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Scattering by an Inhomogeneous Media
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Let the incident field ui := v satisfy

∆v + k2v = 0 in R3.

The total field u = us + v satisfies

∆u + k2(1 + m(x))u = 0 in R3.

and the scattered field us is outgoing, i.e. satisfies

lim
r→∞

r
(
∂us

∂r
− ikus

)
= 0

The contrast in the medium m ∈ L∞(R3) has support D and

m = <(m) +
i
k
=(m), 1 + <(m) > 0 and =(m) ≥ 0.

k > 0 is the wave number proportional to the frequency.



Scattering by an Inhomogeneous Media

The scattered field us ∈ H2
loc(R3) satisfies

∆us + k2(1 + m)us = −k2mv in R3

and for =(k) ≥ 0 it has the asymptotic behavior

us(x , k) =
eikr

r
u∞(x̂ ; k) + O

(
1
r2

)
as r := |x | → ∞

The function u∞(x̂ ; k), x̂ := x/|x | is the far field pattern.

Question: Is there an incident field v that does not scatter?

Rellich’s Lemma: u∞(x̂ ; k) = 0 implies us(x ; k) = 0.



Scattering Operator

In particular, we consider free space waves as incident field v , i.e
entire solutions to Helmholtz equation in R3 satisfying

‖v‖B∗ := sup
R>0

1√
R
‖v‖L2(BR) <∞

Such solutions have the asymptotic behavior:

v(x ; k) =
eikr

r
Θ(x̂ ; k) +

e−ikr

r
Θ(−x̂ ; k) + O

(
1
r2

)
as r := |x | → ∞

The scattering operator for k ∈ C with =(k) ≥ 0 is

Sk : Θ(x̂ ; k) 7→ u∞(x̂ ; k)

The scattering operator has a meromorphic continuation to k ∈ C.

Non-scattering question is related to the kernel of scattering operator.



Example of Spherical Geometry
Consider scattering of v = j`(k |x |)Y`(x̂) by the ball B1(0) and m(r) real

us(x) :=
C(k ; m, `)
W (k ; m, `)

h(1)
` (k |x |)Y`(x̂), u∞(x) :=

C(k ; m, `)
W (k ; m, `)

1
k

Y`(x̂)

C(k ; m, `) = Det
(

y`(1; k ,m) j`(k)
y ′`(1; k ,m) kj ′`(k)

)

W (k ; m, `) = Det

(
y`(1; k ,m) h(1)

` (k)

y ′`(1; k ,m) kh(1)′

` (k)

)
with y`(r ; k ,m) the solution (regular at r = 0) of

y ′′ +
2
r

+

(
k2(1 + m(r))− `(`+ 1)

r2

)
y = 0.

If k is such that C(k ; m, `) = 0 then v = j`(k |x |)Y`(x̂) does not scatter.

Such k are non-scattering wave numbers.



The Eigenvalue Transmission Problem

These non-scattering wave numbers are eigenvalues of the
transmission eigenvalue problem:

∆v + k2v = 0, |r | < 1
∆u + k2(1 + m(r))u = 0, |r | < 1

u = v |r | = 1
∂u
∂r

=
∂v
∂r

|r | = 1

These eigenvalues are called the transmission eigenvalues

For spherically symmetric inhomogeneities the set of transmission
eigenvalues coincide with the set of non-scattering frequencies.



Results for Spherical Geometry

Provided m(1) 6= 0 one can prove:

There exist an infinite set of real and complex transmission
eigenvalues.

All transmission eigenvalues lie in a strip |=(k)| < C.

Weyl’s law: Asymptotic number of all transmission eigenvalues
in |k | < r is of order r3 + O(r2+ε), whereas of transmission
eigenvalues with spherically symmetric eigenfunctions, i.e. for
` = 0 is of order r .

Inverse spectral problem: All transmission eigenvalues (counting
multiplicity) uniquely determine m(r). Transmission eigenvalues
with spherically symmetric eigenfunctions, i.e. for ` = 0,
(counting multiplicity) uniquely determine m(r) < 0.

Cakoni-Colton-Gintides (2010), Aktosun-Gintides-Papanicolaou (2011), Colton-Leung (2012), (2013)

Colton-Leung-Meng (2015), Sylvester (2013), Petkov-Vodev (2016).



