Asymptotically Euclidean metrics without conjugate points are flat

Colin Guillarmou

CNRS and Univ. Paris Sud

June 28, 2020

Guillarmou (CNRS and Paris Sud)

Rigidity of the flat metric

Conjugate points

Let (M, g) be a complete Riemannian manifold.

We say that $x, x' \in M$ are conjugate points if:

- \exists a geodesic $\gamma(t)$ so that $\gamma(0) = x$, $\gamma(1) = x'$
- \exists a Jacobi vector field Z along γ so that Z(0) = 0 and Z(1) = 0.

Recall: Jacobi field Z means

$$abla^2_{\partial_t} Z(t) + R(Z(t),\dot{\gamma}(t))\dot{\gamma}(t) = 0$$

if R is curvature tensor.

An alternative definition for conjugate points:

Let $\varphi_t : SM \to SM$ is the geodesic flow on the unit tangent bundle SM, $\pi : SM \to M$ the projection and $V = \ker d\pi$ the vertical bundle.

Then x and x' are conjugate points if:

•
$$\exists v \in S_x M, v' \in S_{x'} M, \exists t_0 \geq 0, \varphi_{t_0}(x, v) = (x', v')$$

•
$$d\varphi_{t_0}(V) \cap V \neq 0.$$

Property: no conjugate points implies that $\forall x, x'$, there is a unique geodesic joining x, x' (if M simply connected).

Asymptotically Euclidean metrics

On \mathbb{R}^n , a (smooth) Riemannian metric g is said asymptotically Euclidean to order m if

$$g = g_0 + \frac{1}{|x|^m} \sum_{i,j=1}^n a_{ij} \left(\frac{1}{|x|}, \frac{x}{|x|}\right) dx_i dx_j$$

where $g_0 = \sum_{j=1}^n dx_i^2$ is Euclidean and $a_{ij} \in C^\infty([0,1] imes \mathbb{S}^{n-1}).$

This means homogeneous expansion in powers $|x|^{-m-j}$ at infinity.

Theorem (G-Mazzucchelli-Tzou '19)

An asymptotically Euclidean metric on \mathbb{R}^n to order $m \ge 3$ with no conjugate points is isometric to the Euclidean metric g_0 .

Remark: only expansion to finite order in powers of $|x|^{-1}$ is necessary in the proof (depending on *n*).

Remark: there are metrics $g = dr^2 + f(r)^2 d\theta^2$ on \mathbb{R}^2 with f(r) = ar for a > 1 in the region r > 2 such that g has non-positive curvature, thus no conjugate points. These are asymptotically conic.

Previous related results

- Green-Gulliver ('85), Croke ('90): Compact perturbations of Euclidean metrics with no conjugate points are flat.
- Innami ('86): A metric on \mathbb{R}^n with integrable Ricci curvature, $\int_{\mathbb{R}^n} \operatorname{Scal}_g dv_g = 0$ and no conjugate points must be flat.
- Michel ('81), Gromov ('83): a metric with no conjugate points, with same boundary distance on strictly convex ball in \mathbb{R}^n is flat. In other words: Euclidean metric is boundary rigid
- Hopf('48), Burago-Ivanov ('94): a metric on \mathbb{T}^n with no conjugate points is flat.

Radial coordinates

First, there exists radial coordinate for g near infinity:

 \exists a diffeo $\psi: [1,\infty)_r \times \mathbb{S}^{n-1} \to \mathbb{R}^n \setminus K$ (with K compact set) such that

$$\psi^*g = dr^2 + r^2h(r;\theta,d\theta)$$

with h(r) family of metrics on \mathbb{S}^{n-1} with asymptotic expansion as $r \to \infty$

$$h(r) \simeq d heta_{\mathbb{S}^{n-1}}^2 + \sum_{j=0}^{\infty} \frac{1}{r^{m+j-2}} h_j(heta, d heta)$$

Denote $\rho := 1/\psi_*(r)$. Adding a sphere at $\rho = 0$ (i.e. $r = \infty$) gives a radial compactification $\overline{\mathbb{R}}^n$ of \mathbb{R}^n and

$$g \simeq rac{d
ho^2}{
ho^4} + \sum_{j=0}^\infty
ho^{m+j-2} h_j(heta, d heta)$$

Scattering map

Using the asymptotic structure of g, one can show the

Lemma

For each complete g-geodesic γ , there is $y_{\pm} \in \mathbb{S}^{n-1} = \partial \overline{\mathbb{R}}^n$ and $\eta_{\pm} \in T^*_{y_{\pm}} \mathbb{S}^{n-1}$ such that

