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1) Overview and injectivity results.

2) Neutron tomography and a statistical algorithm
for inversion.

3) Proof of injectivity and factorization for Loop
Groups.



Setting

- (M, g) is a compact Riemannian manifold with boundary OM.

- SM = {(x,v) € TM : |v| = 1} is the unit sphere bundle with
boundary 9(SM).

- Outfllux and influx boundaries:

0+SM = {(x,v) € O(SM) : £(v,v) < 0},

where v is the the outer unit normal vector.
- OM is strictly convex (positive definite second fundamental
form).
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We let 7(x, v) be the first time when a geodesic starting at (x, v)
leaves M.

Definition. We say (M, g) is if 7(x, v) < oo for all
(x,v) € SM.

By Morse theory a non-trapping manifold with strictly convex
boundary is contractible (Serre 1951).

Most of the time will assume that M is . it is non-trapping
and it has no conjugate points.

Strictly convex domains in the plane and small C?
perturbations of them.



Let & € C°(M,C" ") be a matrix field.

Given a unit-speed geodesic v : [0, 7] — M with endpoints
7(0),v(7) € M, we consider the matrix ODE

U+ o(y(t)U=0,  U0)=Id

We define the scattering data of ® on 7 to be Co(7) := U(7).

When & is scalar, we obtain log U(7 —fo ) dt, the
classical X-ray/Radon transform of <D along the curve ’y



- The collection of all such data makes up the scattering data or
of ®, viewed as a map

Co: 0+SM — GL(n,C).

- recover ® from Co.



Theorem 1 (P-Salo-Uhlmann 2011, P-Salo 2020)
If (M, g) is a simple surface, the map ® — Cg is injective.

Earlier work on this problem:

- Vertgeim (1992), Sharafutdinov (2000);

- Finch-Uhlmann (2001), R. Novikov (2002) and G. Eskin
(2004) for Euclidean domains in the plane.

Additional partial results by Zhou (2017), Monard-P (2017) and
P-Salo (2018).



A simple observation:
If G C GL(n,C) is matrix Lie group with Lie algebra g and & takes
values in g, then

Co:0.5M — G.

The 2011 P-Salo-Uhlmann result gave injectivity in the
case; i.e. g = u(n) consists of skew-hermitian matrices and
G = U(n) is the unitary group.



Theorem 2 (P-Salo-Uhlmann-Zhou 2016)

Let (M, g) be a compact connected manifold of dimension > 3
with strictly convex boundary and suppose (M, g) admits a smooth
strictly convex function. Then ® — Cq is injective.

This theorem uses completely different techniques and exploits the
template laid out by Stefanov-Uhlmann-Vasy in their recent proof
of lens rigidity.

Watch Andras’ talk!



The non-Abelian X-ray transform arises naturally when trying to
reconstruct a magnetic field from spin measurements of neutrons.

In this case
0 Bs —B
d(x)=|-B3 0 B | €50(3)
B —-B; 0

where B(x) = (Bi, Bz, B3) is the magnetic field.
The scattering data takes values Cg : 9 SM — SO(3).

Cf. [Desai, Lionheart et al., Nature Sc. Rep. 2018] and [Hilger et
al., Nature Comm. 2018].
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Spin-fipper  Detector

Fig. 1 Tensor tomography. a Schematic drawing of the setup used for tensor tomography with s pin-polarized neutrons, comprising spin polarizers (P), spin
flippers (F) and a detector (D). b Selected magnetic field lines around an electric coil (calculation, see text and Methods)

From Hilger et al., Nature Comm. 2018.

- Data produced: Co(x,v) € SO(3).

- This is done with an ingenious sequence of spin flippers placed
before and after the magnetic field being measured.

- The material containing the magnetic field can also be rotated
so as to produce parallel beams from different angles.



But we face the usual problems:

- No explicit reconstruction formula.

- Measurements are noisy.

Thus we have observations (X;, V;) € 9+ SM and

Yi = Co(X;, Vi) +ei, 1<i<N, (ei)x~"%N(0,02).

We will assume (X;, V;) ~d X, where X is the probability measure
given by the standard area form of 9, SM (independent of ¢;).

We let P} be the joint probability law of the data

DN = (\/Iv (Xia \/I))INZI



We adopt a Bayesian inference approach.

- We think of ® as a random parameter with distribution given
by a (or Gaussian) prior w(®) (e.g. a Matérn process).