Transmission Eigenvalues in General
Question: Is there an incident field v that does not scatter?

Recall ∆us + k2(1 + m)us = −k2mv in R3. If yes, us ∈ H2
0 (D), hence

v |D and u solve:

The transmission eigenvalue problem

∆v + k2v = 0 in D
∆u + k2(1 + m)u = 0 in D

u = v on ∂D
∂u
∂ν

=
∂v
∂ν

on ∂D

Values of k ∈ C for which the transmission eigenvalue problem
has a non trivial solution are called transmission eigenvalues

A transmission eigenvalue is a non-scattering wave number if
the part v of the eigenfunction solves the Helmholtz equation in
all of R3.



Transmission Eigenvalues in General
More generally for Aj ∈ (L∞(D))d×d , nj ∈ L∞(D)

∇ · A1∇v + k2n1v = 0 in D
∇ · A2∇u + k2n2u = 0 in D

u = v on ∂D
ν · A2∇u = ν · A1∇v on ∂D

The transmission eigenvalue problem was first introduced in
KIRSCH (1986), COLTON-MONK (1988)

From first results on the existence of real transmission eigenvalues
PÄIVÄRINTA-SYLVESTER (2009), CAKONI-GINTIDES-HADDAR (2010)

the subject has taken a multitude of directions:

F. CAKONI, D. COLTON, H. HADDAR, Inverse Scattering Theory and Transmission Eigenvalues, CBMS-SIAM
(2016)

D. COLTON, R. KRESS, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, 4th Edition
(2019).



The State-of-the-Art of the TEP

Discreteness

1 m ∈ L∞(D) and <(m) does not change sign in a neighborhood
of ∂D or coefficients are smooth only near the boundary, and

2 A1, A2, n1, n2 are C1 only near ∂D and real-valued
i) A1,A2 satisfy the complementing boundary condition, i.e.,

for all ξ · ν = 0 where ν is the normal vector to ∂D

〈A2ν, ν〉〈A2ξ, ξ〉−〈A2ν, ξ〉2 6= 〈A1ν, ν〉〈A1ξ, ξ〉−〈A1ν, ξ〉2 on ∂D

ii)
〈
A2ν, ν

〉
n2 6=

〈
A1ν, ν

〉
n1 on ∂D.

BONNET-BEN DHIA-CHESNEL-HADDAR (2011), SYLVESTER (2012), CAKONI-HADDAR-MENG (2015),

LAKSHTANOV-VAINBERG (2015), KIRSCH (2016), NGUYEN-NGUYEN (2016), CAKONI-NGUYEN (2020)

Open Problems

Is the spectrum of the transmission eigenvalue problem still discrete if
m changes sign up to the boundary?



The State-of-the-Art of the TEP

Existence

1 Existence of real TE and monotonicity properties: If
m ∈ L∞(D), m real and of one sign uniformly in D
A1 − A2 of one sign uniformly in D and n1 = n2
or both A1 − A2, n1 − n2 of one sign uniformly in D

PÄIVÄRINTA-SYLVESTER (2009), CAKONI-GINTIDES-HADDAR (2010), CAKONI-KIRSCH (2010)

2 Existence and completeness of generalized eigenfunctions for
m ∈ C∞(D) real and m 6= 0 on ∂D.
BLÅSTEN-PÄIVÄRINTA (2013), ROBBIANO (2013), HADDAR-MENG (2018) (for Maxwell’s)

Open Problems

Do complex transmission eigenvalues exist for general media?

Do real transmission eigenvalues exists for media with one sign
contrast only near the boundary?

Spectral analysis for m = <(m) + i/k=(m) is open.



