Modeling of Between- and Within-Subject Variances using Mixed Effects Location Scale Models for Intensive Longitudinal Data

Donald Hedeker University of Chicago

hedeker@uchicago.edu

https://hedeker-sites.uchicago.edu/

Supported by National Heart Lung and Blood Institute grant R01 HL121330 (Hedeker & Dunton)

Ecological Momentary Assessment (EMA) data experience sampling and diary methods, intensive longitudinal data

- Subjects provide frequent reports on events and experiences of their daily lives (e.g., 30-40 responses per subject collected over the course of a week or so)
 - electronic diaries: palm pilots, personal digital assistants (PDAs), smart phones
- Capture particulars of experience in a way not possible with more traditional designs e.g., allow investigation of phenomena as they happen over time
- Reports could be time-based, following a fixed-schedule, randomly triggered, event-triggered

Data are rich and offer many modeling possibilities!

- person-level and occasion-level determinants of occasion-level responses \Rightarrow potential influence of context and/or environment e.g., subject response might vary when alone vs with others
- allows examination of why subjects differ in variability rather than just mean level
 - between-subjects (BS) variance e.g., subject heterogeneity could vary by gender or age
 - within-subjects (WS) variance e.g., subject degree of stability could vary by gender or age

Carroll (2003) Variances are not always nuisance parameters, *Biometrics*.

Smoking and Mood Regulation

- Mood regulation is thought to be related to smoking
- Mood regulation does not seem to necessarily be about better mood, but rather more consistent mood
- Do more frequent smokers experience mood stabilization?
- As a person increases their level of smoking across time, does their mood response to smoking get more consistent?
- ⇒ Modeling of the WS variance allows examination of these questions

Multilevel (mixed-effects regression) model for measurement y of subject i (i = 1, 2, ..., N) on occasion j $(j = 1, 2, ..., n_i)$

$$y_{ij} = \boldsymbol{x}'_{ij}\boldsymbol{\beta} + v_i + \epsilon_{ij}$$

 $\boldsymbol{x}_{ij} = p \times 1$ vector of regressors (including a column of ones)

 $\boldsymbol{\beta} = p \times 1$ vector of regression coefficients

 $v_i \sim N(0, \sigma_v^2)$ BS variance; how homogeneous/heterogeneous are subjects?

 $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$ WS variance; how consistent/erratic are the data within subjects?

Model with no covariates: $y_{ij} = \beta_0 + v_i + \epsilon_{ij}$

- v_i is subject's mean (deviation from β_0)
 - if subjects are alike, $v_i \approx 0$ and σ_v^2 will approach 0
 - if subjects are different, $v_i \neq 0$ and σ_v^2 will increase from 0
 - \Rightarrow magnitude of σ_v^2 indicates how different subjects are from each other (homogeneity/heterogeneity)
- ϵ_{ij} is subject i's error at time j (deviations from their mean)
 - if subjects are all well-fit, $\epsilon_{ij} \approx 0$ and σ_{ϵ}^2 will approach 0
 - if subjects are not well-fit, $\epsilon_{ij} \neq 0$ and σ_{ϵ}^2 will increase from 0
 - \Rightarrow magnitude of σ_{ϵ}^2 indicates how data vary within subjects (consistency/erraticism)

Log-linear models for variances

BS variance
$$\sigma_{v_{ij}}^2 = \exp(\boldsymbol{u}'_{ij}\boldsymbol{\alpha})$$
 or $\log(\sigma_{v_{ij}}^2) = \boldsymbol{u}'_{ij}\boldsymbol{\alpha}$

WS variance
$$\sigma_{\epsilon_{ij}}^2 = \exp(\boldsymbol{w}'_{ij}\boldsymbol{\tau})$$
 or $\log(\sigma_{\epsilon_{ij}}^2) = \boldsymbol{w}'_{ij}\boldsymbol{\tau}$

- u_{ij} and w_{ij} include covariates (and 1)
- subscripts i and j on variances indicate that these change depending on covariates u_{ij} and w_{ij} (and their coefficients)
- exp function ensures a positive multiplicative factor, and so resulting variances are positive

How can WS variables influence BS variance?

$$\sigma_{v_{ij}}^2 = \exp(\boldsymbol{u}_{ij}'\boldsymbol{\alpha})$$

- Do rainy days and Mondays get everyone down?
- Is Tuesday just as bad as Stormy Monday for all?
- Are all kids happy on the last day of school?

