Abelian and non-Abelian X-ray transforms: mapping properties and Bayesian inversion

François Monard

Dept. of Mathematics, University of California Santa Cruz

UCI International Zoom Inverse Problems seminar August 6, 2020

(1) Introduction
(2) Main results
(3) A numerical illustration
(4) Elements of proof: mapping properties of unattenuated X -ray

- The 'classical' functional setting $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$
- The Euclidean disk: setting $L^{2}(\mathbb{D}) \rightarrow L^{2}\left(\partial_{+} S \mathbb{D}\right)$
(5) Elements of proof: mapping properties of attenuated X-ray

Outline

(1) Introduction

(2) Main results
(3) A numerical illustration
(4) Elements of proof: mapping properties of unattenuated X -ray

- The 'classical' functional setting $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$
- The Euclidean disk: setting $L^{2}(\mathbb{D}) \rightarrow L^{2}\left(\partial_{+} S \mathbb{D}\right)$
(5) Elements of proof: mapping properties of attenuated X-ray

The geodesic X -ray transform

$(M, g), \partial M$ strictly convex.

The geodesic X-ray transform

$(M, g), \partial M$ strictly convex.
$\partial_{+} S M$: "inward" boundary ('fan-beam'). Geodesics: $\gamma_{x, v}(t)$.

The geodesic X-ray transform

$(M, g), \partial M$ strictly convex.
$\partial_{+} S M$: "inward" boundary ('fan-beam').
Geodesics: $\gamma_{x, v}(t)$.

Geodesic X-ray transform of f :

$$
\operatorname{If}(x, v)=\int_{0}^{\tau(x, v)} f\left(\gamma_{x, v}(t)\right) d t, \quad(x, v) \in \partial_{+} S M=\mathbb{S}^{1} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

The geodesic X-ray transform

$(M, g), \partial M$ strictly convex.
$\partial_{+} S M$: "inward" boundary ('fan-beam').
Geodesics: $\gamma_{x, v}(t)$.

Geodesic X-ray transform of f :

$$
\operatorname{If}(x, v)=\int_{0}^{\tau(x, v)} f\left(\gamma_{x, v}(t)\right) d t, \quad(x, v) \in \partial_{+} S M=\mathbb{S}^{1} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

The geodesic X -ray transform

$(M, g), \partial M$ strictly convex.
$\partial_{+} S M$: "inward" boundary ('fan-beam').
Geodesics: $\gamma_{x, v}(t)$.

Geodesic X-ray transform of f :

$$
\operatorname{If}(x, v)=\int_{0}^{\tau(x, v)} f\left(\gamma_{x, v}(t)\right) d t, \quad(x, v) \in \partial_{+} S M=\mathbb{S}^{1} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

Goal: recover f from If.

Applications of geodesic X-ray transform

(1) Radon transform and X-ray CT
(2) SPECT and tomography in media with variable index of refraction
(3) Seismology and travel-time tomography.

The non-abelian X-ray transform

$E=M \times \mathbb{C}^{n}$ trivial bundle over (M, g) a simple Riem. surface
A : hermitian connection on E ($=$ matrix of one-forms)
Φ : skew-hermitian Higgs field $(\Phi: M \rightarrow \mathfrak{u}(n))$

$$
C_{A, \Phi}(\gamma) S
$$

$$
\begin{aligned}
& S(0)=S \\
& \frac{d}{d t} S(t)+\left(A_{\gamma(t)}(\dot{\gamma}(t))+\Phi_{\gamma(t)}\right) S(t)=0
\end{aligned}
$$

$$
\text { data: } S(\ell(\gamma))=C_{A, \Phi}(\gamma) S
$$

The non-abelian X-ray transform

$E=M \times \mathbb{C}^{n}$ trivial bundle over (M, g) a simple Riem. surface
A : hermitian connection on E ($=$ matrix of one-forms)
Φ : skew-hermitian Higgs field $(\Phi: M \rightarrow \mathfrak{u}(n))$

Inverse problem:

- to recover (A, Φ) from $C_{A, \Phi}$ modulo natural obstruction.
- if $A \equiv 0$: to recover Φ from C_{ϕ}.

Vertgeim, Eskin, Novikov, Paternain-Salo-Uhlmann 5/31

Applications of non-abelian X-ray transform

Problem (Polarimetric Neutron Tomography)

To recover a magnetic field from neutron spin-in to spin-out map ("scattering data" of the magnetic field).

While a neutron's trajectory $\gamma(t)$ is unaffected by a magnetic field B, its spin S evolves according to

$$
\begin{aligned}
& \dot{S}(t)=B(t) \times S(t) . \\
& B \leftrightarrow \mathfrak{s o}(3) \text {-valued }
\end{aligned}
$$ Higgs field.

Src: Sales et al, "3D Polarimetric Neutron Tomography of Magnetic Fields", 2017.

Bayesian approach to noisy inversion $1 / 2$

We consider the problem of recovering a matrix field Φ_{0} from

$$
Y_{j}=C_{\Phi_{0}}\left(\gamma_{j}\right)+\varepsilon_{j}, \quad \varepsilon_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right), \quad 1 \leq j \leq N .
$$

where $\left\{\gamma_{j}\right\}_{j=1}^{N}$ are chosen uniformly at random in fan-beam coordinates. Denote $D_{N}=\left\{\left(\gamma_{j}, Y_{j}\right)\right\}_{1 \leq j \leq N}$ the data set.
\qquad

Bayesian approach to noisy inversion 1/2

We consider the problem of recovering a matrix field Φ_{0} from

$$
Y_{j}=C_{\Phi_{0}}\left(\gamma_{j}\right)+\varepsilon_{j}, \quad \varepsilon_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right), \quad 1 \leq j \leq N .
$$

where $\left\{\gamma_{j}\right\}_{j=1}^{N}$ are chosen uniformly at random in fan-beam coordinates. Denote $D_{N}=\left\{\left(\gamma_{j}, Y_{j}\right)\right\}_{1 \leq j \leq N}$ the data set.
Given a prior model for Φ and a noise model, Bayes' formula gives the proba. density of the posterior random variable $\Phi \mid D_{N}$:

$$
P\left(\Phi \mid D_{N}\right)=\frac{P\left(D_{N} \mid \Phi\right) P(\Phi)}{P\left(D_{N}\right)} \propto \overbrace{P\left(D_{N} \mid \Phi\right)}^{\text {likelihood }} \cdot \overbrace{P(\Phi)}^{\text {prior }}
$$

