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PDEs in a geometric setting

Consider the Laplace equation

∆u = 0 in Ω ⊂ Rn.

More generally, let (M , g) be a compact Riemannian manifold
with boundary. The Laplace-Beltrami operator ∆g is

∆gu =
n∑

j ,k=1

1√
det g

∂

∂xj

(√
det g g jk ∂u

∂xk

)

where g = (gjk(x)), g−1 = (g jk(x)).

Models an inhomogeneous medium.



1. Calderón problem

Electrical Resistivity Imaging in geophysics (1920’s) [image: TerraDat]

A.P. Calderón (1980):

I mathematical formulation

I solution of the linearized problem



1. Calderón problem (elliptic PDE)

Laplace-Beltrami equation{
∆gu = 0 in M ,

u = f on ∂M

where (M , g) is a compact Riemannian manifold with
boundary (g ! electrical conductivity).

Boundary measurements given by the
Dirichlet-to-Neumann (DN) map

Λg : C∞(∂M)→ C∞(∂M), f 7→ ∂νu|∂M .

Inverse problem: given Λg , recover g .



1. Gel’fand problem

Exploration seismology:

I.M. Gel’fand (1950s):

I 1D inverse scattering (Gel’fand, Levitan, Marchenko)

I proposed the question for n ≥ 2



2. Gel’fand problem (hyperbolic PDE)

Wave equation (g ! sound speed)
(∂2

t −∆g )u = 0 in M × (0,T ),
u = f on ∂M × (0,T )

u|{t<0} = 0

where (M , g) is compact with boundary.

Boundary measurements given by the
hyperbolic DN map

ΛHyp
g : f 7→ ∂νu|∂M×(0,T ).

Inverse problem: given ΛHyp
g , recover g .



3. X-ray transform problems

X-ray computed tomography:

Recover a function f (x) from its integrals over straight lines
[Radon 1917]. Seismic imaging: lines are replaced by geodesics.



3. X-ray transform / scattering relation

Try to recover a function f in (M , g) from its
geodesic X-ray transform If , where

If (γ) =

∫
γ

f dt, γ maximal geodesic.

Related scattering rigidity problem: recover
(M , g) from its scattering relation αg , relating
initial and final data of maximal geodesics:

αg : (x , v) 7→ αg (x , v)

Can formulate both questions in terms of (transport) PDEs.
These are highly nonlinear questions related to linear PDEs!



Connections

Unexpected connections in special geometries:

I Calderón problem reduces to geodesic X-ray transform
[Dos Santos-Kenig-S-Uhlmann 2009]

I Calderón problem reduces to Gel’fand problem
[Dos Santos-Kurylev-Lassas-S 2016]

I scattering rigidity problem reduces to Calderón problem
[Pestov-Uhlmann 2005]

What are the general structural conditions and mechanisms
behind this?



Goal

Propose to study inverse problems for general differential
operators. Hope to understand:

I structural conditions for treating classes of operators

I fundamental mechanisms for solving inverse problems

I the extent to which it is possible to push existing
methods.

Approach in the spirit of general theory for linear PDEs
[Hörmander 1983–1985]. Earlier results for constant coefficients
[Isakov 1991, . . . ].

We will consider variable coefficients (=microlocal analysis).
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Real principal type operators

Let M be compact with boundary. A differential operator P on
M , of order m ≥ 1, is real principal type if

I it has real principal symbol σpr(P) = pm,
1 and

I the null bicharacteristic flow is nontrapping.

Null bicharacteristic curves γ(t) = (x(t), ξ(t)) are integral
curves of Hamilton field Hpm in p−1

m (0). They solve the ODE{
ẋ(t) = ∇ξpm(x(t), ξ(t)),

ξ̇(t) = −∇xpm(x(t), ξ(t)).

Nontrapping means that any such γ(t) reaches ∂M in finite
time in both directions.

1If P =
∑
|α|6m pα(x)Dα, then σpr(P) =

∑
|α|=m pα(x)ξα.