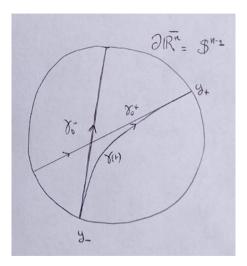
$$\lim_{t\to\pm\infty}(\gamma(t),\dot{\gamma}(t)^{\flat})=\Big(y_{\pm},\mp\frac{d\rho}{\rho^2}+\eta_{\pm}\Big)=\Big(y_{\pm},\pm dr+\eta_{\pm}\Big),$$

where $\dot{\gamma}(t)^{\flat} = g(\dot{\gamma}, \cdot)$. There exist Euclidean geodesics γ_0^{\pm} such that

$$\lim_{t \to \pm \infty} d_{g_0}(\gamma(t), \gamma_0^{\pm}(t)) = 0, \quad \lim_{t \to \pm \infty} \left(\dot{\gamma}(t) - \dot{\gamma}_0^{\pm}(t) \right) = 0.$$
(1)

Call $(y_{\pm}, \eta_{\pm}) \in T^* \mathbb{S}^{n-1}$ the past/future asymptotic vectors of γ . Example: the Euclidean lines $\gamma_{\eta}(t) := (\eta, t) \in \mathbb{R}^{n-1} \times \mathbb{R}$ have past asymptotic vector $(0, \ldots, 0, -1; \eta) \in T^* \mathbb{S}^{n-1}$ and future asympt vector $(0, \ldots, 0, 1; -\eta) \in T^* \mathbb{S}^{n-1}$.

Guillarmou (CNRS and Paris Sud)



For each $(y_-,\eta_-)\in T^*\mathbb{S}^{n-1}$ there is a unique Euclidean line γ_0^- so that

$$\lim_{t\to-\infty}(\gamma_0^-(t),(\dot{\gamma}_0^-(t))^\flat)=\Big(y_-,\frac{d\rho}{\rho^2}+\eta_-\Big).$$

Converse to the Lemma also holds: for each Euclidean line $\gamma_0^-(t)$, there is a unique g-geodesic $\gamma(t)$ asymptotic in the past, i.e. such that

$$\lim_{t\to\pm\infty}|\gamma(t)-\gamma_0^-(t)|=0,\quad \lim_{t\to-\infty}\left(\dot\gamma(t)-\dot\gamma_0^-(t)\right)=0.$$

Conclusion: for each $(y_-, \eta_-) \in T^* \mathbb{S}^{n-1}$, there is a unique *g*-geodesic γ with past asymptotic vector (y_-, η_-) .

The scattering map $S_g: T^* \mathbb{S}^{n-1} \to T^* \mathbb{S}^{n-1}$ is defined by

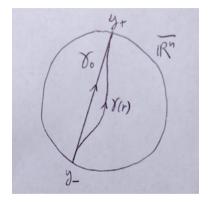
 $(y_-,\eta_-)\mapsto (y_+,\eta_+)$

where (y_+, η_+) is the future asymptotic vector of the *g*-geodesic γ , whose past asymptotic vector is (y_-, η_-) .

Fact: g has same scattering map as Euclidean metric g_0 if and only if for all g geodesic $\gamma(t)$, there is a Euclidean line $\gamma_0(t) = x + tv$ so that

$$\lim_{t \to -\infty} |\gamma(t) - \gamma_0(t)| = 0, \quad \lim_{t \to -\infty} |\dot{\gamma}(t) - \nu| = 0$$
$$\lim_{t \to +\infty} |\gamma(t) - \gamma_0(t + t_0)| = 0, \quad \lim_{t \to +\infty} |\dot{\gamma}(t) - \nu| = 0$$

for some $t_0 \in \mathbb{R}$.



We can show the

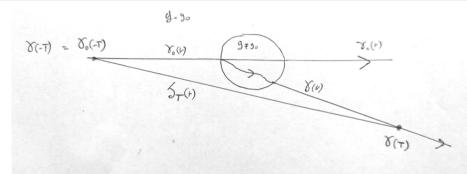
Theorem

An asymptotically Euclidean metric g on \mathbb{R}^n with no conjugate points must have the same scattering map as the Euclidean metric g_0 .