Example: strong positive effect of being alone on BS variance of positive and negative mood

⇒ being alone increases subject heterogeneity (or, subjects report more similar mood when with others)

Location Scale Model Increased Mean, Decreased BS heterogeneity, Decreased WS variance w Others 3 2 1 0 -1-3Alone W Others

- Means are increased with others
- Subjects are more similar to each other when with others (BS var)
- Within-subject data are more consistent with others (WS var)

WS variance varies across subjects

$$\sigma_{\epsilon_{ij}}^2 = \exp(\boldsymbol{w}'_{ij}\boldsymbol{\tau} + \omega_i) \quad \text{where} \quad \omega_i \sim N(0, \sigma_\omega^2)$$

$$\log(\sigma_{\epsilon_{ij}}^2) = \boldsymbol{w}_{ij}'\boldsymbol{\tau} + \omega_i$$

- $\bullet \omega_i$ are log-normal subject-specific perturbations of WS variance
- $\bullet \omega_i$ are "scale" random effects how does a subject differ in terms of the variation in their data
- v_i are "location" random effects how does a subject differ in terms of the mean of their data

Multilevel model of WS variance

$$\log(\sigma_{\epsilon_{ij}}^2) = \boldsymbol{w}_{ij}'\boldsymbol{\tau} + \omega_i$$

Why not use some summary statistic per subject (say, calculated subject standard deviation S_{y_i}) in a second-stage model?

$$S_{y_i} = \boldsymbol{x}_i' \boldsymbol{\beta} + \epsilon_i$$

latter approach

- treats all standard deviations as if they are equally precise (but some might be based on 2 prompts or 40 prompts)
- does not recognize that these are estimated quantities (underestimation of sources of variation)
- does not allow occasion-varying predictors

⇒ We use multilevel models for mean response, why not for variance?

Model allows covariates to influence

- mean: level of solid line
- BS variance: dispersion of dotted lines
- WS variance: dispersion of points

additional random subject effects on: mean and WS variance

Estimation

• SAS PROC NLMIXED (slow and must provide starting values)

Hedeker, D., Mermelstein, R.J., & Demirtas, H. (2008). An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data. *Biometrics*, 64, 627-634, *Supplemental Materials*.

• MIXREGLS freeware (faster and no starting values); also DLL is accessible via R - https://hedeker-sites.uchicago.edu

Hedeker, D. & Nordgren, R. (2013). MIXREGLS: A program for mixed-effects location scale analysis. *Journal of Statistical Software*, 52(12), 1-38.

- MIXREGLS via STATA https://www.jstatsoft.org/article/view/v059c02/0

 Leckie, G.(2014). runmixregls: A program to run the MIXREGLS mixed-effects location scale software from within Stata. Journal of Statistical Software, 59; Code Snippet 2, 1-41.
- Bayesian approach using WinBUGS or JAGS

Rast, P., Hofer, S. M., & Sparks, C. (2012). Modeling individual differences in within-person variation of negative and positive affect in a mixed effects location scale model using BUGS/JAGS. *Multivariate Behavioral Research*, 47, 177-200.

Ecological Momentary Assessment (EMA) Study of Adolescent Smokers (Mermelstein)

- 461 adolescents (9th and 10th graders); former and current smoking experimenters, and regular smokers
- Carry PDA for a week, answer questions when prompted average = 30 answered prompts (range = 7 to 71)
- $\Sigma_i^N n_i = 14,105$ total number of observations

Outcomes: positive and negative affect

Interest: characterizing determinants of affect level, as well as BS and WS affect heterogeneity

Dependent Variables

- Positive Affect mood scale (mean=6.797 and sd=1.935)
 - Before signal: I felt Happy
 - Before signal: I felt Relaxed
 - Before signal: I felt Cheerful
 - Before signal: I felt Confident
 - Before signal: I felt Accepted by Others
- Negative Affect mood scale (mean=3.455 and sd=2.253)
 - Before signal: I felt Sad
 - Before signal: I felt Stressed
 - Before signal: I felt Angry
 - Before signal: I felt Frustrated
 - Before signal: I felt Irritable
- \Rightarrow items rated on 1 (not al all) to 10 (very much) scale

Subject-level Independent Variables

	mean	std dev	min	max
Smoker	.508	.500	0	1
Male	.449	.498	0	1

- Smoker: gave at least one report of a smoking event in the week of EMA measurement (about half of the subjects)
- Male: a bit more females than males in this sample