Null bicharacteristics

Wave operator ∂2
t −∆ Tricomi operator x2D

2
x1

+D2
x2



Real principal type operators

Examples:

I real vector fields with no trapped integral curves

I wave operator in M × (0,T ), Lorentzian wave operators
with nontrapping condition, strictly hyperbolic operators

I Tricomi type operators, e.g. x2D
2
x1

+ D2
x2

I Schrödinger operator i∂t + ∆, plate equation ∂2
t + ∆2

with suitable (anisotropic) weighting for ∂t

Real principal type operators can be microlocally conjugated
to normal form Dx1 . Singularities of solutions propagate along
null bicharacteristics, solvability theory for Pu = f
[Duistermaat-Hörmander 1972].



Boundary measurements

It is not clear how to define an analogue of DN map for a
general operator. However, we consider the Cauchy data set

CP = {(u|∂M , . . . ,∇m−1u|∂M) ; Pu = 0 in M , u ∈ Hm(M)}.

This is equivalent to knowing the DN map e.g. in the Calderón
and Gel’fand problems.

Inverse problem: given CP , determine information about P .

From now on, all operators will be real principal type in M .



Determining (sub)principal information

Theorem 1
If CP1 = CP2 and if P1 = P2 to
infinite order on ∂M , then

αP1 = αP2

where αP is the bicharacteristic scattering relation, mapping an
initial point of a maximal null bicharacteristic to its final point.

Moreover, if P1 and P2 have the same principal symbol, then

exp

[
i

∫
σsub(P1)(γ(t)) dt

]
= exp

[
i

∫
σsub(P2)(γ(t)) dt

]
for any maximal null bicharacteristic γ in T ∗M .



Lower order coefficients

The conclusion exp[i
∫
· · · ] = exp[i

∫
· · · ] is equivalent with∫

σsub(P1)(γ(t)) dt =

∫
σsub(P2)(γ(t)) dt mod 2πZ.

This is related to the Aharonov-Bohm effect in determining
subprincipal terms on domains with nontrivial topology. For
lower order coefficients, this effect does not appear:

Theorem 2 (Bicharacteristic ray transforms)
If CP+Q1 = CP+Q2 where Qj are operators of order ≤ m − 2,
then ∫

σpr(Q1)(γ(t)) dt =

∫
σpr(Q2)(γ(t)) dt

for any maximal null bicharacteristic γ in T ∗M .



Real principal type operators

The results are general: they extend results for wave equations
[Rakesh-Symes 1988, . . . , Stefanov-Yang 2018], and are valid for

I operators of any order, with real principal symbol and
nontrapping condition (no wellposedness assumptions)

I any maximal bicharacteristic, even with cusps (Tricomi)
and tangential reflections

However, the results are conditional: in order to recover
coefficients of P , one still needs to analyze the scattering
relation αP or bicharacteristic ray transforms.



Boundary determination

Determine Taylor serier of coefficients of P at null points
(x , ξ) ∈ T ∗(∂M), based on zeros of characteristic polynomial

t 7→ pm(x , ξ + tν).

Two methods:

1. Elliptic region. If there is a simple non-real zero, use
exponentially decaying solutions (analogue of boundary
determination for Laplace equation).

2. Hyperbolic region. If there are two distinct real zeros, use
solutions concentrating near two null bicharacteristics
(analogue of boundary determination for wave equation).



Boundary determination

Theorem 3 (Determining Taylor series of a potential)
If V1,V2 ∈ C∞(M) and CP+V1 = CP+V2 , then

∇kV1(x0) = ∇kV2(x0), k ≥ 0,

at any x0 ∈ ∂M so that for some ξ ∈ T ∗x (∂M), the map
t 7→ pm(x0, ξ + tν) either has a simple non-real root, or two
distinct real roots1.

In particular, if M and Vj are real-analytic and there is one
such x0, then V1 = V2 everywhere in M .

1with corresponding bicharacteristics intersecting nicely at x0



Boundary determination

Observations:

I boundary determination in general not possible for m = 1

I even for wave equation, can do boundary determination in
the elliptic region as for elliptic operators (local argument)

I boundary determination in the hyperbolic region is global
in character



Nonlinear equations

If q ∈ C∞(M), consider the semilinear equation

Pu + q(x)uk = 0 in M .

Let C small
q be the Cauchy data set for small solutions.