We use Croke's ideas, but applied to our case.

Main Difficulties: in order to get quantitative estimates, we need to analyse carefully the geodesic flow near infinity for the metric g.

Idea of proof (based on Croke's ideas)

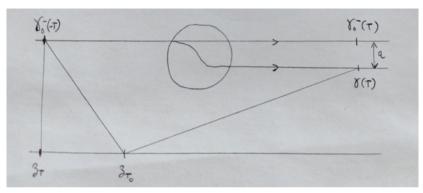


If $g = g_0$ outside compact set: for large $T \gg 1$, can show that if $\dot{\gamma}(t) \neq \dot{\gamma}_0(t)$ for t large, $\ell_{\sigma}(\zeta_T) < \ell_{\sigma}(\gamma([-T, T]))$

thus \exists two *g*-geodesics with same endpoints, contradicting no conjugate points. Same argument (but quantitative) if $g \neq g_0$ outside a compact.

Guillarmou (CNRS and Paris Sud)

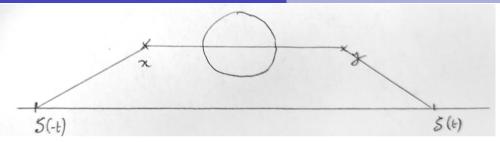
Rigidity of the flat metric



Case $g = g_0$ outside a compact *B*: T_0 fixed, we can play with triangular inequalities (using z_{T_0}) and Euclidean geometry to obtain

$$\mathsf{a}^2 \leq \mathsf{d}_{\mathsf{g}_0}(\gamma_0^-(-\mathcal{T}),\gamma(\mathcal{T}))^2 - \mathsf{d}_{\mathsf{g}}(\gamma_0^-(-\mathcal{T}),\gamma(\mathcal{T}))^2$$

Same holds modulo $O(T^{-m+1})$ if asymptotically Euclidean to order m.



If $g = g_0$ outside compact set *B*, for all *x*, *y* outside *B*:

$$\begin{aligned} |x - y| &= \lim_{T \to \infty} |\zeta(T) - \zeta(-T)| - |\zeta(-T) - x| - |\zeta(T) - y| \\ &= \lim_{T \to \infty} d_g(\zeta(T), \zeta(-T)) - d_g(\zeta(-T), x) - d_g(\zeta(T), y) \\ &\leq \lim_{T \to \infty} d_g(x, y) = d_g(x, y) \end{aligned}$$

Thus

$$a^2 \leq d_{g_0}(\gamma_0^-(-T),\gamma(T)) - d_g(\gamma_0^-(-T),\gamma(T))^2 \leq 0$$

General case: Make this quantative, up to $O(T^{-m+1})$ error, and let $T \to \infty$.

Guillarmou (CNRS and Paris Sud)

The second step is to prove a volume comparison

Theorem

If g is asymptotically Euclidean to order m without conjugate points, then for each $x_0,$ when $R\to\infty$

$$\operatorname{Vol}_g(B_g(x_0, R)) - \operatorname{Vol}_g(B_{g_0}(x_0, R)) = O(R^{n-m+1}).$$

To prove this, we show that there is a conjugation $\Theta: S_g \mathbb{R}^n \to S_{g_0} \mathbb{R}^n$ conjugating the geodesic flow of g and g_0

$$\Theta^{-1}\circ arphi^{g_0}_t = arphi^{g}_t\circ \Theta^{-1}$$

such that

$$\|\Theta - \operatorname{Id}\|_{C^1(\mathcal{T}(\mathbb{R}^n \setminus B(x_0, R)))} = O(R^{-m+1})$$

and use some Santalo type identity for volumes.

Croke('92) proved that for universal covers of closed manifolds (M, g) without conjugate points,

$$\liminf_{R \to \infty} \frac{\operatorname{Vol}_g(B_g(x_0, R))}{\operatorname{Vol}_{g_0}(B_{g_0}(x_0, R))} \geq 1$$

(where g_0 is Euclidean metric) with equality if and only if g is flat. This was also proven in dimension 2 by Bangert-Emmerich ('12) for metrics metrics witout conjugate points on \mathbb{R}^2 , but the same problem is open for n > 2.

