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deep learning

deep neural networks – train set of parameters θ so that

Nθ : Z → X

maps some given Z ⊃ {zi}i=1,...,I to given {xi}i=1,...,I ⊂ X

functionality
classification
regression
generation
encoding, decoding (autoencoder)
inference
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trained deep neural networks vs inverse problems

natural questions
injectivity (uniqueness)
stability, quantitative estimate
reconstruction

implied properties: approximation, topological, probabilistic
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injectivity and data driven discovery Mars, InSight: glitches, seismic events

unsupervised learning, clustering – separation

(Barkaoui, Lognonné, Kawamura, Stutzmann, Seydoux, dH, Balestriero, Schloz, Clinton, Stahler, Van
Driel, Ceylan, Sainton & Banerdt)
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injectivity and data driven discovery Bezymianny: seismo-volcanic monitoring

7/5/20, 4:31 PMbezy_amo_2006130_lrg.jpg 1,600×2,100 pixels

Page 1 of 1https://eoimages.gsfc.nasa.gov/images/imagerecords/6000/6546/bezy_amo_2006130_lrg.jpg

(semi)supervised learning, polyphonic detection, segmentation and classification

(Bueno, Balestriero, dH, Baraniuk, Beńıtez & Ibáñez)
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deep neural networks

feed-forward network, N : Rn → Rm affine transformations

N(z) = WL+1φL(WL · · ·φ2(W2φ1(W1z + b1) + b2) · · ·+ bL)

` = 1, . . . , L index the network layers
b` ∈ Rn`+1 are the bias vectors
W` ∈ Rn`+1×n` are the weight matrices with n1 = n, nL+1 = m
φ` are the nonlinear activation functions

NN (n,m) θ = (W1, b1, . . . ,WL, bL,WL+1)

layerwise analysis: φ`(W`x + b`) injectivity

Maarten V. de Hoop (Rice University) Globally Injective (ReLU) Neural Networks UCI, July 10, 2020 6 / 36



deep neural networks

feed-forward network, N : Rn → Rm affine transformations

N(z) = WL+1φL(WL · · ·φ2(W2φ1(W1z + b1) + b2) · · ·+ bL)

` = 1, . . . , L index the network layers
b` ∈ Rn`+1 are the bias vectors
W` ∈ Rn`+1×n` are the weight matrices with n1 = n, nL+1 = m
φ` are the nonlinear activation functions

NN (n,m) θ = (W1, b1, . . . ,WL, bL,WL+1)

layerwise analysis: φ`(W`x + b`) injectivity

Maarten V. de Hoop (Rice University) Globally Injective (ReLU) Neural Networks UCI, July 10, 2020 6 / 36



deep neural networks

feed-forward network, N : Rn → Rm affine transformations

N(z) = WL+1φL(WL · · ·φ2(W2φ1(W1z + b1) + b2) · · ·+ bL)

` = 1, . . . , L index the network layers
b` ∈ Rn`+1 are the bias vectors
W` ∈ Rn`+1×n` are the weight matrices with n1 = n, nL+1 = m
φ` are the nonlinear activation functions

NN (n,m) θ = (W1, b1, . . . ,WL, bL,WL+1)

layerwise analysis: φ`(W`x + b`) injectivity

Maarten V. de Hoop (Rice University) Globally Injective (ReLU) Neural Networks UCI, July 10, 2020 6 / 36



intermezzo: skip connections

Ñ : Rn → Rm

Ñ(z) = hL+1

h`+1 =
(∑̀

p=1
Ãp
` hp + b̃`

)
+ φ`

[∑̀
p=1

Ap
` hp + b`

]
h0 = z

` = 1, . . . , L index the network layers
b̃`, b` ∈ Rn`+1 are the bias vectors
Ãp
` ,A

p
` ∈ Rn`+1×n` , p ≤ ` are the weight matrices with n1 = n, nL+1 = m

NNskip(n,m)
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nonlinear activation functions φ := φ`

if φ is a one-to-one activation function (L ReLUα, σ, tanh) then there is not much to be done:
the layer is injective iff W is injective

focus exclusively on

φ(x) = ReLU(x) := max(x , 0)

unrolling: ISTA (sparse code inference) (Gregor & Lecun, 10)
interpolation: optimal activation function regularized by TV2 norm
(linear spline, unknown knots) (Unser, ’19)
expressivity: exponential in number of layers .. (Balestriero & Baraniuk, ’20)
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weight matrices W := W`, n`+1 = m, n` = n

W = {wi}mi=1, wi ∈ Rn

dense: fully connected
convolutional (CNNs), multi-indices N = (N1, . . . ,Np), .. C ∈ RN×N , stride 1

RM×N 3W =


C1
C2
...