Bayesian approach to noisy inversion 1/2

We consider the problem of recovering a matrix field Φ_{0} from

$$
Y_{j}=C_{\Phi_{0}}\left(\gamma_{j}\right)+\varepsilon_{j}, \quad \varepsilon_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right), \quad 1 \leq j \leq N .
$$

where $\left\{\gamma_{j}\right\}_{j=1}^{N}$ are chosen uniformly at random in fan-beam coordinates. Denote $D_{N}=\left\{\left(\gamma_{j}, Y_{j}\right)\right\}_{1 \leq j \leq N}$ the data set.
Given a prior model for Φ and a noise model, Bayes' formula gives the proba. density of the posterior random variable $\Phi \mid D_{N}$:

$$
P\left(\Phi \mid D_{N}\right)=\frac{P\left(D_{N} \mid \Phi\right) P(\Phi)}{P\left(D_{N}\right)} \propto \overbrace{P\left(D_{N} \mid \Phi\right)}^{\text {likelihood }} \cdot \overbrace{P(\Phi)}^{\text {prior }}
$$

With a Gaussian prior and Gaussian noise model, one may arrive at the log-posterior distribution:

$$
-\log \Pi\left(\Phi \mid D_{N}\right)=\frac{1}{\sigma^{2}} \sum_{j=1}^{N}\left|Y_{j}-C_{\Phi}\left(\gamma_{j}\right)\right|_{F}^{2}+\|\Phi\|_{H^{\alpha}}^{2}+C .
$$

Note: Not gaussian since $\Phi \mapsto C_{\Phi}$ is non-linear.

Bayesian approach to noisy inversion 2/2

Rather than looking at the entire posterior object $\Phi \mid D_{N}$, consider ONE of its moments $\langle\Phi, \psi\rangle \mid D_{N}$, where ψ is a 'test' field.

Important questions:
(1) What relevant estimators $\widehat{\Psi}_{N}$ of $\left\langle\Phi_{0}, \psi\right\rangle$ can we extract from this posterior distribution ? Examples: mean and MAP, when they exist.
(2) Are they easily computable ?
(3) Consistency: does $\widehat{\Psi}_{N} \rightarrow\left\langle\Phi_{0}, \Psi\right\rangle$ as $N \rightarrow \infty$ in any sense?
(9) UQ: does the posterior density "contract" about $\widehat{\psi}_{N}$ so one can get confidence/credible sets ?

Outline

(1) Introduction
(2) Main results
(3) A numerical illustration
(4) Elements of proof: mapping properties of unattenuated X -ray

- The 'classical' functional setting $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$
- The Euclidean disk: setting $L^{2}(\mathbb{D}) \rightarrow L^{2}\left(\partial_{+} S \mathbb{D}\right)$
(5) Elements of proof: mapping properties of attenuated X-ray

Main messages of this talk

(1) Making UQ statements for inverse problems requires a refined understanding of mapping properties of the forward and/or the 'normal' (linearized) operator.
mapping properties (the natural Hilbert scales involved and certain weights.

Main messages of this talk

(1) Making UQ statements for inverse problems requires a refined understanding of mapping properties of the forward and/or the 'normal' (linearized) operator.
(2) For X-ray problems on manifolds with boundary, these mapping properties (the natural Hilbert scales involved and their Fréchet limits) are highly sensitive to the choice of certain weights.

Main messages of this talk

(1) Making UQ statements for inverse problems requires a refined understanding of mapping properties of the forward and/or the 'normal' (linearized) operator.
(2) For X-ray problems on manifolds with boundary, these mapping properties (the natural Hilbert scales involved and their Fréchet limits) are highly sensitive to the choice of certain weights.
(3) Said choice of weights can come from: theoretical tractability ("choose the easiest one!") or noise model ("choose the practical one!").

Main results $1 / 3$

Theorem (${ }^{\prime}$ ', 2019, arXiv preprint 1910.13691)

On M the Euclidean disk, if $I_{0}: L^{2}(M) \rightarrow L^{2}\left(\partial_{+} S M\right)$ is the X-ray transform with adjoint I_{0}^{*}, we have

$$
I_{0}^{*} I_{0}: C^{\infty}(M) \xrightarrow{\cong} C^{\infty}(M), \quad I_{0}^{*} I_{0}: \widetilde{H}^{s}(M) \xrightarrow{\cong} \widetilde{H}^{s+1}(M), \quad s \geq 0,
$$

where $\widetilde{H}^{s}:=D\left(\mathcal{L}^{\mathcal{S}}\right)$ upon defining

$$
\mathcal{L}=-\left(\left(1-\rho^{2}\right) \partial_{\rho}^{2}+\left(\rho^{-1}-3 \rho\right) \partial_{\rho}+\rho^{-2} \partial_{\omega}^{2}\right)+1
$$

- The L^{2} topology on $\partial_{+} S M$ is not the usual, 'symplectic' one.
- Generalizations to special cases of simple surfaces also exist.

Main results 2/3

Theorem (M'-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

On M the Euclidean disk, let $\Theta \in C_{c}^{\infty}(M, \mathfrak{s o}(n))$, and let the attenuated X-ray transform

$$
I_{\Theta}: L^{2}\left(M, \mathbb{C}^{n}\right) \rightarrow L^{2}\left(\partial_{+} S M, \mathbb{C}^{n}\right)
$$

Then $!_{\Theta}^{*} l_{\Theta}$ is an isomorphism

$$
C^{\infty}\left(M, \mathbb{C}^{n}\right) \xrightarrow{\cong} C^{\infty}\left(M, \mathbb{C}^{n}\right), \quad \widetilde{H}^{s}\left(M, \mathbb{C}^{n}\right) \xrightarrow{\cong} \widetilde{H}^{s+1}\left(M, \mathbb{C}^{n}\right), \quad s \geq 0 .
$$

- based on setting up a suitable Fredholm setting, using the \widetilde{H}^{s} scale and $\Theta \equiv 0$ as reference case.

Main result $3 / 3$ - application to UQ

Consider the problem of recovering $\Phi_{0} \in C_{c}^{\infty}(M, \mathfrak{s o}(n))$ from

$$
Y_{j}=C_{\Phi_{0}}\left(\gamma_{j}\right)+\varepsilon_{j}, \quad \varepsilon_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right), \quad 1 \leq j \leq N
$$

As above, let $D_{N}:=\left\{\gamma_{j}, Y_{j}\right\}_{j=1}^{N}$, and choose a prior among a flexible class and a test field $\psi \in C^{\infty}(M, \mathfrak{s o}(n))$. Denote $\widehat{\Phi}_{N}$ the posterior mean (from [M.-Nickl-Paternain, CPAM '20], it exists and converges to Φ_{0} as $N \rightarrow \infty$).

