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INTRODUCTION - THE SECOND ORDER ELLIPTIC
CASE

Assume Ω bounded domain, ∂Ω ∈ C1,α, ∂Ω = Γ(a) ∪ Γ(i) and
Γ(i) = ∂Ω \ Int∂ΩΓ(a)

Given: A (Symmetric, elliptic, Lipschitz) and ψ 6≡ 0 s.t.

ψ = 0 , on Γ(i),

Let u be solution to 
div (A∇u) = 0, in Ω,

u = ψ, on ∂Ω,

Assume to know
A∇u · ν, on Σ ⊂ Γ(a),

Determine: Γ(i)
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∑

Ω

Г(a)

Г(i)

Г(i)
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Stability Issue: continuous dependence of Γ(i) from the Cauchy
data

u , A∇u · ν on Σ

We prove a logarithmic (i.e. optimal) stability estimate.
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Some references

second order elliptic equations:
Beretta, V., (1998); Alessandrini, Beretta, Rosset, V. , (2000);
J.Cheng, Y. C. Hon, M. Yamamoto, (2001); Inglese, Mariani
(2004); Bacchelli, V. (2006); Sincich, (2010).
3D elasticity systems (log-log estimate):
Morassi, Rosset, (2004), (2009).
plate equation and generalized plane stress problem:
Morassi, Rosset, V. (2012), (2019), (2020).
parabolic equations:
V. (1997); Francini (2000); Canuto, Rosset, V., (2002); V. (2008);
H. Kawakami, M. Tsuchiya, (2013).
wave equation:
V. (2015).
optimality of log estimates:
Alessandrini, (1997) (elliptic case); Di Cristo, Rondi, V., (2006)
(parabolic case).
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Strategy in the 2nd order elliptic I.P.

In [Alessandrini, Beretta, Rosset, V. , (2000)] , in order to prove optimal
stability estimate we have used:

Stability estimates for Cauchy problem and smallness propagation
estimates

Finite vanishing property at the interior and at the boundary
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Let P be an elliptic operator of order 2. We say that P enjoys a finite
vanishing property at the interior if
(Aronszajin’s Theorem, 1962)

for any x0 ∈ Ω and any non identically vanishing solution u to

Pu = 0 in Ω

we have
‖u‖L2(Br (x0)) ≥ CrN , ∀r ∈ (0, r0).

where N,C, r0 > 0 may depend on u
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Similarly, we say that P enjoys a finite vanishing property at the
boundary, for instance, w.r.t. Dirichlet conditions, if
(Adolfsson–Escauriaza Theorem, 1997)

for any non identically vanishing u that satisfies{
Pu = 0, in Ω,

u = 0, on Γ,
.

where Γ is an open portion (in the induced topology) of ∂Ω, x0 ∈ Γ we
have

‖u‖L2(Br (x0)∩Ω) ≥ CrN , ∀r ∈ (0, r0).

and, consequently

‖∇u‖L2(Br (x0)∩Ω) ≥ C̃rN−1, ∀r ∈ (0, r0).
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X0

∂Ω
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Sketch of proof of stability estimate

uj , j = 1,2 solutions to{
div
(
A(x)∇uj

)
= 0, in Ωj ,

uj = ψj , on ∂Ωj .

(ψj = ψ on Γ(a), ψ1 = 0 on Γ
(i)
1 and ψ2 = 0 on Γ

(i)
2 )

Assume
‖A∇u1 · ν − A∇u2 · ν‖L2(Σ) ≤ ε

Set

G = the connected component of Ω1 ∩ Ω2 s.t. G ⊃ Γ(a).