CnQ

 where for each C , J : (Cx)J =
O∑

I=1
cO−I+1xJ+I =

O+J∑
I′=1+J

cO+J−I′+1xI′

x ∈ RN , c ∈ RO (kernels, width O), nQ convolutions
iid Gaussian elements: weight matrices follow a Gaussian distribution with zero mean
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permutations

layer-wise injectivity is clearly not dependent on the arrangement of the rows of W ; thus we
often refer to the rows of W ∈ Rm×n using set notation

w ∈W : w is a row vector of W
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prior work
(Bruna, Salzam & LeCun, ’13): injectivity of pooling motivated by the problem of signal recovery
from feature representations

(Hand & Voroninski, ’18): optimization landscape for inverting ReLU generative priors

(Mallat, Zhang & Rochette, ’18): ReLU activation function acts as a phase filter and that the
layer is bi-Lipschitz, and hence injective, provided that the filters have a sufficiently diverse
phase and form a frame

(Lei, Jalal, Dhillon & Dimakis, ’19): with high probability a layer of a neural network can be
inverted about a fixed point provided that the weights are normally distributed and that the
network is expansive by a factor of at least 2.1

injectivity is automatic from invertible neural networks such as normalizing flows (Kingma &
Dhariwal, ’18)

injectivity seems to be a natural heuristic to increase latent space capacity without increasing
its dimension (Brock, Lim, Ritchie & Weston,’ 16)
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Directed Spanning Set (DSS)
fundamental notion in our analysis

Definition (Directed Spanning Set)

Let Y = {yi}i=1,...,m be a set of vectors, yi ∈ Rn. We say that Y has a Directed Spanning Set
(DSS) of Ω ⊂ Rn with respect to a vector x ∈ Rn if there exists a Ŷx ⊂ Y such that for all

∀yi ∈ Ŷx , 〈yi , x〉 ≥ 0

and Ω ⊂ span(Ŷx ). Equivalently, Y is a DSS w.r.t. x if Ŷx spans Ω and all elements of Ŷx lie
on the same (closed) side of the plane with normal x as x does (or all of Y if x = 0).

S(x ,W ) = {i ∈ [[m]] : 〈wi , x〉 ≥ 0} , [[m]] = {1, . . . ,m} complement Sc(x ,W )
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DSS illustration: Ŷx (bold) m = 4, n = 2

• : x
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wedges, division of input space m = 4, n = 2
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wedges, division of input space m = 4, n = 2

W partitions Rn into open wedges Sk , Rn =
⋃

k Sk , with constant sign patterns:
for x1, x2 ∈ Sk , sign(Wx1) = sign(Wx2)

non-DDS DSS

the number of wedges can be exponential in m, m
n = c ≥ 2 fixed (Winder, ’66)
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layerwise injectivity

Theorem (ReLU(Wx))

Let W ∈ Rm×n where n > 1 be a matrix with row vectors {wj}mj=1. The function
ReLU(W ·) : Rn → Rm is injective if and only if W is a DSS w.r.t every x ∈ Rn.
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elements of proof

reverse direction
suppose there is an x such that W does
not contain a DSS w.r.t. x
let x⊥ ∈ ker(W |S(x ,W )), α ∈ R+ such

that α < minj∈Sc(x ,W )−
〈x ,wj 〉
|〈x⊥,wj〉|

then ReLU(W (x + αx⊥)) = ReLU(Wx)
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layerwise injectivity, bias b := b`

Lemma (ReLU(Wx + b))

Let W ∈ Rm×n and b ∈ Rm. The function ReLU(W ·+b) : Rn → Rm is injective if and only if
ReLU(W |b≥0 ·) is injective, where W |b≥0 ∈ Rm×n is row-wise the same as W where bi ≥ 0,
and is a row of zeroes when bi < 0.