Theorem (M.-Nickl-Paternain, 2020, arXiv preprint 2007.15892)
We have as $N \rightarrow \infty$ and in $P_{\Phi_{0}}^{N}$-probability, the weak convergence

$$
\sqrt{N}\left\langle\Phi-\widehat{\Phi}_{N}, \psi\right\rangle \mid D_{N} \rightarrow^{d} \mathcal{N}\left(0,\left\|I_{\Theta_{0}}\left(I_{\Theta_{0}}^{*} I_{\Theta_{0}}\right)^{-1} \psi\right\|_{L^{2}\left(\partial_{+} S M\right)}^{2}\right) .
$$

[^0]
Main result 3/3 - application to UQ

Consider the problem of recovering $\Phi_{0} \in C_{c}^{\infty}(M, \mathfrak{s o}(n))$ from

$$
Y_{j}=C_{\Phi_{0}}\left(\gamma_{j}\right)+\varepsilon_{j}, \quad \varepsilon_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right), \quad 1 \leq j \leq N
$$

As above, let $D_{N}:=\left\{\gamma_{j}, Y_{j}\right\}_{j=1}^{N}$, and choose a prior among a flexible class and a test field $\psi \in C^{\infty}(M, \mathfrak{s o}(n))$. Denote $\widehat{\Phi}_{N}$ the posterior mean (from [M.-Nickl-Paternain, CPAM '20], it exists and converges to Φ_{0} as $N \rightarrow \infty$).

Theorem (M.-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

We have as $N \rightarrow \infty$ and in $P_{\Phi_{0}}^{N}$-probability, the weak convergence

$$
\sqrt{N}\left\langle\Phi-\widehat{\Phi}_{N}, \psi\right\rangle \mid D_{N} \rightarrow^{d} \mathcal{N}\left(0,\left\|I_{\Theta_{0}}\left(I_{\Theta_{0}}^{*} I_{\Theta_{0}}\right)^{-1} \psi\right\|_{L^{2}\left(\partial_{+} S M\right)}^{2}\right) .
$$

- $I_{\Theta_{0}}$ is an attenuated X -ray transform where Θ_{0} depends on Φ_{0}, related to the linearization of the $\operatorname{map} \Phi \mapsto C_{\Phi}$ at Φ_{0}.

Outline

(1) Introduction
(2) Main results
(3) A numerical illustration
(4) Elements of proof: mapping properties of unattenuated X -ray

- The 'classical' functional setting $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$
- The Euclidean disk: setting $L^{2}(\mathbb{D}) \rightarrow L^{2}\left(\partial_{+} S \mathbb{D}\right)$
(5) Elements of proof: mapping properties of attenuated X -ray

A numerical illustration

Computational domain, unknown

M : Euclidean unit disk. Unstructured mesh with 886 nodes.

Computational domain, unknown

M : Euclidean unit disk.
Unstructured mesh with 886 nodes.

Magnetic field (3 components):

(made $\mathfrak{s u}(2)$-valued via $\left.\mathbb{R}^{3} \ni(a, b, c) \mapsto \frac{1}{2}\left[\begin{array}{cc}i a & b+i c \\ -b+i c & -i a\end{array}\right]\right)$

A numerical illustration

Forward data + sampling

Noiseless

imag(C_{21})

A numerical illustration

Forward data + sampling

Noiseless, randomly sampled ($N=800$)

A numerical illustration

Forward data + sampling

Forward data + sampling

Prior (Matérn) parameters: $\nu=3, \ell=0.2$. Samples:

Computation of the posterior mean by MCMC

We compute a family of posterior draws using preconditioned
Crank-Nicolson [Cotter, Stuart, Roberts \& White '13].
Fix $\delta \in(0,1 / 2), \Phi_{0}=0$, and for $n=0: N_{s}$ do:
(1) Draw $\Psi \sim \Pi$ and set $p_{n}=\sqrt{1-2 \delta} \Phi_{n}+\sqrt{2 \delta} \Psi$.
(2) With $\ell(\Phi)=\frac{1}{\sigma^{2}} \sum_{j=1}^{N}\left|Y-C_{\Phi}\left(\gamma_{j}\right)\right|_{F}^{2}$ the log-likelihood,
set $\quad \Phi_{n+1}= \begin{cases}p_{n} & \text { with proba. } 1 \wedge \exp \left(\ell\left(\Phi_{n}\right)-\ell\left(p_{n}\right)\right), \\ \Phi_{n} & \text { otherwise. }\end{cases}$
\otimes Visualize $\widehat{\Phi}=\frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \Phi_{n}$ and histograms of moments.

Computation of the posterior mean by MCMC

We compute a family of posterior draws using preconditioned
Crank-Nicolson [Cotter, Stuart, Roberts \& White '13].
Fix $\delta \in(0,1 / 2), \Phi_{0}=0$, and for $n=0: N_{s}$ do:
(1) Draw $\Psi \sim \Pi$ and set $p_{n}=\sqrt{1-2 \delta} \Phi_{n}+\sqrt{2 \delta} \Psi$.
(2) With $\ell(\Phi)=\frac{1}{\sigma^{2}} \sum_{j=1}^{N}\left|Y-C_{\Phi}\left(\gamma_{j}\right)\right|_{F}^{2}$ the log-likelihood,
set $\quad \Phi_{n+1}= \begin{cases}p_{n} & \text { with proba. } 1 \wedge \exp \left(\ell\left(\Phi_{n}\right)-\ell\left(p_{n}\right)\right), \\ \Phi_{n} & \text { otherwise. }\end{cases}$
\otimes Visualize $\widehat{\Phi}=\frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \Phi_{n}$ and histograms of moments.

- One can show that $\left\{\Phi_{n}\right\}_{n}$ forms a Markov chain with unique invariant measure $\Pi\left(\cdot \mid\left(Y_{i}, x_{i}\right)_{i=1}^{N}\right)$.

Computation of the posterior mean by MCMC

We compute a family of posterior draws using preconditioned
Crank-Nicolson [Cotter, Stuart, Roberts \& White '13].
Fix $\delta \in(0,1 / 2), \Phi_{0}=0$, and for $n=0: N_{s}$ do:
(1) Draw $\Psi \sim \Pi$ and set $p_{n}=\sqrt{1-2 \delta} \Phi_{n}+\sqrt{2 \delta} \Psi$.
(2) With $\ell(\Phi)=\frac{1}{\sigma^{2}} \sum_{j=1}^{N}\left|Y-C_{\Phi}\left(\gamma_{j}\right)\right|_{F}^{2}$ the log-likelihood, set $\quad \Phi_{n+1}= \begin{cases}p_{n} & \text { with proba. } 1 \wedge \exp \left(\ell\left(\Phi_{n}\right)-\ell\left(p_{n}\right)\right), \\ \Phi_{n} & \text { otherwise. }\end{cases}$
\otimes Visualize $\widehat{\Phi}=\frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \Phi_{n}$ and histograms of moments.