MAIN STEPS
(I) Estimate of

uj in Ωj \G j = 1,2

(II) From (I) we estimate dH(Ω1,Ω2) (Hausdorff distance).
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STEP (I)

Stability Estimate for Cauchy Problem
Smallness Propagation Estimates

Energy Estimate for u1, u2

{

∑

Г(a)

Г1
(i)

Г2
(i)
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STEP (II)

Proposition
If ∫

Ωj\G
u2

j ≤ η2(ε)

then
dH
(
Ω1,Ω2

)
≤ Cηs(ε),

where s and C depend on

‖ψ‖H1/2 / ‖ψ‖L2

Proof. By Quantitative Estimates of Strong Unique Continuation (at
Interior and at the Boundary)

η2(ε) ≥
∫

Ωj\G
u2

j ≥ C
(
dH
(
Ω1,Ω2

))C
.
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DETERMINATION OF A RIGID INCLUSION

IN A THIN ISOTROPIC ELASTIC PLATE
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Thin elastic plate: Ω×
[
−h

2 ,
h
2

]
, having middle plane Ω, D rigid

inclusion

Lw := div
(

div
(

P∇2w
))

= 0, in Ω \ D.

where w is the transversal displacement and
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P︸︷︷︸
plate tensor

=
h3

12
C︸︷︷︸

elasticity tensor

Cijkl = Cklij = Cklji , i , j , k , l = 1,2

CA · A ≥ γ|A|2︸ ︷︷ ︸
Ellipticity

,

for every 2x2 symmetric matrix A.
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Assuming that the plate is made by isotropic material we have

PA = B [(1− ν)Asym + νtr(A)I2]

for every 2× 2 matrix A, where

B(x) =
h3

12

(
E(x)

1− ν2(x)

)
, (bending stiffness)

E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, (Young’s modulus)

ν(x) =
λ(x)

2(µ(x) + λ(x))
(Poisson’s coefficient).

the Lamé parameters λ, µ satisfy

µ(x) ≥ α0 2µ(x) + 3λ(x) ≥ γ0
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Direct Problem:
D b Ω rigid inclusion, D, Ω simply connected bounded domain of class
C1,1 (at least)

(P)



Lw = 0, in Ω \ D,

(P∇2w)n · n = −M̂n, on ∂Ω,

div(P∇2w) · n + ∂s((P∇2w)n · τ) = ∂s(M̂τ ), on ∂Ω,

w = 0, on ∂D,
∂nw = 0, on ∂D,

n outward normal to ∂(Ω \D), M̂τ and M̂n are, respectively, the twisting
and bending component of the assigned couple field M̂ .

Here, Γ(a) = ∂Ω and Γ(i) = ∂D .
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O

X2

X1

0

D n

n

P0

τ

τ
Ω

n

s

MτM

M = Mτn + Mnτ = M2e1 + M1e2 ,       on ∂Ω
      τ = e2 x n

Mn
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If M̂ ∈ H−
1
2 (∂Ω,R2),

∫
∂Ω M̂α = 0, α = 1,2, then problem (P) has a

unique solution weak solution w ∈ H2(Ω \ D) satisfying

‖w‖H2(Ω\D) ≤ C‖M̂‖H−1/2(∂Ω).
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INVERSE PROBLEM

Determine an unknown rigid inclusion D from the additional
measurement of the Dirichlet data {w , ∂nw} taken on an open portion
Σ of ∂Ω, that is from the Cauchy data on Σ :

(Cauchy)


w |Σ,
∂nw |Σ
(P∇2w)n · n|Σ = −M̂n

div(P∇2w) · n + ∂s((P∇2w)n · τ)|Σ = ∂s(M̂τ )

APPLICATIONS
Non-destructive testing for quality assessment of materials
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Hypotheses and a priori assumptions

HYPOTHESES (Concerning the Data)

∂Ω of class C2,1 with constants r0 , M0 ; ∂Ω ∩ Br0(P0) ⊂ Σ, for
some P0 ∈ Σ

|Ω| ≤ M1

supp(M̂) ⊂ Σ, M̂ ∈ L2(∂Ω,R2),
(

M̂n, ∂s(M̂τ )
)
6≡ 0 and

‖M̂‖L2

‖M̂‖
H−1/2

≤ F

Σ of class C3,1 with constants r0 , M0
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A PRIORI ASSUMPTION (Concerning the Solution)