The State-of-the-Art of the TEP

Location of Transmission Eigenvalues in the Complex Plane

1 If m ∈ C∞ and m 6= 0 on ∂D, all TEs satisfy |=(k)| < C.

2 If A1, A2, n1, n2 are scalar in C∞, all TEs lie in a strip if

(A1 − A2)(A1n1 − A2n2) < 0, on ∂D

and the imaginary part of TEs grow at most logarithmically if

(A1 − A2)(A1n1 − A2n2) > 0, and A1n2 6= A2n1 on ∂D

HITRIK-KRUPCHYK-OLA-PÄIVÄRINTA (2011), VODEV (2018), CAKONI-NGUYEN (2020) (for Maxwell equations)

Weyl’s Asymptotics

# {TE in the ball Br (0)} ∼ 1
6π2

(
1 +

∫
D(1 + m)3/2

)
r3 as r →∞

PHAM-STEFANOV (2011), LAKSHTANOV-VAINBERG (2013), ROBBIANO (2016), PETKOV-VODEV (2017), VODEV (2018)



The State-of-the-Art of the TEP

Transmission Eigenvalues and Non-scattering Frequencies

Can the part v of the eigenfunctions (corresponding to the
background) extend outside D as solution to the background
equation?

1 If D is a ball all transmission eigenvalues are non-scattering
frequencies

2 If D has a corner there exits NO non-scattering frequencies
(exceptional open case appear in R3 and for the case with A, n)

Inability to extend v outside D is related to unique determination of
the support of inhomogeneity D with one incident wave.

BLÅSTEN-PÄIVÄRINTA-SYLVESTER (2014), HU-SALO-VESALAINEN (2016), BLÅSTEN-LIU (2016),

PÄIVÄRINTA-SALO-VESALAINEN (2017), ELSCHNER-HU (2018), BLÅSTEN-LIU-XIAO (2017), CAKONI-XIAO (2019)

Open Problems

What happens between D being a ball and D being non-smooth?



Non-reflected, Non-transmitted Modes in Waveguides

Thanks to Luca Chesnel, CMAP [Click]

A-S BONNET-BEN DHIA, L. CHESNEL AND V. PAGNEUX, Trapped modes and reflectionless modes as
eigenfunctions of the same spectral problem (2018).

http://www.cmapx.polytechnique.fr/~chesnel/Documents/Gif/Extatique.gif


Scattering Theory in Hyperbolic Geometry

The concept of transmission eigenvalues can also be considered
in connection with scattering theory for automorphic solutions of
the wave equation in the hyperbolic plane with isometries
corresponding to a specific group.

Faddeev-Pavlov (1972) made a connection between: harmonic
analysis of automorphic functions with respect to group SL2(R),
scattering theory for non-Euclidean wave equations, and
Selberg’s pioneering work (1956) on spectral theory for compact
and finite-area Riemann surfaces.

Lax-Phillips (1976) redid this work and further developed it in
particular for non-compact hyperbolic domains of finite area,
which led to more recent development of scattering theory for
hyperbolic surfaces of infinite area.



Scattering Theory in Hyperbolic Geometry

Limited to automorphic forms with respect to Fuchsian groups of the
first kind that has only cusps at infinity, scattering theory has profound
connection to fundamental results from analytic number theory.

H. IWANIEC, Spectral Methods of Automorphic Forms, AMS (2014).



Hyperbolic Plane

H =
{

z = x + iy : x ∈ R, y ∈ R+
}
.

H is a Riemannian manifold with the complete metric

ds2 = y−2(dx2 + dy2)

This differential form on H is invariant with respect to Möbius
transformations SL2(R) acting on the whole compactified
complex plane Ĉ, which are fractional linear functions

g(z) =
az + b
cz + d

a,b, c,d ∈ R, ad − bc = 1

H is obtained as the orbit of a point (modulo of rotation)

H = Gz = {gz : g ∈ SL2(R)}



Hyperbolic Surface

Given large isometry group of H, a natural way to obtain a hyperbolic
surface is by a quotient Γ \H (the sets of orbits), for some subgroup Γ
of PSL2(R) := SL2(R) \ (±I).

A fundamental domain F := Γ \H is a region in H, whose distinct
points are not equivalent (different modulo Γ) and any orbit Γz for
some z ∈ H, contains points in the closure of F in the Ĉ topology.

f : H→ C is called automorphic with respect to Γ if

f (γz) = f (z) for all γ ∈ Γ,

i.e. f lives on F := Γ \H.