- One can show that $\left\{\Phi_{n}\right\}_{n}$ forms a Markov chain with unique invariant measure $\Pi\left(\cdot \mid\left(Y_{i}, x_{i}\right)_{i=1}^{N}\right)$.
- No inversion required, only forward solves !

Computation of the posterior mean by MCMC

We compute a family of posterior draws using preconditioned
Crank-Nicolson [Cotter, Stuart, Roberts \& White '13].
Fix $\delta \in(0,1 / 2), \Phi_{0}=0$, and for $n=0: N_{s}$ do:
(1) Draw $\Psi \sim \Pi$ and set $p_{n}=\sqrt{1-2 \delta} \Phi_{n}+\sqrt{2 \delta} \Psi$.
(2) With $\ell(\Phi)=\frac{1}{\sigma^{2}} \sum_{j=1}^{N}\left|Y-C_{\Phi}\left(\gamma_{j}\right)\right|_{F}^{2}$ the log-likelihood,
set $\quad \Phi_{n+1}= \begin{cases}p_{n} & \text { with proba. } 1 \wedge \exp \left(\ell\left(\Phi_{n}\right)-\ell\left(p_{n}\right)\right), \\ \Phi_{n} & \text { otherwise. }\end{cases}$
\otimes Visualize $\widehat{\Phi}=\frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \Phi_{n}$ and histograms of moments.

- One can show that $\left\{\Phi_{n}\right\}_{n}$ forms a Markov chain with unique invariant measure $\Pi\left(\cdot \mid\left(Y_{i}, x_{i}\right)_{i=1}^{N}\right)$.
- No inversion required, only forward solves !
- [Hairer-Stuart-Vollmer '14] prove non-asymptotic mixing $\operatorname{Law}\left(\Phi_{n}\right) \rightarrow \Pi(\cdot \mid Y)$ under conditions on $\ell(\Phi)$ that do not require convexity.

Illustration of consistency - posterior mean

$$
N=400, \sigma=0.05, \delta=2.5 \cdot 10^{-5}
$$

MCMC sample average over 10^{5} iterations

truth:

Illustration of consistency - posterior mean

$$
N=800, \sigma=0.05, \delta=2.5 \cdot 10^{-5}
$$

MCMC sample average over 10^{5} iterations

truth:

Illustration of approximate normality - histograms

$N=600, \quad 10^{6}$ iterations

$N=1000, \quad 10^{6}$ iterations

Outline

(1) Introduction
(2) Main results
(3) A numerical illustration
(4) Elements of proof: mapping properties of unattenuated X -ray

- The 'classical' functional setting $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$
- The Euclidean disk: setting $L^{2}(\mathbb{D}) \rightarrow L^{2}\left(\partial_{+} S \mathbb{D}\right)$
(5) Elements of proof: mapping properties of attenuated X-ray

Outline

(1) Introduction

(2) Main results

(3) A numerical illustration

(4) Elements of proof: mapping properties of unattenuated X -ray - The 'classical' functional setting $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$

- The Euclidean disk: setting $L^{2}(\mathbb{D}) \rightarrow L^{2}\left(\partial_{+} S D\right)$
(5) Elements of proof: mapping properties of attenuated X-ray

The case of simple surfaces

Simple $=\partial M$ stricly convex + no conjugate points + no geodesic of infinite length.

$1 / 2$ in that one may derive the stability estimate
where \widetilde{M} is a simple extension of M.

Question: Can one obtain mapping properties of $\mid \forall / /$ that do not
require an extension

The case of simple surfaces

Simple $=\partial M$ stricly convex + no conjugate points + no geodesic of infinite length.

Recovery of f from If is injective [Mukh. '75], ill-posed of order $1 / 2$ in that one may derive the stability estimate

$$
\|f\|_{L^{2}(M)} \leq C\left\|I^{\sharp} I f\right\|_{H^{1}(\widetilde{M})}, \quad\left(I^{\sharp}: L^{2}(M)-L_{\mu}^{2}\left(\partial_{+} S M\right) \text { adjoint }\right)
$$

where \widetilde{M} is a simple extension of M. [Stef.-Uhl. '04]

The case of simple surfaces

Simple $=\partial M$ stricly convex + no conjugate points + no geodesic of infinite length.

Recovery of f from If is injective [Mukh. '75], ill-posed of order $1 / 2$ in that one may derive the stability estimate

$$
\|f\|_{L^{2}(M)} \leq C\left\|I^{\sharp} I f\right\|_{H^{1}(\tilde{M})}, \quad\left(I^{\sharp}: L^{2}(M)-L_{\mu}^{2}\left(\partial_{+} S M\right) \text { adjoint }\right)
$$

where \widetilde{M} is a simple extension of M. [Stef.-Uhl. '04]
Question: Can one obtain mapping properties of $I \sharp /$ that do not require an extension ?

Extendibility property

In the $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$ setting, the normal operator looks like

$$
I^{\sharp} I f(x)=2 \int_{S_{x}} \int_{0}^{\tau(x, v)} f\left(\gamma_{x, v}(t)\right) d t d S(v) .
$$

notice that

Moreover, $|\sharp| \in \Psi_{\text {ell }}^{-1}(\widetilde{M})$ and satisfies a $-1 / 2$ transmission condition at ∂M, a symmetry condition on its full symbol

Extendibility property

In the $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$ setting, the normal operator looks like

$$
I^{\sharp} I f(x)=2 \int_{S_{x}} \int_{0}^{\tau(x, v)} f\left(\gamma_{x, v}(t)\right) d t d S(v) .
$$

If \widetilde{M} is a simple extension of M, one could define $\widetilde{\#} /$ similarly, and notice that

$$
r_{M} \circ \widetilde{l^{\sharp} l} \circ e_{M}=I^{\sharp} l .
$$

 condition at ∂M, a symmetry condition on its full symbol expansion relating $\sigma\left(x, \nu_{x}\right)$ and $\sigma\left(x,-\nu_{x}\right)$ at every point $x \in \partial M$. [Boutet de Monvel, Hörmander, Grubb]

Mapping properties of $I^{*} /$

Theorem (M.-Nickl-Paternain, AoS '19)

The map $I^{\sharp} I$ is an isomorphism in the settings below:
(i) $I^{\sharp} I: d^{-1 / 2} C^{\infty}(M) \rightarrow C^{\infty}(M), \quad d(x)=\operatorname{dist}(x, \partial M)$
(ii) $I^{\sharp} I: H^{-1 / 2(s)}(M) \rightarrow H^{s+1}(M), \quad s>-1, \quad$ (bi-continuous).