D b Ω

dist(D, ∂Ω) ≥ r0

∂D of class C6,α with constants r0 , M0 , α ∈ (0,1)
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Theorem (Stability, Morassi, Rosset, V. (2019))

Let wi ∈ H2(Ω \ Di) be the solutions to (P), i = 1,2.
If, given ε > 0, we have{

‖w1 − w2‖L2(Σ) + ‖∂n(w1 − w2)‖L2(Σ)

}
≤ ε,

then we have

dH(D1,D2) ≤ C(| log ε|)−η,

for every ε, 0 < ε < 1, where C > 0, η, 0 < η ≤ 1, are constants only
depending on the a priori data.

dH(D1,D2) is the Hausdorff distance between D1 and D2.
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Main tool of the proof

Theorem (Optimal three spheres inequality at the boundary)
If x0 ∈ ∂D and

Lw = 0, in Ω \ D,

there exist C > 1 such that, for every r1 < r2 < r3 < dist(x0, ∂Ω),

‖w‖L2(Br2 (x0)∩(Ω\D)) ≤ C
(

r3

r2

)C

‖w‖θL2(Br1 (x0)∩(Ω\D)) ‖w‖
1−θ
L2(Br3 (x0)∩(Ω\D))

where

θ =
log
(

r3
Cr2

)
log
(

r3
r1

) .
Alessandrini, Rosset, V., ARMA, 2019
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Corollary (finite vanishing rate at the boundary)
Under the above hypotheses, there exist C,N such that∫

Br (x0)∩(Ω\D)
w2 ≥ CrN

X0

∂D

n
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In the interior, similar results hold true. In particular we have

Theorem (finite vanishing rate in the interior)

If x0 ∈ Ω \ D and Br (x0) b Ω \ D there exist C,N such that∫
Br (x0)

∣∣∣∇2w
∣∣∣2 ≥ CrN

First qualitative result:

Taira Shirota, A remark on the unique continuation theorem for certain
fourth order elliptic equations, Proc. Japan Acad. 36 (1960), 571–573.
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Basic steps of the stability proof

Similarly to 2nd order case:

a) Stability estimates of continuation from Cauchy data:

max

{∫
D1\D2

|∇2w2|2,
∫

D2\D1

|∇2w1|2
}
≤ ω(ε)

b) by the Three Sphere Inequality in the interior and at the boundary,

dH(D1,D2) ≤

(
max

{∫
D1\D2

|∇2w2|2,
∫

D2\D1

|∇2w1|2
})δ

≤ (ω(ε))δ
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Another result of finite rate vanishing at the
boundary

Let x0 ∈ ∂D 
Lw = 0, in BR0(x0) ∩ (Ω \ D),

w = 0, on BR0(x0) ∩ ∂D,
(P∇2w)n · n = 0, on BR0(x0) ∩ ∂D,

Theorem (Rosset, Morassi, V. (in preparation))
Under the above hypotheses, there exist C,N such that∫

Br (x0)∩(Ω\D)
w2 ≥ CrN
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GENERALIZED PLANE STRESS PROBLEM
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Here, u = u1e1 + u2e2 represents the in-plane displacement field. Let
us consider the two-dimensional system

∂βNαβ = 0, in U := BR0(x0) ∩ (Ω \ D) (1)

where
Nαβ = Cαβγδεγδ, εαβ =

1
2

(∂βuα + ∂αuβ) ,

x0 ∈ ∂D and U is simply connected (i.e. R0 small enough), C is the
elasticity tensor of the (isotropic) material

CA =
hE(x)

1− ν2(x)
[(1− ν)Asym + νtr(A)I2]

for every 2× 2 matrix A,
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By using the Airy’s function (1863), a finite vanishing rate at the
boundary can be proved for (1) w. r. t. Neumann Condition