	Positive Affect			Negative Affect			
parameter	estimate	se	p <	estimate	se	p <	
Mean							
Intercept β_0	6.743	.095	.001	3.608	.121	.001	
Male eta_1	.298	.114	.01	611	.137	.001	
Smoker eta_2	197	.115	.09	.292	.136	.032	
WS variance							
Intercept τ_0	.706	.060	.001	.824	.077	.001	
Male $ au_1$	279	.072	.001	453	.093	.001	
Smoker $ au_2$.081	.071	.26	.238	.092	.01	
BS variance							
Intercept α_0	.320	.110	.004	.891	.112	.001	
Male $lpha_1$	180	.136	.19	465	.131	.001	
Smoker $lpha_2$.215	.135	.11	.104	.130	.43	
<u>Scale</u>							
standard deviation σ_{ω}	.642	.025	.001	.820	.031	.001	
covariance $\sigma_{v\omega}$	308	.035	.001	.485	.044	.001	

Variance model coefficients

$$\sigma_{BS}^2 = \exp(\tau_0 + \tau_1 \texttt{Male} + \tau_2 \texttt{Smoker})$$

Holding Smoker constant, BS variance equals:

females: $\exp(\tau_0)$ males: $\exp(\tau_0 + \tau_1)$

- \Rightarrow male to female BS variance ratio $=\frac{\exp(\tau_0+\tau_1)}{\exp(\tau_0)}=\exp(\tau_1)$
- $\bullet \exp \tau_j = \text{variance ratio of } \sigma_{BS}^2 \text{ for a unit change in } x_j$
- $\bullet \exp \alpha_j = \text{variance ratio of } \sigma_{WS}^2 \text{ for a unit change in } x_j$

What about smoking?

- Smoker does not consider smoking level (just whether or not a subject provided at least one smoking event)
- 234 with smoking events: average=5, median=3, range = 1 to 42
- Perhaps, smoking level needs to be considered
- PropSmk = proportion of occasions (both random prompts and smoking events) that were smoking events

 $PropSmk = n_smk / (n_smk + n_random)$

Model with Smoker and Psmk

 $PropSmk = n_smk / (n_smk + n_random)$

 $N=234 \text{ with } n_smk > 0 \text{ (and Smoker} = 1)$

min = .014, 25% quartile = .05, median = .08, 75% quartile = .18

 $Psmk = 10 \times (PropSmk - min(PropSmk))$

Model: $Mood_{ij} = \beta_0 + \beta_1 Smoker + \beta_2 Psmk + \ldots + \upsilon_i + \epsilon_{ij}$

subject	Smoker	PropSmk	Psmk	mean
non-smoker	0	0	0	β_0
min smoker	1	.014	0	$\beta_0 + \beta_1$
light smoker	1	.05	0.36	$\beta_0 + \beta_1 + 0.36\beta_2$
medium smoker	1	.08	0.66	$\beta_0 + \beta_1 + 0.66\beta_2$
high smoker	1	.18	1.66	$\beta_0 + \beta_1 + 1.66\beta_2$

[⇒] piecewise linear model for means; same for BS and WS variance models

	Positive Affect		Negative Affect			
parameter	estimate	se	p <	estimate	se	p <
Mean						
Intercept β_0	6.741	.095	.001	3.605	.121	.001
Male eta_1	.305	.114	.01	606	.137	.001
Smoker eta_2	191	.140	.18	.474	.169	.005
PSmk eta_3	008	.077	.93	154	.079	.05
WS variance						
Intercept τ_0	.705	.059	.001	.820	.077	.001
Male $ au_1$	276	.071	.001	444	.092	.001
Smoker $ au_2$.159	.086	.07	.410	.112	.001
Psmk $ au_3$	068	.043	.11	148	.055	.008
BS variance						
Intercept α_0	.326	.111	.004	.890	.112	.001
Male $lpha_1$	201	.137	.15	469	.131	.001
Smoker $lpha_2$.104	.167	.54	.187	.159	.24
Psmk $lpha_3$.092	.083	27	074	.075	.32
<u>Scale</u>						
standard deviation σ_{ω}	.640	.025	.001	.814	.031	.001
covariance $\sigma_{v\omega}$	304	.035	.001	.481	.044	.001

$Summary - {\it https://hedeker-sites.uchicago.edu/page/mixregls-program-estimating-mixed-effects-location-scale-models} \\$

• More applications where interest is on modeling variance

Cursio, J.F., Mermelstein, R.J., & Hedeker, D. (under review). Latent trait shared-parameter mixed-models for missing Ecological Momentary Assessment data.