Proof of (i) (sketch)
© $I \sharp I$ is Fredholm. Uses the μ-transmission property for UDOs
(2) I\# I has trivial kernel and co-kernel

Mapping properties of $I^{*} /$

Theorem (M.-Nickl-Paternain, AoS '19)

The map $I^{\sharp} I$ is an isomorphism in the settings below:

$$
\begin{aligned}
& \text { (i) } I^{\sharp} I: d^{-1 / 2} C^{\infty}(M) \rightarrow C^{\infty}(M), \quad d(x)=\operatorname{dist}(x, \partial M) \\
& \text { (ii) } I^{\sharp} I: H^{-1 / 2(s)}(M) \rightarrow H^{s+1}(M), \quad s>-1, \quad \text { (bi-continuous). }
\end{aligned}
$$

$H^{\mu(s)}(M)$: Hörmander μ-transmission spaces.
$\cap_{s} H^{\mu(s)}(M)=d^{\mu} C^{\infty}(M)$.
Proof of (i) (sketch)
(1) $I \# I$ is Fredholm. Uses the μ-transmission property for $\Psi D O s$.

の ItI has trivial leamel and co-learnel.

Mapping properties of $I^{*} I$

Theorem (M.-Nickl-Paternain, AoS '19)

The map $I^{\sharp} I$ is an isomorphism in the settings below:

$$
\begin{aligned}
& \text { (i) } I^{\sharp} I: d^{-1 / 2} C^{\infty}(M) \rightarrow C^{\infty}(M), \quad d(x)=\operatorname{dist}(x, \partial M) \\
& \text { (ii) } I^{\sharp} I: H^{-1 / 2(s)}(M) \rightarrow H^{s+1}(M), \quad s>-1, \quad \text { (bi-continuous). }
\end{aligned}
$$

$H^{\mu(s)}(M)$: Hörmander μ-transmission spaces.
$\cap_{s} H^{\mu(s)}(M)=d^{\mu} C^{\infty}(M)$.
Proof of (i) (sketch):
(1) $I^{\sharp} I$ is Fredholm. Uses the μ-transmission property for Ψ DOs.
(2) $I^{\sharp} l$ has trivial kernel and co-kernel.

Comments

\oplus It's sharp and does not require extension.
\oplus Classical Sobolev scales cannot be used everywhere.
\ominus The Hörmander transmission spaces aren't great to work with (not clear what $I\left(H^{-1 / 2(s)}(M)\right)$ looks like)
\ominus Cannot iterate because the smooth spaces don't match ! (E.g.: what is $I^{*} I\left(C^{\infty}(M)\right)$ or $I^{*} I\left(H^{s}(M)\right)$?)

Comments

\oplus It's sharp and does not require extension.
\oplus Classical Sobolev scales cannot be used everywhere.
\ominus The Hörmander transmission spaces aren't great to work with (not clear what $I\left(H^{-1 / 2(s)}(M)\right)$ looks like)
\ominus Cannot iterate because the smooth spaces don't match ! (E.g.: what is $I^{*} I\left(C^{\infty}(M)\right)$ or $I^{*} I\left(H^{s}(M)\right)$?)

Questions:

- Can we get $C^{\infty}(M) \rightarrow C^{\infty}(M)$ isomorphism ?
- what kind of Sobolev scale would come with that ?

Comments

\oplus It's sharp and does not require extension.
\oplus Classical Sobolev scales cannot be used everywhere.
\ominus The Hörmander transmission spaces aren't great to work with (not clear what $I\left(H^{-1 / 2(s)}(M)\right.$) looks like)
\ominus Cannot iterate because the smooth spaces don't match ! (E.g.: what is $I^{*} I\left(C^{\infty}(M)\right)$ or $I^{*} I\left(H^{s}(M)\right)$?)

Questions:

- Can we get $C^{\infty}(M) \rightarrow C^{\infty}(M)$ isomorphism ?
- what kind of Sobolev scale would come with that ?

Hunch: change the weight on the co-domain because in fact, $I: L^{2}(M) \rightarrow L^{2}\left(\partial_{+} S M\right)$ is bounded. It is also the functional setting where the SVD is known in the Euclidean disk!

Outline

(1) Introduction

(2) Main results
(3) A numerical illustration
(4) Elements of proof: mapping properties of unattenuated X -ray

- The 'classical' functional setting $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$
- The Euclidean disk: setting $L^{2}(\mathbb{D}) \rightarrow L^{2}\left(\partial_{+} S \mathbb{D}\right)$
(5) Elements of proof: mapping properties of attenuated X-ray

The Euclidean disk

The SVD has been long known [Cormack, Maass, Louis...].
Zernike polynomials:

$$
Z_{n, k}, n \in \mathbb{N}_{0}, 0 \leq k \leq n .
$$

The Euclidean disk

The SVD has been long known [Cormack, Maass, Louis...].

Zernike polynomials:

$$
Z_{n, k}, n \in \mathbb{N}_{0}, 0 \leq k \leq n .
$$

Uniquely defined through:

- $Z_{n, 0}=z^{n}$.
- $\partial_{\bar{z}} Z_{n, k}=-\partial_{z} Z_{n, k-1}$, $1 \leq k \leq n$.
- $\left.Z_{n, k}\right|_{\partial M}\left(e^{i \beta}\right)=e^{i(n-2 k) \beta}$.
$\left\langle Z_{n, k}, Z_{n^{\prime}, k^{\prime}}\right\rangle=\frac{\pi}{n+1} \delta_{n, n^{\prime}} \delta_{k, k^{\prime}}$.
[Kazantzev-Bukhgeym '07]

The Euclidean disk

The SVD has been long known [Cormack, Maass, Louis...].
Zernike polynomials:

$$
Z_{n, k}, n \in \mathbb{N}_{0}, 0 \leq k \leq n .
$$

$$
I\left[Z_{n, k}\right]=\frac{C}{n+1} e^{i(n-2 k)(\beta+\alpha+\pi)}\left(e^{i(n+1) \alpha}+(-1)^{n} e^{-i(n+1) \alpha}\right) .
$$

Uniquely defined through:

- $Z_{n, 0}=z^{n}$.
- $\partial_{\bar{z}} Z_{n, k}=-\partial_{z} Z_{n, k-1}$, $1 \leq k \leq n$.
- $\left.Z_{n, k}\right|_{\partial M}\left(e^{i \beta}\right)=e^{i(n-2 k) \beta}$.
$\left\langle Z_{n, k}, Z_{n^{\prime}, k^{\prime}}\right\rangle=\frac{\pi}{n+1} \delta_{n, n^{\prime}} \delta_{k, k^{\prime}}$.
[Kazantzev-Bukhgeym '07]

Euclidean disk: less known facts (see [M. '19])

Denote I^{*} the adjoint in this setting $\left(I^{*}=I^{\sharp} \frac{1}{\mu}\right)$. Let $T=\partial_{\beta}-\partial_{\alpha}$ and $\mathcal{L}:=-\left(\left(1-\rho^{2}\right) \partial_{\rho}^{2}+(1 / \rho-3 \rho) \partial_{\rho}+1 / \rho^{2} \partial_{\omega}^{2}\right)+1$. Facts:

- $I \circ \mathcal{L}=\left(-T^{2}\right) \circ I$ and $\mathcal{L} \circ I^{*}=I^{*} \circ\left(-T^{2}\right)$, hence $\left[I^{*} I, \mathcal{L}\right]=0$.