Nαβnβ = 0, on BR0(x0) ∩ ∂D (2)
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Airy’s function{
∂1N11 + ∂2N12 = 0, in U := BR0(x0) ∩ (Ω \ D),

∂1N21 + ∂2N22 = 0, in U := BR0(x0) ∩ (Ω \ D),

We have that

−N12dx1 + N11dx2, −N22dx1 + N21dx2

are exact forms. Hence exists ϕ̃1and ϕ̃2 such that
(F) ∂1ϕ̃1 = −N12, ∂2ϕ̃1 = N11 and ∂1ϕ̃2 = −N22, ∂2ϕ̃2 = N21.

The symmetry of Nαβ implies N12 = N21, hence

∂1ϕ̃1 = −∂2ϕ̃2,

and, again, the differential form

−ϕ̃2dx1 + ϕ̃1dx2,

is exact so that there exists ϕ (Airy’s function) such that

∂1ϕ = −ϕ̃2, ∂2ϕ = ϕ̃1
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By (F) and the definition of Nαβ we have
ε11 = 1

hE

(
∂2

22ϕ− ν∂2
11ϕ
)
,

ε12 = −1+ν
hE ∂2

12ϕ,

ε22 = 1
hE

(
∂2

11ϕ− ν∂2
22ϕ
)

Now, since εαβ = 1
2 (∂βuα + ∂αuβ) we have

∂2
22ε11 − 2∂2

12ε12 + ∂2
11ε22 = 0

hence
div
(

div
(

L∇2ϕ
))

= 0, in U

where
Lαβγδ =

1 + ν

hE
δαγδβδ −

ν

hE
δαβδγδ
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By using the weak formulation of (1), (2) and by choosing the
indeterminate constants, we have also

ϕ = ∂nϕ = 0, on BR0(x0) ∩ ∂D.

We have

Theorem (Morassi, Rosset, V. (2020))

If ∂D is of C6,α class and u is not constant in BR0(x0) ∩ (Ω \ D) then
there exists C,N positive such that for every r < R0/2, we have∫

Br (x0)∩(Ω\D)
|∇u|2 ≥ CrN

Theorem above is the main tool for the proof of optimal stability
estimate for identification of cavities in the Generalized Plane Stress
problem in linear elasticity.
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SKETCH OF THE PROOF OF THREE SPHERES INEQUALITY

AT THE BOUNDARY FOR THE PLATE EQUATION
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a) The plate equation can be rewritten in the form

∆2w = −2
∇B
B
· ∇∆w + q2(w) in Ω \ D,

where q2 is a second order operator. Assume x0 ≡ 0 and let
Γ = ∂D ∩ BR a small portion of ∂D

b) Flattening Γ by a conformal mapping the resulting equation
preserves the same structure:{

∆2u = a · ∇∆u + p2(u), in B+
1 ,

u(x ,0) = uy (x ,0) = 0, ∀x ∈ (−1,1)

where u is the solution in the new coordinates and p2 is a second
order operator.
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c) We use the following reflection of u,

u(x , y) =

{
u(x , y), in B+

1
v(x , y), in B−1

where

v(x , y) = −[u(x ,−y) + 2yuy (x ,−y) + y2∆u(x ,−y)]

which has the advantage of ensuring that u ∈ H4(B1) if u ∈ H4(B+
1 )

Poritsky, Trans. Amer. Math. Soc. 59 (1946), 248–279

John, Bull. Amer. Math. Soc. 63 (1957), 327–344
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d) Then we apply the Carleman estimate

3∑
k=0

τ6−2k
∫
ρ2k+ε−2−2τ |DkU|2dxdy ≤ C

∫
ρ6−ε−2τ (∆2U)2dxdy ,

for every τ ≥ τ and suppU ⊂ BR̃0
\ {0}, where 0 < ε < 1 is fixed and

ρ(x , y) ∼
√

x2 + y2 as (x , y)→ (0,0)
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U = ξu where ξ := η(
√

x2 + y2) is a cut-off function

0 ≤ η ≤ 1 ,
∣∣∣∣dkη

dtk (t)
∣∣∣∣ ≤ Cr−k in

( r
4
,

r
2

)
,

η =

{
1, in

[
r
2 ,

R0
2

]
0, in

(
0, r

4

)
∪
(2

3R0,1
)
.

