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We want to solve 

𝐴𝑓 = 𝑔

with 𝐴 and 𝑔 given. Assume noisy measurements 𝑔 + 𝑔noise. So we are solving

𝐴𝑓 = 𝑔 + 𝑔noise.

Say 𝐴 is invertible in some sense. Since this is a linear problem, we will get back

the true 𝑓 plus

𝑓noise = 𝐴−1𝑔noise.

We want to understand 𝑓noise. Note that 𝑔noise may not be in the range of 𝐴.

Noise could be not just additive – it could be multiplicative, modulation noise
(Poisson), etc.

Our measurements are discrete. So are our numerical inversions. The models are
“continuous”. We switch between discrete and “continuous” functions.

We assume that the noise is added at the discrete stage: either at the finitely many
sensors or in (discrete) numerical simulations.
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What is noise?

We want to model noisy discrete measurements. Assume that at each detector
we have a random variable with a given distribution; and those variables are
independent (independent and identically distributed random variables).

Then we get something like this. 

Spectrum, i.e., 

∫ | መ𝑓(𝑟𝜔)|𝑑𝜔.

Gaussian distributionUniform

h
isto

gram

Gaussian noiseUniform noise
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The uniform spectrum is a theorem, actually, well, kind of. It follows from the
fact that the auto-correlation function is delta, so its Fourier transform, giving

መ𝑓
2

, must be constant. This is the reason it is called white: uniform spectrum

as white light. Note that this is in the discrete setting, መ𝑓(𝜉) is the Discrete
Fourier Transform with the number of discrete frequencies 𝜉 being 𝑁.

Let us test it in one dimension.
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White gaussian noise

Power spectrum, | መ𝑓|.
Supposed to be uniform 
but it is … noisy. 
St. deviation = mean! 
“On average”, it is 
uniform. 

It does not get more 
uniform when 𝑁 → ∞!

How white is white noise?
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There are two regimes:

1. Keep the number 𝑁 of pixels fixed, and run the experiment many times. 

Then the expectation of መ𝑓 𝑛
2

is independent of 𝑛, and it is actually 

𝑁. VAR 𝑓 . For the normalized DFT, it is just VAR 𝑓 .

2. Run the experiment once but keep increasing 𝑁. The spectrum stays hairy 
even for 𝑁 ≥ 1! On average however, it is flat. 

The average over that interval tends to a constant as 𝑁 → ∞, and 
that constant is proportional to its length but it is independent of 
the position. 6



Say we have 𝑓(𝑥) on −1,1 2 discretized on an 𝑁 ×𝑁 grid. Set

ℎ =
2

𝑁
.

We think of ℎ > 0 as a small parameter. The natural framework is the semi-
classical one.

We want to identify functions on the discrete grid and functions of a continuous
variable. We have to; any time we compute something on a discrete grid, we hope
that this discretizes some function 𝑓 𝑥 and the accuracy gets better and better as
𝑁 → ∞, i.e., when ℎ → 0.
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Shannon-Nyquist’s Sampling Theory comes to the rescue. It says that if 𝑓(𝑥)

has a Fourier transform መ𝑓 supported in the box −𝐵, 𝐵 𝑛 (i.e., it is band-
limited), then 𝑓(𝑥) is uniquely and stably determined by its samples
𝑓 𝑠𝑘 , 𝑘 ∈ 𝒁𝑛 if the sampling rate 𝑠 satisfies 0 < 𝑠 ≤ 𝜋/𝐵.

More precisely (Whittaker interpolation formula),

𝑓 𝑥 = 

𝑘∈𝒁𝑛

∞

𝑓 𝑠𝑘 𝜒
1

𝑠
𝑥 − 𝑠𝑘 , 𝜒 𝑥 =ෑ

𝑗

sinc 𝑥𝑗

with sinc 𝑥 = sin 𝜋𝑥 /𝜋𝑥, and (unitarity)

𝑓 2 = 𝑠𝑛 

𝑘∈𝒁𝑛

∞

𝑓 𝑠𝑘 2 .