Rigidity when m is large

We take the cylinder

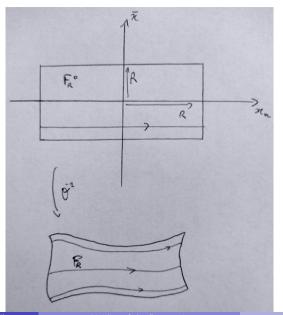
$$F_R^0 := \{x = (\bar{x}, x_n) \in \mathbb{R}^n \, | \, |x_n| \le R, |\bar{x}| \le R\}$$

foliated by Euclidean geodesics with tangent vectors ∂_{x_n} and its image

$$F_R := \pi(\Theta^{-1}(F_R^0 \times \{\partial_{x_n}\})).$$

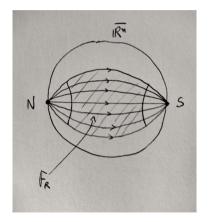
Just as before for $B_g(x_0, R)$, we can prove that

$$\operatorname{Vol}_{g}(F_{R}) - \operatorname{Vol}_{g_{0}}(F_{R}^{0}) = O(R^{n-m+1})$$



Guillarmou (CNRS and Paris Sud)

In terms of the compactification $\overline{\mathbb{R}}^n$, the geodesics foliating F_R correspond to the endpoints $(y,\eta) \in T^* \mathbb{S}^{n-1}$ given by $(N,\eta) \in T^*_N \mathbb{S}^{n-1}$ with $|\eta| \leq R$.



We can write

$$\operatorname{Vol}_{g}(F_{R}) = \int_{|\eta| < R} \int_{|t| \leq R} \det(A_{\eta}(t)) d\eta dt$$

where $A_{\eta}(t)$ is a matrix solution of the Jacobi equation

$$\partial_t^2 A_\eta + R_\eta A_\eta = 0$$

along the g-geodesic γ_{η} , where R_{η} is the curvature tensor viewed as an endomorphism. Moreover

$$egin{aligned} &\mathcal{A}_\eta(t)=\mathrm{Id}+O(t^{-m}), ext{ as } t
ightarrow -\infty\ &\mathcal{A}_\eta(t)=\mathcal{H}_\eta+O(t^{-m}), ext{ as } t
ightarrow \infty \end{aligned}$$

for some $H_\eta \in SO(n)$ with $H_\eta = \mathrm{Id} + O(1/|\eta|)$ as η large.

Playing with convexity properties of the map $X \mapsto \det(X)^{-1/2}$ on symmetric matrices and Hölder inequalities (with the case of equality) as in the proof of Blaschke conjecture by Berger, and using estimates on the Jacobi matrix A_{η} , we can prove

Proposition

If g is asymptotically Euclidean to order m > n + 1 with no conjugate points, then the matrix A_{η} is equal to Id and the curvature tensor of g must then vanish.

The last step is to prove the following

Theorem

Let g be asymptotically Euclidean to order $m \ge 3$ and assume that it has the same scattering ma as te Euclidean metric, $S_g = S_{g_0}$. Then g is asymptotically Euclidean to all order.

In radial coordinates $(\rho, y) \in (0, \varepsilon) \times \mathbb{S}^{n-1}$ near infinity, and writing the covectors $\xi = \xi_0 \frac{d\rho}{\rho^2} + \eta dy$, the geodesics staying in $\rho \leq \varepsilon$ (close to infinity) look at first order like

$$(\rho(s),\xi_0(s),y(s),\eta(s)) = (\sin(s),\cos(s),e^{sH_0}(y,\eta))$$

for $s \in (0, \pi)$ and H_0 is the Hamilton vector field on the sphere (cf Melrose).

By expanding the flow equation at ∞ (ie $\rho=$ 0) for the metric

$$g = g_0 + \rho^{m-2}h_m(\theta, d\theta) + O(\rho^{m-1}),$$

we obtain some attenuated ray transform of the tensor h_m on \mathbb{S}^{n-1} with weights given by polynomials on \mathbb{S}^{n-1} .

In the end, this finally reduces to some analysis of X-ray transform on symmetric 3 tensors (applied to $\nabla^s h_m$) on the sphere, see Estezet, Goldschmidt, Eastwood. We also use some techniques of Joshi-Sa Barreto in inverse quantum scattering.