- Using the observations we compute the posterior 7(®|Dy)
using Bayes rule; namely

©(®|Dy) x fp, (Dn|P) 7(P),

Posterior < Likelihood x Prior.

- From the posterior we extract the posterior mean
oy = E™(P|Dy).



Since the noise is Gaussian the log-likelihood (up to additive
constant) is

N
1
= TZHY Co(X;, V3|2
=1

Then you hope for:

"as N — oo, @y will approach the true ®y we wish to reconstruct"

This actually !

Theorem 3 (Consistency, Monard-Nickl-P 2019)

Assume g : M — so(n) is sufficiently smooth. The estimator ®y
is consistent in the sense that in Pg’o -probability

||(T>N — (DoHLz — 0

as the sample size N — oo.



®— Cp in 2D

The proof is in two stages.

- New idea: use a factorization theorem from Loop Groups to
reduce the case of GL(n,C) to the unitary case of U(n).
- The unitary case (P-Salo-Uhlmann 2011) is handled with
energy identities (aka Pestov identities) and the existence of
holomorphic integrating factors.

- Scalar (fibrewise) holomorphic integrating factors exist thanks
to the surjectivity of /j (Pestov-Uhlmann 2005).



Since M is a topologically a disc after taking global isothermal
coordinates with g = e>*(dx? + dx2) we have

SM = M x St

and the geodesic vector field X may be written as

0 0 o\ o\ 15)
7)\ . e 0
X=e (cos H—a)q + sin 0—8)(2 + ( 78x1 sin 6 + —8)(2 cos 0) 89) .

In the Euclidean case (A = 0) this reduces to

0 s 0
X—cosﬁa—)q+5|n6?a—xz—v-vx

which is the standard form of the transport operator.



The space L?(SM) decomposes orthogonally into vertical Fourier
modes
L>(SM) = &P H
keZ

where Hy is the eigenspace of —i% corresponding to the
eigenvalue k. Let Q) = C°°(SM) N Hy.

A smooth function u € C*°(SM) has a Fourier expansion:

u(x,0) = u(x,0) =Y ii(x)e*’.

k€EZ kEZ



A function u € C*°(SM) is fibre-wise holomorphic if uy = 0 for
k < 0.

The geodesic vector field has the remarkable mapping property
X:Qn—= Qo1 ® Qm+1.

In fact X = ny +n_, where ny : Q, — Qa1 are Cauchy-Riemann
type operators (Guillemin and Kazhdan 80).

In the Euclidean case:

X =eG et 0!



Theorem 4 (Pressley-Segal 86)

Given a smooth map R : S* — GL(n,C), there are smooth maps
U:S*— U(n) and F : St — GL(n,C) such that R = FU and F is
the boundary value of a holomorphic map

{z: |z| <1} — GL(n,C).

This is one of several factorization theorems including Birkhoff's
factorization (1909) equivalent to the classification of holomorphic

vector bundles over S2.



Let (M, g) be a compact non-trapping surface with
strictly convex boundary. Let A € C*°(SM,C"*") and assume
A€ By>_1Qk. Let R: SM — GL(n,C) be a smooth function
solving XR + AR = 0 (always exists) and consider the Loop Group
factorization R = FU. Then

B:= F'XF + F'AF

is skew-hermitian and B € Q_1 ® Q¢ ® Q1. In other words B
determines a pair (B, V) with B € QY(M,u(n)) and
Ve C®(M,u(n)).

Thus with the holomorphic gauge F we can move our problem to
the unitary case.



Differentiate R = FU along the geodesic flow to obtain
0=XR+ AR = (XF)U+ FXU + AFU.
Writing B := F~1XF + F~1AF, it follows that
B=—(XU)UL.

Since U is unitary, (XU)U~?! is skew-hermitian and so is B.

The mapping property

X : @kZOQk = @kZ—lﬂk

and holomorphicity give B € ®y>_1Q,. The lemma follows.



We can now handle any Lie group and any pair (A, ®), where
A is a g-valued connection.

We have stability estimates (so far in the unitary case).

We have a Bayesian algorithm for reconstruction with a
consistency theorem backing it up.

There is now a good understanding of the non-Abelian X-ray
for simple surfaces, but many challenges remain, most notably
questions regarding the range and uncertainty quantification
for the statistical algorithm (Bernstein von-Mises type
theorems).