The proof is simple. Think of 𝑓 as the inverse FT of መ𝑓. Then the samples

𝑓(𝑠𝑘) are the Fourier coefficients of መ𝑓, more precisely of its periodic
extension over the lattice 𝐵𝒁𝑛. The interpolation kernel 𝜒 = sinc comes
from inverting the FT of the characteristic function of the band.
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Graph of sinc

If we allow oversampling, i.e., the sampling rate 𝑠 satisfies  𝑠 < 𝜋/𝐵 (strictly), we 

can have Ƹ𝜒 = 1 in [−𝐵, 𝐵] and supp 𝑓 ⊂ −
𝜋

𝑠
,
𝜋

𝑠
to get 𝜒 decaying faster. 

𝜋

𝑠
−
𝜋

𝑠

መ𝑓

𝟏[−𝜋/𝑠,𝜋/𝑠]ෝ𝜒

𝐵−𝐵

Assume it is done, and fix it. Then 𝜒
𝜋

𝑠
𝑥 − 𝑠𝑘 , 𝑘 ∈ 𝒁𝑛 is a partition of 

unity and the interpolation formula converts sequences to band-limited 
functions. Sampling converts them back to sequences. 
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Theorem (semi-classical sampling):

Let 𝑓ℎ ∈ 𝐶0
∞ Ω with WFℎ 𝑓 ⊂ Ω × −𝐵, 𝐵 𝑛. Then for 𝑠 ≤ 𝜋/𝐵,

𝑓ℎ 𝑥 =
𝑘∈𝒁𝑛

𝑓 𝑠ℎ𝑘 𝜒
1

𝑠ℎ
𝑥 − 𝑠ℎ𝑘 + 𝑂𝒮 ℎ∞ 𝑓 2,

where 𝜒 is a product of sinc functions. Parseval’s equality holds, too, up to 
𝑂 ℎ∞ . 

Just a rescaled classical version, with error estimates. The condition on 
WFℎ 𝑓 is a condition on ℱℎ𝑓 modulo 𝑂 ℎ∞ .

The step size is 𝑠ℎ with 𝑠 ≤ 𝜋/𝐵.

As above, if WFℎ 𝑓 ⊂ Ω × (−𝐵, 𝐵)𝑛 (oversampling), 𝜒 can be made 
rapidly decreasing. 

We call the projection Σℎ(𝑓) of WFℎ 𝑓 onto 𝜉 the frequency set of 𝑓.

Semi-classical sampling
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• Finitely many points are needed unlike the classical theorem. That number is
~ℎ−𝑁. In fact, we need at least 2𝜋ℎ −𝑛Vol(WFℎ 𝑓 ) many points even if
we sample non-uniformly.

• Not exact, error 𝑂(ℎ∞).

• Differential operators are “bounded” on that space. In fact, 𝑓 𝐻ℎ
𝑠 ≤

𝐵𝑠 𝑓 + 𝑂 ℎ∞ . Recall that 𝐷𝑥 is naturally replaced by ℎ𝐷𝑥.

• One can have 𝑎, 𝑏 × [𝑐, 𝑑] (not a square), then different step-sizes w.r.t. 
each variable.

• One can sample over a parallelogram lattice (just apply a linear change of 
variables).

• The sampling rates are determined by the size of the smallest box containing 
Σℎ(𝑓), same as the essential support of ℱℎ𝑓. Can be generalized. 
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Why work with semiclassically band limited functions 𝑓(𝑥, ℎ) (those with a finite
WFℎ 𝑓 )? Most of the time, we have a single function 𝑓(𝑥) and we want to
recover it.

Our measurements are actually averaged/blurred somehow. In TAT, we have a
limited frequency and detectors not points. In optics, the wavelength of the light
puts a bound of the resolution. In X-ray tomography, similarly – the rays are not
infinitely thin, etc. We actually measure not 𝐴𝑓 but, say, 𝜙𝜖 ∗ 𝐴𝑓, where 𝜙𝜖 𝑥 =

𝜖−𝑛𝜙
𝑥

𝜖
, 𝜙 ∈ 𝐶0

∞.

