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1) Overview and injectivity results.

2) Neutron tomography and a statistical algorithm
for inversion.

3) Proof of injectivity and factorization for Loop
Groups.



Setting
- (M, g) is a compact Riemannian manifold with boundary ∂M.
- SM = {(x , v) ∈ TM : |v | = 1} is the unit sphere bundle with
boundary ∂(SM).

- Outfllux and influx boundaries:

∂±SM = {(x , v) ∈ ∂(SM) : ±〈v , ν〉 ≤ 0},
where ν is the the outer unit normal vector.

- ∂M is strictly convex (positive definite second fundamental
form).



We let τ(x , v) be the first time when a geodesic starting at (x , v)
leaves M.

Definition. We say (M, g) is non-trapping if τ(x , v) <∞ for all
(x , v) ∈ SM.

By Morse theory a non-trapping manifold with strictly convex
boundary is contractible (Serre 1951).

Most of the time will assume that M is simple: it is non-trapping
and it has no conjugate points.

Examples: Strictly convex domains in the plane and small C 2

perturbations of them.



Non-abelian X-ray

Let Φ ∈ C∞(M,Cn×n) be a matrix field.

Given a unit-speed geodesic γ : [0, τ ]→ M with endpoints
γ(0), γ(τ) ∈ ∂M, we consider the matrix ODE

U̇ + Φ(γ(t))U = 0, U(0) = Id.

We define the scattering data of Φ on γ to be CΦ(γ) := U(τ).

When Φ is scalar, we obtain logU(τ) = −
∫ τ
0 Φ(γ(t)) dt, the

classical X-ray/Radon transform of Φ along the curve γ.



- The collection of all such data makes up the scattering data or
non-Abelian X-ray transform of Φ, viewed as a map

CΦ : ∂+SM → GL(n,C).

- Geometric Inverse Problem: recover Φ from CΦ.



Injectivity in 2D

Theorem 1 (P-Salo-Uhlmann 2011, P-Salo 2020)
If (M, g) is a simple surface, the map Φ 7→ CΦ is injective.

Earlier work on this problem:

- Vertgeim (1992), Sharafutdinov (2000);
- Finch-Uhlmann (2001), R. Novikov (2002) and G. Eskin
(2004) for Euclidean domains in the plane.

Additional partial results by Zhou (2017), Monard-P (2017) and
P-Salo (2018).



A simple observation:

If G ⊂ GL(n,C) is matrix Lie group with Lie algebra g and Φ takes
values in g, then

CΦ : ∂+SM → G .

The 2011 P-Salo-Uhlmann result gave injectivity in the unitary
case; i.e. g = u(n) consists of skew-hermitian matrices and
G = U(n) is the unitary group.



Injectivity in higher dimensions

Theorem 2 (P-Salo-Uhlmann-Zhou 2016)
Let (M, g) be a compact connected manifold of dimension ≥ 3
with strictly convex boundary and suppose (M, g) admits a smooth
strictly convex function. Then Φ 7→ CΦ is injective.

This theorem uses completely different techniques and exploits the
template laid out by Stefanov-Uhlmann-Vasy in their recent proof
of lens rigidity.

Watch Andras’ talk!



Polarimetric Neutron Tomography (PNT)

The non-Abelian X-ray transform arises naturally when trying to
reconstruct a magnetic field from spin measurements of neutrons.

In this case

Φ(x) =

 0 B3 −B2
−B3 0 B1
B2 −B1 0

 ∈ so(3)

where B(x) = (B1,B2,B3) is the magnetic field.

The scattering data takes values CΦ : ∂+SM → SO(3).

Cf. [Desai, Lionheart et al., Nature Sc. Rep. 2018] and [Hilger et
al., Nature Comm. 2018].



The experiment

From Hilger et al., Nature Comm. 2018.

- Data produced: CΦ(x , v) ∈ SO(3).
- This is done with an ingenious sequence of spin flippers placed
before and after the magnetic field being measured.

- The material containing the magnetic field can also be rotated
so as to produce parallel beams from different angles.



But we face the usual problems:

- No explicit reconstruction formula.
- Measurements are noisy.

Thus we have observations (Xi ,Vi ) ∈ ∂+SM and

Yi = CΦ(Xi ,Vi ) + εi , 1 ≤ i ≤ N, (εi )jk ∼i.i.d. N (0, σ2).

We will assume (Xi ,Vi ) ∼i.i.d λ, where λ is the probability measure
given by the standard area form of ∂+SM (independent of εi ).

We let PN
Φ be the joint probability law of the data

DN = (Yi , (Xi ,Vi ))Ni=1.



Statistical algorithm for inversion.

We adopt a Bayesian inference approach.

- We think of Φ as a random parameter with distribution given
by a normal (or Gaussian) prior π(Φ) (e.g. a Matérn process).

- Using the observations we compute the posterior π(Φ|DN)
using Bayes rule; namely

π(Φ|DN) ∝ fDN
(DN |Φ)π(Φ),

Posterior ∝ Likelihood× Prior.