Hedeker, D. & Mermelstein, R.J. (2012). Mood changes associated with smoking in adolescents: An application of a mixed-effects location scale model for longitudinal EMA data. In G. R. Hancock & J. Harring (Eds.), Advances in Longitudinal Methods in the Social and Behavioral Sciences (pp. 59-79). Information Age Publishing, Charlotte, NC.

Hedeker, D., Mermelstein, R.J., & Demirtas, H. (2008). An application of a mixed-effects location scale model for analysis of Ecological Momentary Assessment (EMA) data. *Biometrics*, 64, 627-634.

Hedeker, D., Mermelstein, R.J., & Demirtas, H. (2012). Modeling between- and within-subject variance in EMA data using mixed-effects location scale models. *Statistics in Medicine*, 31, 3328-3336.

Hedeker, D. & Nordgren, R. (2013). MIXREGLS: A program for mixed-effects location scale analysis. Journal of Statistical Software, 52(12), 1-38.

Kapur, K., Li, X., Blood, E.A., & Hedeker, D. (2015). Bayesian mixed-effects location and scale models for multivariate longitudinal outcomes: An application to ecological momentary assessment data. Statistics in Medicine, 34, 630-651.

Li, X. & Hedeker, D. (2012). A three-level mixed-effects location scale model with an application to Ecological Momentary Assessment (EMA) data. *Statistics in Medicine*, 31, 3192-3210.

Lin, X., Mermelstein, R.J., & Hedeker, D. (under review). A three-level Bayesian mixed-effects location scale model with an application to Ecological Momentary Assessment data.

Pugach, O., Hedeker, D., Richmond, M.J., Sokolovsky, A., & Mermelstein, R.J. (2014). Modeling mood variation and covariation among adolescent smokers: Application of a bivariate location-scale mixed-effects model. *Nicotine and Tobacco Research*, 16, Supplement 2, S151-S158.

• Ordinal outcomes

Hedeker, D., Demirtas, H., & Mermelstein, R.J. (2009). A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data. *Statistics and Its Interface*, 2, 391-402.

Hedeker, D., Mermelstein, R.J., Demirtas, H., & Berbaum, M.L. (2016). A mixed-effects location-scale model for ordinal questionnaire data. *Health Services and Outcomes Research Methodology*, 16(3),117-131.

More Examples of Variance Models in Health Studies

- Lin, Raz, & Harlow (1997) Linear mixed models with heterogeneous within-cluster variances, Biometrics. Determinants of menstrual cycle length variability in women (which may be associated with fertility and long-term risk of chronic disease).
- Carroll (2003) Variances are not always nuisance parameters, Biometrics. *Drug assay* validation, measurement error in nutrient intake.
- Elliott (2007) Identifying latent clusters of variability in longitudinal data, Biostatistics. Clusters based on within-subject variation in affect of recovering MI patients.
- Elliott, Sammel, & Faul (2010) Associations between variability of risk factors and health outcomes in longitudinal studies, Statistics in Medicine. Residual variability in longitudinal recall data associated with dementia risk in elderly.
- Rast & Zimprich (2011) Modeling within-person variance in reaction time data of older adults, Journal of Gerontopsychology and Geriatric Psychiatry.
- Coffman, Allen, & Woolson (2012) Mixed-effects regression modeling of real-time momentary pain assessments in osteoarthritis (OA) patients, Health Services and Outcomes Research Methodology. Pain variability in patients with osteoarthritis.
- Breslin (2014) Five indices of emotion regulation in participants with a history of nonsuicidal self-injury: A daily diary study, Behavior Therapy.

• Need a fair amount of BS and WS data, but modern data collection procedures are good for this. Also, from analysis of Riesby depression data $(N = 66, n_i = 4 \text{ to } 6)$:

The data of the two highest and lowest scale estimates from analysis of the Riesby data

id	$\widetilde{ heta}_{2i}$	hd0	hd1	hd2	hd3	hd4	hd5
606 505	1.585 1.532						
335	-1.317 -1.365	21	21	18	15	12	10

- Simulations with small datasets (e.g., 20 subjects with 5 obs) often leads to non-convergence; this improves dramatically as numbers increase (e.g., 100 subjects with 10 obs)
- Important to include random scale for correct inference of WS variance covariates (Leckie et al., 2014, Jrn Educ Beh Stat)