𝜙𝜖 ∗ is an h-ΨDO (with a symbol 𝜙(𝜉)). By Egorov’s theorem

𝜙𝜖 ∗ 𝐴𝑓 = 𝐴𝑃 𝑥, ℎ𝐷 𝑓 +⋯

for some h-ΨDO 𝑃(𝑥, ℎ𝐷) with a compactly supported symbol. So 𝑓 can be

replaced by ሚ𝑓 𝑥, ℎ = 𝑄 𝑥, ℎ𝐷 𝑓, and the new 𝑓 depends on ℎ and is s.c. band
limited.

Also, let 𝑓 𝑥 ∈ 𝐶0
∞ be ℎ independent but መ𝑓 𝜉 is “small” for 𝜉 > 𝐵0. Then we

can replace 𝑓 with ሚ𝑓(𝑥, ℎ) ≔ 𝜓 𝑥, ℎ𝐷 𝑓 with some 𝜓 ∈ 𝐶0
∞ plus a “small” error.
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Assume now that 𝐴 is an FIO (classical). It has a canonical relation 𝐶. We have

WFℎ 𝐴𝑓 = 𝐶 ∘ WFℎ 𝑓

away from the zero section.

Therefore,

• Knowing the band limit of 𝑓, allows us to know the band limit of 𝐴, and then
we know how to sample 𝑓.

• Given the sampling rate of 𝐴𝑓, we know what resolution limit on 𝑓 it poses.

• Aliasing exists when we undersample. It turns out that it is a simple h-FIO (a
frequency shift). Aliased measurements of 𝐴𝑓 lead to non-local artifact of 𝑓.
Those artifacts are given by an h-FIO as well, just compose the two.

• Locally averaged measurements can be handled.
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Back to noise

So we identify discrete functions on girds like 𝑁1 × 𝑁2 ones with 𝑓(𝑥, ℎ) with 

𝑥𝑗 ∈ [−𝑎𝑗, 𝑎𝑗]. Here, 𝑁1 ∼ 1/ℎ, 𝑁2 ∼ 1/ℎ. Then noise turns into such a s.c.

band limited function 𝑓(𝑥, ℎ). It has zero mean (as ℎ → 0). 

Characterizing noise

• Color (spectrum)

White noise when the pixels are independent and equally distributed. Then

ℱℎ𝑓(ξ) ≈ const. (modulo lower order) 

over the band range, i.e., for 𝜉𝑗 ≤ 𝐵𝑗 . We are not claiming that all such

functions are “noise”. We could have ℱℎ𝑓(ξ) = 1 for 𝜉𝑗 ≤ 𝐵𝑗 , so 𝑓 could be

the sinc function. We expect the phase to be “random” though.

We could have pink noise ℱℎ𝑓(ξ) ∼ 1/ 𝜉 or blue noise ℱℎ𝑓(ξ) ∼ 𝜉 .
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• Values distribution (histogram)

This is 𝑑𝑥meas(𝑓
−1(−∞, 𝑥)). It is could be Gaussian, uniform, Poisson, etc.

Histogram and spectrum are independent characteristics.  

• Standard deviation/variance

VARΩ 𝑓 =
1

Ω
න
Ω

𝑓2 𝑥 𝑑𝑥, STD 𝑓 = VAR(𝑓).

A rule of a thumb is that noise with STD = 𝜎 would “burry in the noise”
signals with amplitudes < 𝜎 and will preserve signals with amplitudes > 𝜎.
This is not rigorous, not a theorem, and not a sharp threshold.

Problem: We add noise with known characteristics (spectrum, distribution,
and STD) to the data.

How will that affect the noise in the reconstruction?
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Think microlocally. Noise has strength (STD) and spectrum. Why not combine
them in the phase space. We want to measure its strength at each 𝑥, 𝜉 ∈
𝑇∗𝐑𝑛 ∖ 0. Remember, the phase space is not a conic set!

We propose to use the s.c. defect measure for that.  

Definition (semi-classical defect measure):

Let 𝑎 𝑥, 𝜉 ∈ 𝐶0
∞. For every 𝑓 𝑥, ℎ (s.c. band limited), with ‖𝑓 ⋅, ℎ ‖ ≤ 𝐶, 

there exists a measure 𝑑𝜇𝑓 so that

lim
ℎ→0

(𝑎 𝑥, ℎ𝐷 𝑓ℎ, 𝑓ℎ) = ∫ 𝑎 𝑥, 𝜉 𝑑𝜇𝑓

for some subsequence ℎ = ℎ𝑗 → 0.