- From the posterior we extract the posterior mean
Φ̄N = Eπ(Φ|DN).



Since the noise is Gaussian the log-likelihood (up to additive
constant) is

`(Φ) := − 1
2σ2

N∑
i=1

‖Yi − CΦ(Xi ,Vi )‖2.

Then you hope for:

"as N →∞, Φ̄N will approach the true Φ0 we wish to reconstruct"

This actually works!

Theorem 3 (Consistency, Monard-Nickl-P 2019)
Assume Φ0 : M → so(n) is sufficiently smooth. The estimator Φ̄N

is consistent in the sense that in PN
Φ0
-probability

‖Φ̄N − Φ0‖L2 → 0

as the sample size N →∞.



Proof of injectivity of Φ 7→ CΦ in 2D

The proof is in two stages.

- New idea: use a factorization theorem from Loop Groups to
reduce the case of GL(n,C) to the unitary case of U(n).

- The unitary case (P-Salo-Uhlmann 2011) is handled with
energy identities (aka Pestov identities) and the existence of
scalar holomorphic integrating factors.

- Scalar (fibrewise) holomorphic integrating factors exist thanks
to the surjectivity of I ∗0 (Pestov-Uhlmann 2005).



Since M is a topologically a disc after taking global isothermal
coordinates with g = e2λ(dx2

1 + dx2
2 ) we have

SM = M × S1

and the geodesic vector field X may be written as

X = e−λ
(
cos θ

∂

∂x1
+ sin θ

∂

∂x2
+

(
− ∂λ
∂x1

sin θ +
∂λ

∂x2
cos θ

)
∂

∂θ

)
.

In the Euclidean case (λ = 0) this reduces to

X = cos θ
∂

∂x1
+ sin θ

∂

∂x2
= v · ∇x

which is the standard form of the transport operator.



The space L2(SM) decomposes orthogonally into vertical Fourier
modes

L2(SM) =
⊕
k∈Z

Hk

where Hk is the eigenspace of −i ∂∂θ corresponding to the
eigenvalue k . Let Ωk = C∞(SM) ∩ Hk .

A smooth function u ∈ C∞(SM) has a Fourier expansion:

u(x , θ) =
∑
k∈Z

uk(x , θ) =
∑
k∈Z

ũk(x)e ikθ.



A function u ∈ C∞(SM) is fibre-wise holomorphic if uk = 0 for
k < 0.

The geodesic vector field has the remarkable mapping property

X : Ωm 7→ Ωm−1 ⊕ Ωm+1.

In fact X = η+ + η−, where η± : Ωm → Ωm±1 are Cauchy-Riemann
type operators (Guillemin and Kazhdan 80).

In the Euclidean case:

X = e iθ∂ + e−iθ∂̄.



A Loop Group factorization.

Theorem 4 (Pressley-Segal 86)
Given a smooth map R : S1 → GL(n,C), there are smooth maps
U : S1 → U(n) and F : S1 → GL(n,C) such that R = FU and F is
the boundary value of a holomorphic map
{z : |z | < 1} 7→ GL(n,C).

This is one of several factorization theorems including Birkhoff’s
factorization (1909) equivalent to the classification of holomorphic
vector bundles over S2.



Key Lemma. Let (M, g) be a compact non-trapping surface with
strictly convex boundary. Let A ∈ C∞(SM,Cn×n) and assume
A ∈ ⊕k≥−1Ωk . Let R : SM → GL(n,C) be a smooth function
solving XR + AR = 0 (always exists) and consider the Loop Group
factorization R = FU. Then

B := F−1XF + F−1AF

is skew-hermitian and B ∈ Ω−1 ⊕ Ω0 ⊕ Ω1. In other words B
determines a pair (B,Ψ) with B ∈ Ω1(M, u(n)) and
Ψ ∈ C∞(M, u(n)).

Thus with the holomorphic gauge F we can move our problem to
the unitary case.



Proof of the Key Lemma.

Differentiate R = FU along the geodesic flow to obtain

0 = XR + AR = (XF )U + FXU + AFU.

Writing B := F−1XF + F−1AF , it follows that

B = −(XU)U−1.

Since U is unitary, (XU)U−1 is skew-hermitian and so is B.

The mapping property

X : ⊕k≥0Ωk → ⊕k≥−1Ωk

and holomorphicity give B ∈ ⊕k≥−1Ωk . The lemma follows.



Final Message.

- We can now handle any Lie group and any pair (A,Φ), where
A is a g-valued connection.

- We have stability estimates (so far in the unitary case).
- We have a Bayesian algorithm for reconstruction with a
consistency theorem backing it up.

- There is now a good understanding of the non-Abelian X-ray
for simple surfaces, but many challenges remain, most notably
questions regarding the range and uncertainty quantification
for the statistical algorithm (Bernstein von-Mises type
theorems).


