Maxwell's Equations

In terms of the \mathbf{E} and \mathbf{B} fields Maxwell's equations are

Maxwell's Equations

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}} \\
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

In terms of the electromagnetic field strength tensor $F^{\mu \nu}$ Maxwell's equations can be encapsulated by the single equation

Maxwell's Equations

$$
\partial_{\mu} F^{\mu \nu}=j^{\nu}
$$

where $F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$ and $A^{\mu}=(\Phi, \mathbf{A})$ is the EM 4-potential, and $j^{\nu}=(\rho, \mathbf{J})$ is the EM 4-current.