Note that supp 𝑑𝜇𝑓 = WFℎ 𝑓 . Also, ∫ 𝑑𝜇𝑓 = 𝑓ℎ𝑗
2
+ 𝑜(1).

We could assume that our noise has this limit for all ℎ → 0. Also, our noise
would have measures of the type 𝑑𝜇𝑓 = 𝛾𝑓 𝑥, 𝜉 𝑑𝑥 𝑑𝜉 with 𝛾𝑓 𝑥, 𝜉 regular

enough. For white noise, for example, 𝛾𝑓 𝑥, 𝜉 = const.
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Now we have, for a subdomain Ω,

VARΩ 𝑓 =
1

Ω
න
𝑇∗Ω

𝛾𝑓(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉.

We can define variance (and STD) at a point 𝑥 by

VAR𝑥 𝑓 = න𝛾𝑓(𝑥, 𝜉) 𝑑𝜉.

Or better yet, do not touch it, and interpret 𝛾𝑓(𝑥, 𝜉) as the spectral density of

the variance at any point in the phase space.

Before taking the limit, the defect measure is known as the Wigner function

𝑊𝑓
ℎ 𝑥, 𝜉 defined by

𝑎𝑤 𝑥, ℎ𝐷 𝑓ℎ, 𝑓ℎ = න𝑎 𝑥, 𝜉 𝑊𝑓
ℎ 𝑥, 𝜉 𝑑𝑥 𝑑𝜉 .

Colin de Verdière used the expectation of the Wigner function to define the

power spectrum of the noise (in geophysical applications). 𝑊𝑓
ℎ 𝑥, 𝜉 may take

negative values though!

Theorem. For white noise, 𝐸 𝑑𝜇𝑓 = VAR(𝑓) over the Nyquist frequency

range. In particular, the power spectrum is constant.
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How is the defect measure transformed under an FIO?

This follows directly from Egorov’s theorem. Assume from now on that 𝐹 is an 
elliptic FIO associated with a local diffeomorphism 𝐶. Then

𝛾𝐹𝑓 = 𝑏𝛾𝑓 ∘ 𝐶−1, 𝑏 = 𝜎𝑝 𝐹∗𝐹 .

Remember, we are solving 
𝐴𝑓noise = 𝑔noise.

How to invert it? Say, 𝐴 is a matrix, not necessarily invertible. The Moore–
Penrose inverse is given by 𝐴−1 = (𝐴∗𝐴)−1𝐴∗ , with (𝐴∗𝐴)−1 restricted to
Ran(𝐴∗) = Ker 𝐴 ⊥. Same as least-squares optimization. Assume 𝐴 is an elliptic
FIO associated to a local canonical diffeo. Then 𝐴−1 for us is just a parametrix.

𝑓noise = 𝐴−1𝑔noise.
Then set 𝐹 = 𝐴−1 to get

𝛾𝑓noise = 𝑏−1𝛾𝑔noise ∘ 𝐶, 𝑏 = 𝜎𝑝 𝐴∗𝐴 .

So we can compute the microlocal STD (defect measure) of the noise of the
reconstruction given the microlocal STD of the data. This allows us to compute
the noise even with a filter.
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The Radon Transform in the plane in “parallel geometry”

Let ℛ be the Radon transform in 2D

ℛ𝑓 𝜔, 𝑝 = න
𝑥⋅𝜔=𝑝

𝑓 𝑥 𝑑𝑙𝑥.

Write 𝜔 𝜑 = (cos𝜑, sin𝜑). It is well known that ℛ is an FIO with canonical 
relation 𝐶 = 𝐶− ∪ 𝐶+, where

𝐶± 𝑥, 𝜉 = (arg ±𝜉
𝜑

, ±𝑥 ⋅ 𝜉/|𝜉|
𝑝

, −𝑥 ⋅ 𝜉⊥

ෝ𝜑

,ถ± 𝜉
ො𝑝

).