Euclidean disk: less known facts (see [M. '19])

Denote I^{*} the adjoint in this setting $\left(I^{*}=I^{\sharp} \frac{1}{\mu}\right)$. Let $T=\partial_{\beta}-\partial_{\alpha}$ and $\mathcal{L}:=-\left(\left(1-\rho^{2}\right) \partial_{\rho}^{2}+(1 / \rho-3 \rho) \partial_{\rho}+1 / \rho^{2} \partial_{\omega}^{2}\right)+1$. Facts:

- $I \circ \mathcal{L}=\left(-T^{2}\right) \circ I$ and $\mathcal{L} \circ I^{*}=I^{*} \circ\left(-T^{2}\right)$, hence $\left[I^{*} I, \mathcal{L}\right]=0$.
- $\mathcal{L} Z_{n, k}=(n+1)^{2} Z_{n, k}$ so $\mathcal{L}\left(I^{*} I\right)^{2}=4 \pi I d$

Euclidean disk: less known facts (see [M. '19])

Denote I^{*} the adjoint in this setting $\left(I^{*}=I^{\sharp} \frac{1}{\mu}\right)$. Let $T=\partial_{\beta}-\partial_{\alpha}$ and $\mathcal{L}:=-\left(\left(1-\rho^{2}\right) \partial_{\rho}^{2}+(1 / \rho-3 \rho) \partial_{\rho}+1 / \rho^{2} \partial_{\omega}^{2}\right)+1$. Facts:

- $I \circ \mathcal{L}=\left(-T^{2}\right) \circ I$ and $\mathcal{L} \circ I^{*}=I^{*} \circ\left(-T^{2}\right)$, hence $\left[I^{*} I, \mathcal{L}\right]=0$.
- $\mathcal{L} Z_{n, k}=(n+1)^{2} Z_{n, k}$ so $\mathcal{L}\left(I^{*} I\right)^{2}=4 \pi I d$
- Upon defining $\widetilde{H}^{k}(\mathbb{D})=\left\{u \in L^{2}, \mathcal{L}^{k / 2} u \in L^{2}\right\}$, we have

$$
\left\|I^{*} \mid f\right\|_{\tilde{H}^{k+1}}=c\|f\|_{\tilde{H}^{k}} \quad \forall k, \quad \cap_{k} \widetilde{H}^{k}(\mathbb{D})=C^{\infty}(\mathbb{D}),
$$

so $I^{*} I$ is indeed a C^{∞}-isomorphism!

Euclidean disk: less known facts (see [M. '19])

Denote I^{*} the adjoint in this setting $\left(I^{*}=I^{\sharp} \frac{1}{\mu}\right)$. Let $T=\partial_{\beta}-\partial_{\alpha}$ and $\mathcal{L}:=-\left(\left(1-\rho^{2}\right) \partial_{\rho}^{2}+(1 / \rho-3 \rho) \partial_{\rho}+1 / \rho^{2} \partial_{\omega}^{2}\right)+1$. Facts:

- $I \circ \mathcal{L}=\left(-T^{2}\right) \circ I$ and $\mathcal{L} \circ I^{*}=I^{*} \circ\left(-T^{2}\right)$, hence $\left[I^{*} I, \mathcal{L}\right]=0$.
- $\mathcal{L} Z_{n, k}=(n+1)^{2} Z_{n, k}$ so $\mathcal{L}\left(I^{*} I\right)^{2}=4 \pi I d$
- Upon defining $\widetilde{H}^{k}(\mathbb{D})=\left\{u \in L^{2}, \mathcal{L}^{k / 2} u \in L^{2}\right\}$, we have

$$
\left\|I^{*} \mid f\right\|_{\tilde{H}^{k+1}}=c\|f\|_{\tilde{H}^{k}} \quad \forall k, \quad \cap_{k} \widetilde{H}^{k}(\mathbb{D})=C^{\infty}(\mathbb{D}),
$$

so $I^{*} I$ is indeed a C^{∞}-isomorphism!

Euclidean disk: less known facts (see [M. '19])

Denote I^{*} the adjoint in this setting $\left(I^{*}=I^{\sharp} \frac{1}{\mu}\right)$. Let $T=\partial_{\beta}-\partial_{\alpha}$ and $\mathcal{L}:=-\left(\left(1-\rho^{2}\right) \partial_{\rho}^{2}+(1 / \rho-3 \rho) \partial_{\rho}+1 / \rho^{2} \partial_{\omega}^{2}\right)+1$. Facts:

- $/ \circ \mathcal{L}=\left(-T^{2}\right) \circ I$ and $\mathcal{L} \circ I^{*}=I^{*} \circ\left(-T^{2}\right)$, hence $\left[I^{*} I, \mathcal{L}\right]=0$.
- $\mathcal{L} Z_{n, k}=(n+1)^{2} Z_{n, k}$ so $\mathcal{L}\left(I^{*} I\right)^{2}=4 \pi I d$
- Upon defining $\widetilde{H}^{k}(\mathbb{D})=\left\{u \in L^{2}, \mathcal{L}^{k / 2} u \in L^{2}\right\}$, we have

$$
\left\|I^{*} \mid f\right\|_{\tilde{H}^{k+1}}=c\|f\|_{\tilde{H}^{k}} \quad \forall k, \quad \cap_{k} \tilde{H}^{k}(\mathbb{D})=C^{\infty}(\mathbb{D}),
$$

so $I^{*} I$ is indeed a C^{∞}-isomorphism!
Comments:

- The appropriate smoothness is w.r.t $\{\mathcal{L}\}$, whose ellipticity degenerates in a prescribed way at the boundary.
- $\widetilde{H}^{1}(\mathbb{D}) \supsetneq H^{1}(\mathbb{D})$.