Fuchsian Groups of First Kind

A Fuchsian group Γ is a discrete subgroup of PSL2(R), or
equivalently (due to Poincaré) that acts discontinuously on H
(the orbit Γz := {γz : γ ∈ Γ} of any z ∈ H has no limit point in H)

Fuchsian group Γ is of the first kind if every point of ∂H = R̂ is a
limit (in the Ĉ-topology) of the orbit Γz for some z ∈ H. In
particular they have a fundamental domain of finite volume.

We further consider Fuchsian groups of type I that are non
co-compact, i.e the closure in Ĉ of the fundamental domain is
not compact.

For such groups a fundamental domain F must have at least a vertex
on R̂ that is a cusp, where the two sides of F are meeting at this
vertex orthogonally to R̂. F can be chosen as a polygon all of whose
cuspidal vertices are inequivalent.



Examples of Fuchsian Group of First Kind

Two equivalent fundamental domains

Example (Modular Group)

SL2(Z) is the subgroup of 2× 2
matrices with integer entries.

Example γ1 =

(
0 1
−1 0

)
∈ SL2(Z),

which acts according to z → − 1
z .

Fundamental domain has one
(non-equivalent) cusp.

Applying γ1 to F we get an equivalent fundamental domain to F by
periodicity, F1 = γ1F .

F is Ford fundamental domain, the image of F under Γ tesselate H



Examples of Fuchsian Group of First Kind

Example (Principal Congruence Group)

Γ(N) :=

γ =

(
a b
c d

) ∣∣∣∣∣∣∣∣∣∣
a,b, c,d ∈ Z, ad − bc = 1

a ≡ d ≡ 1 (mod N)

b ≡ c ≡ 0 (mod N)


The number of inequivalent cusps is h = N2 ∏

p/N
(1− p−2)

The fundamental domain for Γ(2). Three non-equivalent cusps at
z = 0 and z =∞ and z = 1 (z = ±1 are equivalent).



Examples of Fuchsian Group of First Kind

Example (Hecke Congruence Group)

The Hecke congruence subgroups Γ0(N) and Γ1(N) of level N are
defined as

Γ0(N) =

{
γ ∈ SL2(Z), γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
and

Γ1(N) =

{
γ ∈ SL2(Z), γ ≡

(
1 ∗
0 1

)
(mod N)

}
,

respectively.

If N is prime than Γ0(N) has only two inequivalent cusps at 0 and∞.

One has the following inclusions as subgroups

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z)



Waves in Hyperbolic Plane

The Laplace-Beltrami operator in this case is

∆Hu := y2
(
∂2u
∂x2 +

∂2u
∂y2

)
.

Governing equation of wave propagation on the hyperbolic plane H is

∆Hu + s(1− s)u = 0 or y2∆u + s(1− s)u = 0.

Solutions ys and y1−s, s ∈ C are invariant under z 7→ z + 1.

If =(s) > 0, =(1− s) < 0 then ys is incoming (away from the cusp)
and y1−s is outgoing (toward the cusp): ys satisfies

∂u
∂ν

∣∣∣∣
H
− su = y

∂u
∂y
− su = 0.



Scattering by Fundamental Domain

Given a fundamental domain Γ \H and <(s) > 1, and incoming wave
sent at a cusp a, the scattering problem for u := ys + uscat reads

y2∆u + s(1− s)u = 0, z = (x , y) ∈ F := Γ \H
u(γz) = u(z), z ∈ ∂F , γ ∈ Γ

∂u
∂ν

(γz) =
∂u
∂ν

(z) z ∈ ∂F , γ ∈ Γ.

Scattering happens because the outgoing free wave package ys

needs to be periodified on F .



Scattering by Fundamental Domain

For <(s) > 1, the above problem has a solution given by Eisenstein
series, such that, as y →∞ within the cusp a uniformly in z ∈ H

u = δabys + ϕab(s)y1−s + O((1 + y−<(s))e−2πy )

δab is Kronecker delta, vanishing when a,b are inequivalent cusps.