Each 𝐶± is a diffeo, with inverse (𝑥, 𝜉) = 𝐶±
−1(𝜑, 𝑝, ො𝜑, Ƹ𝑝) given by

𝑥 = 𝑝𝜔 𝜑 − ( ො𝜑/ Ƹ𝑝)𝜔⊥ 𝜑 , 𝜉 = Ƹ𝑝 𝜔 𝜑 .

19



Assume WFℎ 𝑓 ⊂ { 𝑥 < 𝑅, 𝜉 < 𝐵}. Take 𝐶 of that and project it to the 
( ො𝜑, Ƹ𝑝) variables. We get

Σℎ(ℛ𝑓)

The smallest bounding box is 

−𝑅𝐵, 𝑅𝐵 × [−𝐵, 𝐵].

This determines the relative sampling rates (before multiplying by ℎ)

𝑠𝜑 <
𝜋

𝑅𝐵
, 𝑠𝑝<

𝜋

𝐵
.

For 𝑓, it is enough

𝑠𝑥1 = 𝑠𝑥2 <
𝜋 2

𝐵
.
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We have 𝜎𝑝 ℛ∗ℛ =
4𝜋

𝜉
. Therefore, for the solution of ℛ𝑓noise = 𝑔noise, we 

get

𝛾𝑓noise =
𝜉

4𝜋
𝛾𝑔noise ∘ 𝐶.

Assume no under-sampling, and that the recovered 𝑓 will be restricted
after reconstruction to its (known) frequency range. Assume white noise

𝛾𝑔noise = 𝛾𝑔noise
# = const. from now on. Then

𝛾𝑓noise =
|𝜉|

4𝜋
𝛾𝑔noise
# , |𝜉| ≤ 𝐵.

This is blue noise. Recall that the STD is a square root of that, so the STD (or 

the spectrum) of the reconstructed noise is like ∼ 𝜉
1

2.

• It is 𝑥-independent
• It is isotropic in 𝜉 (depends on 𝜉 only).
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comparison

Original 𝑓, range in 
[−1,1]

𝑓 with white noise 
added, STD=1

Reconstructed 𝑓 from noisy 
data, Hann filter, STD=1

The last two images have the same standard deviation at 800x800 only! When 
downsampled to a lower resolution, the third one would have less noise!
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Assume a band limit for 𝑓 equal to 𝐵 as above, and the band limits for ℛ𝑓 𝜑, 𝑝
equal to 𝐵𝜑 > 𝑅𝐵 and 𝐵𝑝 > 𝐵. Those inequalities guarantee proper sampling.

Then

STD ℛ−1𝑔 =
𝐵
3
2

24𝐵𝑝𝐵𝜑
STD 𝑔 .

If 𝐵𝜑 = 𝑅𝐵 and 𝐵𝑝 = 𝐵 (sharp sampling), then

STD ℛ−1𝑔 =
𝐵

24𝑅
STD 𝑔 .

The first inequality seems strange – if we keep increasing 𝐵𝑝 and 𝐵𝜑 (then we

keep adding noise), the noise in the reconstruction decreases! In fact, we
would have to cut the higher frequency noise in the inversion to fit it in 𝜉 <
𝐵, which explains the paradox.

The second inequality says that the noise increases as 𝐵.
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Numerical experiments

We take 𝑔 to be white noise and invert it with iradon in MATLAB. Then we

take መ𝑓
2

and plot it. In fact, we plot | መ𝑓|, not መ𝑓
2

, for lower contrast.

Radial profile

Hm… The spectrum increases first but then it drops a bit. The reason is that
iradon has some built-in smoothing. Do a higher accuracy inversion:

We get a linear increase as expected. The 
disk is smaller because we doubled 𝑁.
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Numerical tests with 𝑓 = ℛ−1𝑔 on an 𝑁 × 𝑁 grid discretizing −1,1 2, and 
𝑔 on a 2𝜋𝑁 × 2𝑁 grid equal to white noise. Here, 𝑚 is the upsizing 
coefficient before inversion. Theoretically, 

Noise ratio ≔
STD ℛ−1𝑔

𝑁. STD 𝑔
≈ 0.2558
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Filtered Inversion

Often, the inversion is done with a low pass filter in the frequency domain. 