Theorem 4 (Semilinear equations)
Let q1, q2 ∈ C∞(M) and k ≥ 3. If C small

q1
= C small

q2
, then

q1 = q2 in B where

B = {x ∈ M ; there are two null bicharacteristics that

intersect only once at x transversally}.

Nonlinearity helps (proof fails if k = 1)! Wave equations:
[Kurylev-Lassas-Uhlmann 2018, Lassas-Uhlmann-Wang 2018, Hintz-Uhlmann 2018]



Nonlinear equations

Can recover the coefficient q(x) in the set

B = {x0 ∈ M ; there are two null bicharacteristics that

intersect only once at x0 transversally}.

If there is a nice1 bicharacteristic γ(t)
through x0 having a variation field only
vanishing at t = 0, can recover q(x0).

Works e.g. if some γ(t) through x0

has ”no conjugate points”. May fail if
there is a ”maximally conjugate” point.

1nontangential, no cusp at x0, x(t) does not self-intersect
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Methods

1. Use Cauchy data of special solutions concentrating along
a null bicharacteristic (propagation of singularities).

2. For boundary determination, also use exponentially
decaying solutions concentrating at a boundary point.

3. Use integral identities and a mix-and-match construction
to pass from Cauchy data set CP to scattering relation /
bicharacteristic ray transforms / pointwise information.



Quasimode construction

Theorem 5
Let P have real principal symbol in an open mfld X , and let
γ : [0,T ]→ T ∗X be an injective null bicharacteristic segment.
There is u = uh ∈ C∞c (X ) with

WFscl(u) = γ([0,T ]), WFscl(Pu) = γ(0) ∪ γ(T ),

having semiclassical defect measure (with cγ(t) > 0)

lim
h→0

(Oph(a)uh, uh)L2(X ) =

∫ T

0

a(γ(t))cγ(t) dt

whenever a ∈ S0 vanishes near endpoints of γ.

Semiclassical counterpart of [Duistermaat-Hörmander 1972].



Quasimode construction

WFscl(Pu) = γ(0) ∪ γ(T ) =⇒ Pu = O(h∞) in M



Methods for constructing quasimodes

1. Locally, enough to use geometrical optics:

uh(x) = e iϕ(x)/ha(x)

where ϕ is real and pm(x , dϕ(x)) = 0 (eikonal equation).

2. No cusps (ẋ(t) 6= 0): can use a Gaussian beam construction

uh(x) = e iΦ(x)/ha(x)

where Φ is complex and solves eikonal equation to infinite
order on the curve x(t). Main point: ∇2Φ|x(t) solves a matrix
Riccati equation and Im(∇2Φ) > 0.



Quasimodes [Duistermaat-Hörmander 1972]

3. If γ(t) is injective but may have cusps, can straighten γ(t)
in phase space by a canonical transformation χ.

Multiply P by an elliptic ΨDO so that P becomes of order 1.
Construct Fourier integral operators A,B such that

BPA ≈ Dx1 microlocally near γ.

Quasimode U for Dx1 =⇒ u = AU is a quasimode for P .



Quasimodes (direct construction)

4. Think of quasimodes as superpositions of wave packets

≈ e i
ξ(t)·(x−x(t))

h e−
|x−x(t)|2

2h at x(t) oscillating in direction ξ(t).

Look for uh with Puh = O(h∞) directly in the form

uh(x) =

∫ T

0

e iΦ(x ,t)/ha(x , t) dt.

Cf. Gaussian beam construction along (x(t), t) in X × R.



Future directions

1. Inversion of scattering relation αP? If P = Xg ,1 studied in
[Pestov-Uhlmann 2005, Stefanov-Uhlmann-Vasy 2017].

2. Inversion of bicharacteristic ray transform? Cf. geodesic ray
transform [Uhlmann-Vasy 2016, Paternain-S-Uhlmann 2015] (P = Xg ),
and light ray transform [Lassas et al 2019] (P = 2g ).

3. Results for mild trapping? For P = Xg and hyperbolic
trapping, studied in [Guillarmou / Guillarmou-Monard 2017].

4. Can one associate a symbol directly to CP?

5. The results are in the spirit of using singularities of the
integral kernel of DN map. Can one extract information from
the C∞ part of the kernel?

1geodesic vector field on unit sphere bundle