In a similar manner as for the Euclidean scattering operator S, here
the "incoming-outgoing" scattering matrix is

Φ(s) := (ϕab(s)) , where a and b run over all cusps,

The scattering matrix has a meromorphic continuation to s ∈ C
(Maass-Selberg)



Explicit Scattering Matrix

Theorem (Scattering Matrix)

For F := SL2(Z) \H

ϕ∞∞ = π1/2 Γ(s − 1
2 )

Γ(s)

ζ(2s − 1)

ζ(2s)

where ζ(s) is the Riemann zeta function.

For the cusp a :=∞ and Γ := Γ(N) we have that

ϕ∞∞(s) = π1/2 Γ(s − 1
2 )

Γ(s)

ζ(2s − 1)

ζ(2s)

ϕϕϕ(N)

N4s

∏
p/N

(
1− 1

p2s

)−1


where ϕϕϕ(N) is Euler’s totient function.

Note that here the scattering matrix is (Φ(s))h×h and we
compute only one entry.



Explicit Scattering Matrix

Theorem (Scattering Matrix)

The scattering matrix for Γ0(p), p prime, is

Φ(s) =

(
ϕ∞∞ ϕ∞0
ϕ0∞ ϕ00

)
= ψ(s)Np(s)

where

ψ(s) = π1/2 Γ(s − 1
2 )

Γ(s)

ζ(2s − 1)

ζ(2s)

and

Np(s) =
(
p2s − 1

)−1
(

p − 1 ps − p1−s

ps − p1−s p − 1

)
.



Transmission Eigenvalues

Example (Definition of Transmission Eigenvalues)

A transmission parameter for the cusp a is s ∈ C such that

ϕaa(s) = 0.

Such s is said to be a transmission parameter for the transmission
eigenvalue s(1− s).

In this definition we ask for invisibility to backscattering data at the
cusp a.

Remark: One could also ask that all the the entries of the scattering
matrix Φ(s) := (ϕab(s)) are zero. While it is proven that poles of the
main diagonal terms are also poles for off-diagonal terms (see
Iwaniec’s book), this is open for the zeros.



Location Transmission Eigenvalues

Γ(s − 1
2 )

Γ(s)

ζ(2s − 1)

ζ(2s)
= 0 λ := s(1− s)

s = 1 and s = 1/2 are the trivial zeros (only 2 real transmission
eigenvalues λ = 1 and λ = 1/4).
The rest of the transmission eigenvalues come from non-trivial zeros,
i.e. ζ(2s − 1) = 0 such that =(2s − 1) 6= 0.

For the above arithmetic gorups, the
Riemann hypothesis is equivalent to the
statement that all transmission
eigenvalues lie on the parabola

x = 3/16 + 4y2

except for the trivial eigenvalues λ = 0
and λ = 1/4



Weyl’s Law for Transmission Eigenvalues

Let Nλ(r) be the number of TE λ := s(1− s) such that |λ| < r

Using Riemann-Von Mangoldt on the zeros of the Riemann zeta
function, we can show

If Γ is any of the arithmetic groups above

Nλ(r) ∼
√

r
2π

log
r

π2e2 + O(log r), r →∞

For general discrete groups, Poisson-Jenssen formula for entire
functions applied to ϕaa(s) which has at most order 2, gives

Nλ(r) ≤ Cr1+ε, ∀ε > 0 and
∑
λ

1
|λ|1+η

< +∞, ∀η > 0



Counting of Transmission Eigenvalues

Define the density for transmission eigenvalue λ = s(1− s)

ρ = lim sup
r→∞

log |{λ : |λ| < r}|
log r

.

The above discrepancy on the counting function translates to

ρ = 1
2 + ε, ∀ε > 0, for Γ any of the arithmetic groups above

Here ϕaa(s) is meromorphic of order 1

ρ ≤ 1 + ε for general discrete groups Γ.

Here ϕaa(s) is meromorphic of order at most 2

Thus ρ is tied in with the existence of cusp forms which relies on the
growth order of ϕaa(s).

R. S. PHILLIPS, P. SARNAK, On cusp forms for cofinite subgroups of PSL2(R), Invent. Math., (1980).
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for hyperbolic surfaces Γ/H with Γ Fuchsian groups of type II. Such
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scattering matrix is a pseudo-differential operator.

D. BORTHWICK, Spectral Theory of Infinite Area Hyperbolic Surfaces, Birkhäuser (2000).
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