Cosine filter cos
𝜉

𝐵
. Here, 𝐵 = 1. Hann filter cos2

𝜉

𝐵
. Here, 𝐵 = 1.

More generally, assume a filter 𝜒 𝜉 = 𝜒0
𝜉

𝐵
, so the inversion is ℛ−1𝜒 𝐷𝑝 𝑔.

The effect is multiplying the defect measure 𝛾𝑓 by 𝜒0
2 𝜉

𝐵
and multiplying the

STD by the factor 𝑐𝜒, where

𝑐𝜒 = 3න
0

1

𝜌2𝜒0
2 𝜌 𝑑𝜌 ≤ 1.

For cosine, 𝑐𝜒 ≈ 0.4427. For Hann, 𝑐𝜒 ≈ 0.3.
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Spectrum of the noise with the cosine filter. Input: white noise. 

Measured plot 

of መ𝑓
2

Measured radial 

profile of መ𝑓
2

Theoretical profile (𝐵 = 1) 

መ𝑓(𝜌𝜃)
2
= 𝜌. cos2

𝜋𝜌

2

We should get 0.4427 of the STD compared to the non-filtered inversion. 
We do. We test the Hann filter as well.

27



In many numerical simulations, we add a certain percentage of noise to the
data and measure the percentage of noise in the reconstruction. Let us take a
closer look at that.

We reconstruct 𝑓 + 𝑓noise from the data ℛ𝑓 + 𝑔noise. Then 𝑔noise /‖ℛ𝑓‖
is the percentage of added noise, and 𝑓noise /‖𝑓‖ is the percentage of the
measured one in the reconstruction. It does not matter if we replace norms
by STD. We have

𝑓noise
‖𝑓‖

= 𝐾
𝑔noise
‖ℛ𝑓‖

, 𝐾 =
𝑓noise

‖𝑔noise‖
.
ℛ𝑓

‖𝑓‖
.

The noise ratio we studied above. Depends on the discretization. 

=
4𝜋 𝐷

−
1
2𝑓

‖𝑓‖
, depends on 𝑓! Higher frequency 𝑓 would yield a lower ratio.

Also, functions with መ𝑓 0 = ∫ 𝑓 𝑥 𝑑𝑥 = 0 would gives us a very small ratio.
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Examples. Top row: originals. Bottom row: reconstructed 𝑓 with 20% noise added 
to ℛ𝑓. All functions 𝑓 ≥ 0.

25% 39.8% 74.4% 79.8%
Added 
noise

If we take 𝑓 with ∫ 𝑓 𝑥 𝑑𝑥 = 0, then we get down to 10-12% or so. 
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So this is a very unreliable measure. If you want your reconstruction to look good, 

• Use a coarser grid for 𝑓 and much finer for ℛ𝑓.
• Use high frequency images; or even better, phantoms with a zero mean.

On the other hand, for most conventional images like Lena, Shepp-Logan, etc., the 

ratio 
𝐷

−
1
2𝑓

‖𝑓‖
is pretty constant from image to image. This is related to some 

common statistical properties of the FT of such images. 
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The Radon Transform in the plane in fan-beam coordinates

Parameterize lines by 𝛼, 𝛽 as shown. 
Then ℛFB = ℛ ∘ Φ, where Φ is the 
change of variables. 

Then for the noise spectral density 
we get

𝛾𝑓noise =
𝜉

4𝜋
1 −

𝑥 ⋅ 𝜉 2

𝑅2 𝜉 2

1
2

𝛾𝑔noise ∘ 𝐶.

The noise then depends on the position and the direction! The new factor is 
independent of |𝜉| though (in polar coordinates). Near 𝑥 = 0, that factor is 
one. It gets to zero when 𝑥 = 𝑅 and 𝑥 ∥ 𝜉. We never get to 𝑥 = 𝑅 though.
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The power spectrum መ𝑓noise
2

of a small patch in the upper left corner 

centered at (0.85𝑅, 0.85𝑅). 

theoretical measured

We compute the STD as before. Near the center same as in the previous
case. Near the boundary 𝑥 = 𝑅, it drops by about 20% only, based on the
formula. We validate it numerically as well.
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Thank you!
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