layerwise injectivity implies end-to-end injectivity
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minimal expansivity construction

it is apparent that if W ∈ Rm×n the larger the ratio of c = m
n , the expansivity, the ‘more

likely’ it is that ReLU(W ·) is injective

Corollary
For any W ∈ Rm×n, ReLU(W ·) is non-injective if m < 2 · n. If W ∈ R2n×n and satisfies the
conditions in the Theorem and Lemma, then (up to row rearrangement) W can be written as

W =
[

B
−DB

]

where B,D ∈ Rn×n, B is a basis, and D a diagonal matrix with strictly positive diagonal
entries.

in general, no deterministic characterization for m > 2n
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random matrices H: binary entropy function

define Wm,n as the distribution of weight matrices in Rm×n with iid Gaussian elements,

I(m, n) = P (ReLU(Wx) is injective where W ∼ Wm,n)

consider I(m, n) as n→∞ for fixed c := m
n

Theorem

If c is greater than a certain value c∗ (approximately equal to 5.7), then

I(m, n) ≥ 1− exp(−Ω(n)) Ω(n) : at least O(n)

If c is less than a c† (approximately 3.4), then

I(m, n)→ 0.

− log2(ce) + c − 1− H
(

1
c−1

)
> 0 for c ≥ c∗ 1

2erfc
(

1√
2c†

)
= 1

c†
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convolutional layers multi-channel

set of zero-padded kernels for c ∈ RO: think of a multi-index as a box (or a hyperrectangle);

let P be a multi-index such that O ‘fits’ in P, then define

ZP(c) = {d ∈ RP : d is a shift of c within the box P}

Theorem

Suppose that W ∈ RM×N is a convolution layer with convolutions {Ck}
nQ
k=1, and

corresponding kernels {ck}
nQ
k=1. If for any P,

W |ZP :=
nQ⋃

k=1
ZP(ck)

is a DSS for RP with respect to all x ∈ RP , then ReLU(W ·) is injective.
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d and domain decomposition

ZP(c) P vs Ωk , span{Ω1, . . . ,ΩK} = Rn
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domain decomposition multi-channel

the proof relies on

Lemma

Suppose that Rn = span{Ω1, . . . ,ΩK} where each Ωk is a subspace and for each k = 1, . . . ,K
we have a

Wk =
[
wT

k,1, . . . ,wT
k,Nk

]T
and W =

[
W T

1 , . . . ,W T
K

]T
such that wk,` ∈ Ωk and Wk is a DSS of Ωk w.r.t. every x ∈ Ωk . Then W is a DSS of Rn

w.r.t. every x ∈ Rn.

the support of each of the elements of Wk must be contained in the corresponding Ωk (Wk
must be a block matrix w.r.t. a basis of Ωk)
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global inverse Lipschitz constant
by the piecewise linear nature of the ReLU operator, it is clear that

‖ReLU(Wx0)− ReLU(Wx1)‖ ≤ ‖W ‖ ‖x0 − x1‖

inverse on the range

Theorem

Let W ∈ Rm×n be a DSS w.r.t. every x ∈ Rn. Then, for any x0, x1 ∈ Rn,

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
[

1√
2m min

x∈Rn
σ(W |S(x ,W ))

]
‖x0 − x1‖2

where σ denotes the smallest singular value.

S(x ,W ) = {i ∈ [[m]] : 〈wi , x〉 ≥ 0}
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adjacent wedges

the proof relies on

Lemma

Let W ∈ Rm×n have a DSS w.r.t. every x ∈ Rn and x0, x1 ∈ Rn. If x0 and x1 are in adjacent
wedges and the line that connects them is nonexceptional, then

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2

min(σ(W |S(x0,W )), σ(W |S(x1,W ))) ‖x0 − x1‖2

where σ(M) is the smallest singular value of the matrix M.

line nonexceptional if it passes faces but not corners (n ≥ 3)
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adjacent and non-adjacent wedges

(a) two points that are in adjacent wedges (b) two points that are in non-adjacent wedges

blue points are x0 and x1; pink points are elements (rows) of W
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non-adjacent wedges, connected through faces

Lemma

Let W ∈ Rm×n be a DSS w.r.t. every x ∈ Rn. Let x0, x1 be such that the line connecting
them is nonexceptional and passes through N = # S(x0,W ) \ S(x1,W ) points, then

‖ReLU(Wx0)− ReLU(Wx1)‖2 ≥
1√
2N

min
t∈[0,1]

