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X-ray transforms: mapping properties, bayesian inversion

Introduction

The geodesic X-ray transform

(M, g), ∂M strictly convex.
∂+SM: “inward” boundary (’fan-beam’).
Geodesics: γx ,v (t).

Geodesic X-ray transform of f :

If (x , v) =

∫ τ(x,v)

0

f (γx,v (t)) dt, (x , v) ∈ ∂+SM = S1 ×
(
−π
2
,
π

2

)
.

3 / 31



X-ray transforms: mapping properties, bayesian inversion

Introduction

The geodesic X-ray transform

(M, g), ∂M strictly convex.
∂+SM: “inward” boundary (’fan-beam’).
Geodesics: γx ,v (t).

Geodesic X-ray transform of f :

If (x , v) =

∫ τ(x,v)

0

f (γx,v (t)) dt, (x , v) ∈ ∂+SM = S1 ×
(
−π
2
,
π

2

)
.

3 / 31



X-ray transforms: mapping properties, bayesian inversion

Introduction

The geodesic X-ray transform

(M, g), ∂M strictly convex.
∂+SM: “inward” boundary (’fan-beam’).
Geodesics: γx ,v (t).

Geodesic X-ray transform of f :

If (x , v) =

∫ τ(x,v)

0

f (γx,v (t)) dt, (x , v) ∈ ∂+SM = S1 ×
(
−π
2
,
π

2

)
.

f (x)
I7→

3 / 31



X-ray transforms: mapping properties, bayesian inversion

Introduction

The geodesic X-ray transform

(M, g), ∂M strictly convex.
∂+SM: “inward” boundary (’fan-beam’).
Geodesics: γx ,v (t).

Geodesic X-ray transform of f :

If (x , v) =

∫ τ(x,v)

0

f (γx,v (t)) dt, (x , v) ∈ ∂+SM = S1 ×
(
−π
2
,
π

2

)
.

f (x)
I7→

3 / 31



X-ray transforms: mapping properties, bayesian inversion

Introduction
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Introduction

Applications of geodesic X-ray transform

1 Radon transform and X-ray CT

2 SPECT and tomography in media with variable index of
refraction

3 Seismology and travel-time tomography.
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X-ray transforms: mapping properties, bayesian inversion

Introduction

The non-abelian X-ray transform

E = M × Cn trivial bundle over (M, g) a simple Riem. surface
A: hermitian connection on E (= matrix of one-forms)
Φ: skew-hermitian Higgs field (Φ : M → u(n))

(M, g)

S

∼ Cn

γ

CA,Φ(γ)S

x

v

d
dtS(t) + (Aγ(t)(γ̇(t)) + Φγ(t))S(t) = 0

S(0) = S

data: S(`(γ)) = CA,Φ(γ)S

Inverse problem:

to recover (A,Φ) from CA,Φ modulo natural obstruction.
if A ≡ 0: to recover Φ from CΦ.

Vertgeim, Eskin, Novikov, Paternain-Salo-Uhlmann 5 / 31
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Introduction

Applications of non-abelian X-ray transform

Problem (Polarimetric Neutron Tomography)

To recover a magnetic field from neutron spin-in to spin-out map
(“scattering data” of the magnetic field).

While a neutron’s
trajectory γ(t) is
unaffected by a
magnetic field B,
its spin S evolves
according to

Ṡ(t) = B(t)× S(t).

B ↔ so(3)-valued
Higgs field. Src: Sales et al, “3D Polarimetric Neutron

Tomography of Magnetic Fields”, 2017. 6 / 31
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Introduction

Bayesian approach to noisy inversion 1/2

We consider the problem of recovering a matrix field Φ0 from

Yj = CΦ0 (γj) + εj , εj ∼ N (0, σ2), 1 ≤ j ≤ N.

where {γj}Nj=1 are chosen uniformly at random in fan-beam
coordinates. Denote DN = {(γj ,Yj)}1≤j≤N the data set.

Given a prior model for Φ and a noise model, Bayes’ formula gives
the proba. density of the posterior random variable Φ|DN :

P(Φ|DN) =
P(DN |Φ)P(Φ)

P(DN)
∝

likelihood︷ ︸︸ ︷
P(DN |Φ) ·

prior︷ ︸︸ ︷
P(Φ)

With a Gaussian prior and Gaussian noise model, one may arrive
at the log-posterior distribution:

− log Π(Φ|DN) =
1

σ2

N∑
j=1

|Yj − CΦ(γj)|2F + ‖Φ‖2
Hα + C .

Note: Not gaussian since Φ 7→ CΦ is non-linear.
7 / 31
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Introduction

Bayesian approach to noisy inversion 2/2

Rather than looking at the entire posterior object Φ|DN , consider
ONE of its moments 〈Φ, ψ〉|DN , where ψ is a ’test’ field.

Important questions:

1 What relevant estimators Ψ̂N of 〈Φ0, ψ〉 can we extract from
this posterior distribution ? Examples: mean and MAP, when
they exist.

