
Lagrangian Mechanics: Equivalence to Newton’s Laws

We now prove that Lagrangian Mechanics is equivalent to Newton’s Second law. We find the
equations of motion for particle β, using equation (2) with the L defined in (1).

Proof : Taking the derivative of the LHS of (1) with respect to rβi , we get that
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where we have used the facts that |r|2 = r · r =
∑
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i , and that the sum collapses to α = β.

Following the Euler-Lagrange equations we set (a) equal to (b). Then we obtain, for each
component i, that
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for each particle β. Writing this more compactly in vector notation, we get
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which is Newton’s second law for particle β.
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