σ(W |S(`x0,x1 (t),W )) ‖x0 − x1‖2 .

need to prove that any two points are ε close to two nonexceptional points
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‘reconstruction’

linear programming, layerwise: let y ∈ Range (ReLU(W ·+b)), then the solution, x , of
ReLU(Wx + b)) = y is given as the solution of

argmin
x∈Rn

‖(W |y>0x + b|y>0)− y |y>0‖22, W |y≤0x + b|y≤0 ≤ 0

simplex method

if the solution, x , is such that 〈wj , x〉 6= 0, j = 1, . . . ,m, then the inequality constraint is
unnecessary

(Lei, Jalal, Dhillon & Dimakis, ’19)
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universal approximation by injective networks

Theorem

Let f : Rn → Rm be a continuous function, where m ≥ 2n + 1. Then for any ε > 0 and
compact subset Z ⊂ Rn there exists a neural network Nθ ∈ NN (n,m) of depth L such that
Nθ : Rn → Rm is injective and

|f (z)− Nθ(z)| ≤ ε, for all z ∈ Z.

Lipschitz version of the generic orthogonal projector technique; this technique is used, for
example, to prove the easy version of the Whitney’s embedding theorem
first approximate function f by a neural network and then apply to it a generic projection
to make the neural network injective
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controlling expansivity through random projections

if we daisy chain networks together we can control how expansive the final network is by
introducing interstitial matrix multiplies, provided that the matrices are ‘slightly’ random

Corollary
Let n,m, d` ∈ Z+, ` = 0, 1, . . . , 2k be such that d0 = n, d2k = m ≥ 2n + 1 and d2j ≥ 2n + 1
for j ≥ 1. Let

Fk = Bk ◦ f (k) ◦ Bk−1 ◦ f (k−1) ◦ · · · ◦ B1 ◦ f (1)

where f (j) : Rd2j−2 → Rd2j−1 are injective neural networks and Bj : Rd2j−1 → Rd2j are random
matrices whose joint distribution is absolutely continuous with respect to the Lebesgue
measure of

∏k
j=1(Rd2j×d2j−1). Then the neural network Fk : Rn→ Rm is injective almost surely.
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heuristics made rigorous

N : Z → N(Z) ⊂ X is a homeomorphism

N produces points that are on a topological (or Lipschitz-smooth) manifold
if Z1 ⊂ Z then N(Z1) has the same topology as Z1
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outlook

verification of DSS
beyond layerwise viewpoint

connection with inverse problems classification, unsupervised
inference (networks)
inductive bias (Kothari, dH & Dokmanić, ArXiv)
learning/training dynamics

analysis and guarantees
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learning/training dynamics

analysis and guarantees

Maarten V. de Hoop (Rice University) Globally Injective (ReLU) Neural Networks UCI, July 10, 2020 32 / 36



Maarten V. de Hoop (Rice University) Globally Injective (ReLU) Neural Networks UCI, July 10, 2020 33 / 36



robustness to normalization common structure

normalization of output layerwise
WL+1φL(WLML(...φ2(W2M2(φ1(W1z + b1)) + b2)...+ bL))

where M` : Rn`+1 → Rn`+1 , understood to be many-to-one

Definition (Scalar-Augmented Injective Normalization)

We say that M`(x) : Rn → Rn is scalar-augmented injective if there exists a functions
m`(x) : Rn → Rk where k � n and M̃` : Rn × Rk → Rn such that

M`(x) := M̃`(x ; m`(x))

and M̃`(x ; m`(x)) is injective on x given m`(x).

m`(x) = ‖x‖2 , M̃`(x ;α) = x
α

M`(x) = x
‖x‖2
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robustness to normalization

Lemma

Let N be a deep ReLU network that is layer-wise injective. Let the normalization functions
{M`}`=1,...,L each be scalar-augmented injective. Then, given {m`(x)}`=1,...,L, the network

Ñ(z ; m1, . . . ,m`) = WL+1φL(WLM̃L(. . . M̃2(φ1(W1z + b1); m1) · · ·+ bL; mL))

is injective.

includes batch, weight normalizations pooling

Maarten V. de Hoop (Rice University) Globally Injective (ReLU) Neural Networks UCI, July 10, 2020 35 / 36


	Motivation