Euclidean disk: on the data side [M. '19]

The relation $/ \circ \mathcal{L}=\left(-T^{2}\right) \circ /$ indicates that smoothness in \mathcal{L} translates into smoothness along ($-T^{2}$).
Define $H_{T,+}^{1 / 2}\left(\partial_{+} S M\right)=\left\{w \in L_{+}^{2},\left(-T^{2}\right)^{k / 2} w \in L_{+}^{2}\right\}$ to obtain

$$
\|f f\|_{H_{T,+}^{k+1 / 2}\left(\partial_{+} S \mathbb{D}\right)}=c\|f\|_{\tilde{H}^{k}(\mathbb{D})}, \quad \forall f, \quad \forall k .
$$

[^1]
Euclidean disk: on the data side [M. '19]

The relation $/ \circ \mathcal{L}=\left(-T^{2}\right) \circ /$ indicates that smoothness in \mathcal{L} translates into smoothness along ($-T^{2}$).
Define $H_{T,+}^{1 / 2}\left(\partial_{+} S M\right)=\left\{w \in L_{+}^{2},\left(-T^{2}\right)^{k / 2} w \in L_{+}^{2}\right\}$ to obtain

$$
\|f f\|_{H_{T,+}^{k+1 / 2}\left(\partial_{+} S \mathbb{D}\right)}=c\|f\|_{\tilde{H}^{k}(\mathbb{D})}, \quad \forall f, \quad \forall k .
$$

Similar anisotropic scales constructed in [Natterer,
Assylbekov-Stefanov '19, Paternain-Salo '19]
There also exists a projection operator onto range(I).

How far do these results generalize ?

The results above are sensitive to both the geometry and the boundary. In [Mishra-M. '19], [M. '19]: generalizations to geodesic disks of constant curvature, modeled over

$$
M_{R, \kappa}=\left(\mathbb{D}_{R},\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}\right), \quad R^{2}|\kappa|<1
$$

How far do these results generalize?

The results above are sensitive to both the geometry and the boundary. In [Mishra-M. '19], [M. '19]: generalizations to geodesic disks of constant curvature, modeled over

$$
M_{R, \kappa}=\left(\mathbb{D}_{R},\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}\right), \quad R^{2}|\kappa|<1 .
$$

Results: On $M_{R, \kappa}$, there is a weight function w such that $I_{0}: L^{2}\left(M_{R, \kappa}, w\right) \rightarrow L^{2}\left(\partial_{+} S M_{R, \kappa}\right)$ satisfies:

- $I_{0}^{*} I_{0}$ is a C^{∞} isomorphism.

How far do these results generalize?

The results above are sensitive to both the geometry and the boundary. In [Mishra-M. '19], [M. '19]: generalizations to geodesic disks of constant curvature, modeled over

$$
M_{R, \kappa}=\left(\mathbb{D}_{R},\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}\right), \quad R^{2}|\kappa|<1 .
$$

Results: On $M_{R, \kappa}$, there is a weight function w such that $I_{0}: L^{2}\left(M_{R, \kappa}, w\right) \rightarrow L^{2}\left(\partial_{+} S M_{R, \kappa}\right)$ satisfies:

- $I_{0}^{*} I_{0}$ is a C^{∞} isomorphism.
- There are differential operators \mathcal{L} and $-T^{2}$ such that

$$
I_{0} w \circ \mathcal{L}=\left(-T^{2}\right) \circ I_{0} w, \quad \text { and } \quad \mathcal{L}\left(I_{0}^{*} I_{0} w\right)^{2}=i d .
$$

Sharp range description (smoo
conditions), SVD of 10 W and C

How far do these results generalize?

The results above are sensitive to both the geometry and the boundary. In [Mishra-M. '19], [M. '19]: generalizations to geodesic disks of constant curvature, modeled over

$$
M_{R, \kappa}=\left(\mathbb{D}_{R},\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}\right), \quad R^{2}|\kappa|<1 .
$$

Results: On $M_{R, \kappa}$, there is a weight function w such that $I_{0}: L^{2}\left(M_{R, \kappa}, w\right) \rightarrow L^{2}\left(\partial_{+} S M_{R, \kappa}\right)$ satisfies:

- $I_{0}^{*} I_{0}$ is a C^{∞} isomorphism.
- There are differential operators \mathcal{L} and $-T^{2}$ such that

$$
I_{0} w \circ \mathcal{L}=\left(-T^{2}\right) \circ I_{0} w, \quad \text { and } \quad \mathcal{L}\left(I_{0}^{*} I_{0} w\right)^{2}=i d
$$

- Sharp range description (smoothing properties and moment conditions), SVD of $I_{0} w$ and I_{0}^{*}.

How far do these results generalize?

The results above are sensitive to both the geometry and the boundary. In [Mishra-M. '19], [M. '19]: generalizations to geodesic disks of constant curvature, modeled over

$$
M_{R, \kappa}=\left(\mathbb{D}_{R},\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}\right), \quad R^{2}|\kappa|<1 .
$$

Results: On $M_{R, \kappa}$, there is a weight function w such that $I_{0}: L^{2}\left(M_{R, \kappa}, w\right) \rightarrow L^{2}\left(\partial_{+} S M_{R, \kappa}\right)$ satisfies:

- $I_{0}^{*} I_{0}$ is a C^{∞} isomorphism.
- There are differential operators \mathcal{L} and $-T^{2}$ such that

$$
I_{0} w \circ \mathcal{L}=\left(-T^{2}\right) \circ I_{0} w, \quad \text { and } \quad \mathcal{L}\left(I_{0}^{*} I_{0} w\right)^{2}=i d
$$

- Sharp range description (smoothing properties and moment conditions), SVD of $I_{0} w$ and I_{0}^{*}.

How far do these results generalize?

The results above are sensitive to both the geometry and the boundary. In [Mishra-M. '19], [M. '19]: generalizations to geodesic disks of constant curvature, modeled over

$$
M_{R, \kappa}=\left(\mathbb{D}_{R},\left(1+\kappa|z|^{2}\right)^{-2}|d z|^{2}\right), \quad R^{2}|\kappa|<1 .
$$

Results: On $M_{R, \kappa}$, there is a weight function w such that $I_{0}: L^{2}\left(M_{R, \kappa}, w\right) \rightarrow L^{2}\left(\partial_{+} S M_{R, \kappa}\right)$ satisfies:

- $I_{0}^{*} I_{0}$ is a C^{∞} isomorphism.
- There are differential operators \mathcal{L} and $-T^{2}$ such that

$$
I_{0} w \circ \mathcal{L}=\left(-T^{2}\right) \circ I_{0} w, \quad \text { and } \quad \mathcal{L}\left(I_{0}^{*} I_{0} w\right)^{2}=i d
$$

- Sharp range description (smoothing properties and moment conditions), SVD of $I_{0} w$ and I_{0}^{*}.

