Special Relativity (SR) tells us that space and time always conspire to make sure that the speed of light c is the same in all inertial frames of reference.

- $\bullet \Rightarrow \mathrm{Space}$ and time transform linearly into one another
- \Rightarrow Space and time can't live in different spaces \mathbb{R}^3 , \mathbb{R} (3 space; 1 time)
- $\bullet\,\Rightarrow$ Namely, we should live in a 4D space that obeys postulates of SR

This 4D vector space called **spacetime** (or Minkowski Spacetime).

	Minkowski Space	\mathbb{R}^3
Vectors	$x = (t, x, y, z) = (t, \mathbf{x})$	$\mathbf{x} = (x, y, z)$
Vector Components	x^{μ} ($\mu = 0, 1, 2, 3$)	x^{i} $(i = 1, 2, 3)$
Dot-Product	$x \cdot y = x^0 y^0 - \mathbf{x} \cdot \mathbf{y}$	$\mathbf{x} \cdot \mathbf{y}$
Metric	diag(1, -1, -1, -1)	$\operatorname{diag}(1,1,1)$
Line element	$ds^{2} = dt^{2} - dx^{2} - dy^{2} - dz^{2}$	$ds^2 = dx^2 + dy^2 + dz^2$

Minkowski Spacetime Vs. \mathbb{R}^3