O

1 η(t)

r
4

r
2

R0
2

2R0
3

t
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e) Nevertheless we still have a problem:
the term ∆2v on the right-hand side of the Carleman estimate involves
derivatives of the forth order of v or, by definition of v , derivatives of u
up to the sixth order, hence cannot be absorbed in a standard way
by the left hand side.

In order to overcome this obstruction...
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1) Using the structure of the equation and the expression of the
reflection u, we rewrite in a suitable way ∆2v :

For every (x , y) ∈ B−1 , we have

∆2v(x , y) = H(x , y) + (P2(v))(x , y) + (P3(u))(x ,−y),

where

H(x , y) = 6
a1

y
(vyx (x , y) + uyx (x ,−y))+

+ 6
a2

y
(−vyy (x , y) + uyy (x ,−y))− 12a2

y
uxx (x ,−y),

where a1,a2 are the components of the vector a. Moreover, for every
x ∈ (−1,1),

vyx (x ,0) + uyx (x ,0) = 0 , − vyy (x ,0) + uyy (x ,0) = 0 , uxx (x ,0) = 0
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To handle the singularity of these terms as y → 0

2) We use Hardy’s inequality: If f (0) = 0 then∫ +∞

0

f 2(t)
t2 dt ≤ 4

∫ +∞

0
(f ′(t))2dt .
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After a few steps we have

3∑
k=0

τ6−2k
∫

B+
R0

ρ2k+ε−2−2τ |Dk (ξu)|2+

+
3∑

k=0

τ6−2k
∫

B−
R0

ρ2k+ε−2−2τ |Dk (ξv)|2 ≤

≤ C
∫

B−
R0

ρ6−ε−2τξ2|H(x , y)|2︸ ︷︷ ︸
I1

+

+ C
∫

B−
R0

ρ6−ε−2τξ2
2∑

k=0

|Dkv |2︸ ︷︷ ︸
I2

+ C
∫

B+
R0

ρ6−ε−2τξ2
3∑

k=0

|Dku|2︸ ︷︷ ︸
I3

.

I2 and I3 can be absorbed easily by the right hand side.
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I1 =

∫
B−

R0

ρ6−ε−2τξ2|H(x , y)|2 ≤ C(J1 + J2 + J3),

where, for instance

J1 =

∫ R0

−R0

(∫ 0

−∞

∣∣∣y−1(vyx (x , y) + (uyx (x ,−y))ρ
6−ε−2τ

2 ξ
∣∣∣2 dy

)
dx

and J2, J3 are similar. To estimate J1, J2 and J3 we use Hardy’s
inequality:

Jj ≤ C
∫

B−
R0

ρ6−ε−2τξ2|D3v |2 + Cτ2
∫

B−
R0

ρ4−ε−2τξ2|D2v |2+

+ C
∫

B+
R0

ρ6−ε−2τξ2|D3u|2 + Cτ2
∫

B+
R0

ρ4−ε−2τξ2|D2u|2 + CI,

where I is a sum of integrals over B±r/2 \ B±r/4 and B±2R0/3 \ B±R0/2
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SOME OPEN PROBLEMS ABOUT FINITE RATE VANISHING
PROPERTY AT THE BOUNDARY

Could the assumption Γ ∈ C6,α be reduced?

The case of isotropic Kirchhoff Love plate with other
boundary conditions, in particular, Neumann condition

The case
∣∣∆2u

∣∣ ≤ C
∑3

k=0

∣∣Dku
∣∣

The case of three dimensional Lamé system
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