Open question: find more (simple !) surfaces where this works.

Outline

(1) Introduction

(2) Main results
(3) A numerical illustration
(4) Elements of proof: mapping properties of unattenuated X -ray

- The 'classical' functional setting $L^{2}(M) \rightarrow L_{\mu}^{2}\left(\partial_{+} S M\right)$
- The Euclidean disk: setting $L^{2}(\mathbb{D}) \rightarrow L^{2}\left(\partial_{+} S \mathbb{D}\right)$
(5) Elements of proof: mapping properties of attenuated X-ray

Recalls

Let (M, g) be a simple Riemannian surface with geodesic vector field X, and $\Theta \in C^{\infty}(M, u(n))$ a 'Higgs field'. We define the attenuated X -ray transform $\Theta_{\Theta}: L^{2}\left(M, \mathbb{C}^{n}\right) \rightarrow L_{\mu / \tau}^{2}\left(\partial_{+} S M, \mathbb{C}^{n}\right)$ as

$$
l_{\ominus} f=\left.u\right|_{\partial_{+} S M},
$$

where $u: S M \rightarrow \mathbb{C}^{n}$ solves the transport equation

$$
X u+\Theta u=-f \quad(S M),\left.\quad u\right|_{\partial_{-} S M}=0 .
$$

\qquad

Recalls

Let (M, g) be a simple Riemannian surface with geodesic vector field X, and $\Theta \in C^{\infty}(M, u(n))$ a 'Higgs field'. We define the attenuated X -ray transform $\mathrm{I}_{\Theta}: L^{2}\left(M, \mathbb{C}^{n}\right) \rightarrow L_{\mu / \tau}^{2}\left(\partial_{+} S M, \mathbb{C}^{n}\right)$ as

$$
l_{\ominus} f=\left.u\right|_{\partial_{+} S M},
$$

where $u: S M \rightarrow \mathbb{C}^{n}$ solves the transport equation

$$
X u+\Theta u=-f \quad(S M),\left.\quad u\right|_{\partial_{-} S M}=0 .
$$

Most recent results on the problem of recovering f from $l_{\Theta} f$ (case $n \geq 2$):

- Injectivity: [Paternain-Salo-Uhlmann '12].
- $L^{2}-H^{1}$ stability estimate: [M.-Nickl-Paternain '20].

Main theorems

Theorem (M'-Nickl-Paternain, 2020, arXiv preprint 2007.15892)
 Let (M, g) a convex, non-trapping manifold with $\Theta \in C^{\infty}\left(M, \mathbb{C}^{n \times n}\right)$. Then the operator $I_{\Theta}^{*} l_{\Theta} \operatorname{maps} C^{\infty}\left(M, \mathbb{C}^{n}\right)$ into itself.

> Obtaining the converse mapping property currently requires strong assumptions on the background geometry + compact support.

[^2]
Main theorems

Theorem (M'-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

Let (M, g) a convex, non-trapping manifold with
$\Theta \in C^{\infty}\left(M, \mathbb{C}^{n \times n}\right)$. Then the operator $I_{\Theta}^{*} I_{\Theta} \operatorname{maps} C^{\infty}\left(M, \mathbb{C}^{n}\right)$ into itself.

Obtaining the converse mapping property currently requires strong assumptions on the background geometry + compact support.

Theorem (M'-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

On M the Euclidean disk, let $\Theta \in C_{c}^{\infty}(M, \mathfrak{u}(n))$, and let the attenuated X-ray transform

$$
I_{\Theta}: L^{2}\left(M, \mathbb{C}^{n}\right) \rightarrow L_{\mu / \tau}^{2}\left(\partial_{+} S M, \mathbb{C}^{n}\right)
$$

Then $I_{\Theta}^{*} l_{\Theta}$ is an isomorphism

$$
C^{\infty}\left(M, \mathbb{C}^{n}\right) \xrightarrow{\cong} C^{\infty}\left(M, \mathbb{C}^{n}\right), \quad \tilde{H}^{s}\left(M, \mathbb{C}^{n}\right) \xrightarrow{\cong} \widetilde{H}^{s+1}\left(M, \mathbb{C}^{n}\right), \quad s \geq 0 .
$$

Elements of proof - forward mapping properties

Elements of proof - isomorphism properties

Conclusion

On the geodesic X-ray transform on the Euclidean disk (... and constant curvature disks)
(1) Functional relations, link with degenerate elliptic operators.
(2) Sharp mapping properties of $I^{*} I$ and I, SVD of I for a special choice of weights on M and $\partial_{+} S M$.
(3) Mapping properties for attenuated X-ray transforms with compactly supported attenuation.
(9) Consequences for statistical inversions: Bernstein-vonMises theorems on asymptotic posterior normality.

- how far can we take 1-2 on simple surfaces

Conclusion

On the geodesic X-ray transform on the Euclidean disk (... and constant curvature disks)
(1) Functional relations, link with degenerate elliptic operators.
(2) Sharp mapping properties of $I^{*} I$ and I, SVD of I for a special choice of weights on M and $\partial_{+} S M$.
(3) Mapping properties for attenuated X-ray transforms with compactly supported attenuation.
(4) Consequences for statistical inversions: Bernstein-vonMises theorems on asymptotic posterior normality.

Perspectives:

- how far can we take 1-2 on simple surfaces ?
- higher dimensions ?
- case with non-trivial connections ?

References

- F. M., R. Nickl, G. P. Paternain, Efficient Nonparametric Bayesian Inference For X-Ray Transforms, Annals of Statistics 2019, Vol. 47, No. 2, 1113--1147.
- F. M., R. Nickl, G. P. Paternain, Consistent Inversion of Noisy Non-Abelian X-Ray Transforms, CPAM 2020 (to appear)
- R. K. Mishra, F. M., Range characterizations and SVD of the geodesic X-ray transform on disks of constant curvature, preprint (2019) - arXiv:1906.09389
- F.M., Functional relations, sharp mapping properties and regularization of the X-ray transform on disks of constant curvature, preprint (2019) - arXiv:1910.13691
- F. M., R. Nickl, G. P. Paternain, Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors, preprint (2020) arXiv:2007.15892

[^0]: - Θ_{0} is an attenuated X-ray transform where Θ_{0} depends on Φ_{0} related to the linearization of the $\operatorname{map} \Phi \longmapsto C_{\Phi}$ at Φ_{0}

[^1]: Similar anisotropic scales constructed in [Natterer, Assylbekov-Stefanov '19, Paternain-Salo '19]

[^2]: Then $I_{\Theta}^{*} I_{\Theta}$ is an isomorphism

