the normalized
structural density to be so low that all macroscopic deformations
can be attributed solely to bending of cell walls. (Effectively, axial
and shear stiffness are taken to be infinite.)

Assuming zero vertical displacement and zero rotation at
points 1, 3, and also along the horizontal beam connecting points
2 and 3 (due to symmetry), N1 and M1 can be obtained from
∂U=∂N1 ¼ 0 and ∂U=∂M1 ¼ 0. These two relations allow N1 and M1

to be expressed algebraically in terms of F for vertical loading, or P
for horizontal loading. The displacements δy at the point 4 can
then be found from δy ¼ ∂UðFÞ=∂F

��
N1 ;M1

and δx ¼ ∂UðPÞ=∂P
��
N1 ;M1

,
which allows to obtain strains in the principal directions of
structure (for evaluating Poisson's ratio, both F and P should be
applied simultaneously).

For the second order of hierarchy, elastic energy in the section
model of Fig. 2c is obtained as a function of the external force F or
P, and unknown reaction forces and moments N1; M1; N2 and
M2 at points 1 and 2: U ¼ UðF or P; N1; M1;N2;M2Þ ¼∑all beamsR ðM2=ð2EsIÞÞdx (where N3 and M3 can be written as functions of
N1; M1;N2;M2 and F or P by means of the equilibrium equations).
N1;M1;N2 and M2 are obtained by invoking the concept of the
least work: ∂U=∂N1 ¼ 0 ; ∂U=∂M1 ¼ 0; ∂U=∂N2 ¼ 0 and ∂U=∂M2 ¼ 0.
Similar to the first order hierarchy, point 4 is clamped for all the
analysis [18].

Shear modulus

To obtain the shear modulus, we imposed far-field shear stress
τ, which gave rise to forces P ¼ �τð3l0 sin θÞ below the horizontal
cut HH0, and forces F ¼ �τðl0 cos θÞ to the left of vertical cut VV0 in
Fig. 1a. In a state of pure shear stress, P ¼ 3F � tanðθÞ. Since the
loading is not symmetric with respect to the unit cell midline, the
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full subassembly of Fig. 2b and c must be analyzed to find the
stored bending energy.

Using the same procedure as above, the bending energy stored
in a first order hierarchical structure can be expressed as a
function of the simultaneously applied external forces F and P:
U ¼UðF; PÞ. The bending moments along each side of the com-
plete hexagon are determined from a subsidiary analysis in which
it is divided at nodes 5 and 6, and then three compatibility
conditions are enforced at each of those nodes [18]. Displacements
δy and δx at point 4 can be found from: δy ¼ ∂UðF; PÞ=∂F and
δx ¼ ∂UðF ; PÞ=∂P.

Poisson's ratio

To obtain the dependence of the orthotropic Poisson's ratios on the
dimension ratio of the hierarchical structure, we again used Castiglia-
no's second theorem and analyze the upper half of the Fig. 2
subassembly. We determined νyx only, since Exνyx ¼ Eyνxy allows to
find νxy. Applying far-field stress syy ¼ �F= ð3l0 sin ðθÞÞ in a vertical
direction is equivalent to applying a vertical force F at point 4 of Fig. 2b
for first order hierarchy and at point 5 of Fig. 2c for second order
hierarchy. Here we apply the dummy horizontal force P which allows
using Castigliano's theorem to find the horizontal displacement of the
node. When P is zero, the x and y displacements of the upper node
due to force F can be expressed as follows: δx ¼ ð∂U=∂PÞjN1 ;M1 ;P ¼ 0

and δy ¼ ð∂U=∂FÞjN1 ;M1 ;P ¼ 0, where U is the bending energy stored in
the structure due the forces F and P.
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