Maxwell's Equations

In terms of the ${\bf E}$ and ${\bf B}$ fields Maxwell's equations are

Maxwell's Equations

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}.$$

In terms of the electromagnetic field strength tensor $F^{\mu\nu}$ Maxwell's equations can be encapsulated by the single equation

Maxwell's Equations

$$\partial_{\mu}F^{\mu\nu} = j^{\nu}$$

where $F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}$ and $A^{\mu}=(\Phi,\mathbf{A})$ is the EM 4-potential, and $j^{\nu}=(\rho,\mathbf{J})$ is the EM 4-current.