2 Are they easily computable ?

3 Consistency: does Ψ̂N → 〈Φ0,Ψ〉 as N →∞ in any sense ?

4 UQ: does the posterior density “contract” about Ψ̂N so one
can get confidence/credible sets ?

8 / 31



Outline

1 Introduction

2 Main results

3 A numerical illustration

4 Elements of proof: mapping properties of unattenuated X-ray
The ’classical’ functional setting L2(M)→ L2

µ(∂+SM)
The Euclidean disk: setting L2(D)→ L2(∂+SD)

5 Elements of proof: mapping properties of attenuated X-ray
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Main results

Main messages of this talk

1 Making UQ statements for inverse problems requires a refined
understanding of mapping properties of the forward and/or
the ’normal’ (linearized) operator.

2 For X-ray problems on manifolds with boundary, these
mapping properties (the natural Hilbert scales involved and
their Fréchet limits) are highly sensitive to the choice of
certain weights.

3 Said choice of weights can come from: theoretical tractability
(“choose the easiest one !”) or noise model (“choose the
practical one !”).
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Main results

Main results 1/3

Theorem (M’, 2019, arXiv preprint 1910.13691)

On M the Euclidean disk, if I0 : L2(M)→ L2(∂+SM) is the X-ray
transform with adjoint I ∗0 , we have

I ∗0 I0 : C∞(M)
∼=−→ C∞(M), I ∗0 I0 : H̃s(M)

∼=−→ H̃s+1(M), s ≥ 0,

where H̃s := D(Ls) upon defining

L = −
(
(1− ρ2)∂2

ρ + (ρ−1 − 3ρ)∂ρ + ρ−2∂2
ω

)
+ 1.

- The L2 topology on ∂+SM is not the usual, ’symplectic’ one.
- Generalizations to special cases of simple surfaces also exist.
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Main results

Main results 2/3

Theorem (M’-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

On M the Euclidean disk, let Θ ∈ C∞c (M, so(n)), and let the
attenuated X-ray transform

IΘ : L2(M,Cn)→ L2(∂+SM,Cn).

Then I ∗ΘIΘ is an isomorphism

C∞(M,Cn)
∼=−→ C∞(M,Cn), H̃s(M,Cn)

∼=−→ H̃s+1(M,Cn), s ≥ 0.

- based on setting up a suitable Fredholm setting, using the H̃s

scale and Θ ≡ 0 as reference case.
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Main results

Main result 3/3 - application to UQ

Consider the problem of recovering Φ0 ∈ C∞c (M, so(n)) from

Yj = CΦ0(γj) + εj , εj ∼ N (0, σ2), 1 ≤ j ≤ N.

As above, let DN := {γj ,Yj}Nj=1, and choose a prior among a

flexible class and a test field ψ ∈ C∞(M, so(n)). Denote Φ̂N the
posterior mean (from [M.-Nickl-Paternain, CPAM ’20], it exists and
converges to Φ0 as N →∞).

Theorem (M.-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

We have as N →∞ and in PN
Φ0

-probability, the weak convergence

√
N〈Φ− Φ̂N , ψ〉|DN →d N (0, ‖IΘ0(I ∗Θ0

IΘ0)−1ψ‖2
L2(∂+SM)).

- IΘ0 is an attenuated X-ray transform where Θ0 depends on Φ0,
related to the linearization of the map Φ 7→ CΦ at Φ0.

12 / 31
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X-ray transforms: mapping properties, bayesian inversion

A numerical illustration

Computational domain, unknown

M: Euclidean unit disk.
Unstructured mesh with 886 nodes.

Magnetic field (3 components):

(made su(2)-valued via R3 3 (a, b, c) 7→ 1
2

[
ia b + ic

−b + ic −ia

]
)
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A numerical illustration

Forward data + sampling

Noiseless

Prior (Matérn) parameters: ν = 3, ` = 0.2. Samples:
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A numerical illustration

Computation of the posterior mean by MCMC

We compute a family of posterior draws using preconditioned
Crank-Nicolson [Cotter, Stuart, Roberts & White ’13].

Fix δ ∈ (0, 1/2), Φ0 = 0, and for n = 0 : Ns do:
1 Draw Ψ ∼ Π and set pn =

√
1− 2δ Φn +

√
2δ Ψ.

2 With `(Φ) = 1
σ2

∑N
j=1 |Y − CΦ(γj)|2F the log-likelihood,

set Φn+1 =

{
pn with proba. 1 ∧ exp(`(Φn)− `(pn)),
Φn otherwise.

⊗ Visualize Φ̂ = 1
Ns

∑Ns
n=1 Φn and histograms of moments.

One can show that {Φn}n forms a Markov chain with unique
invariant measure Π(·|(Yi , xi )

N
i=1).

No inversion required, only forward solves !
[Hairer-Stuart-Vollmer ’14] prove non-asymptotic mixing
Law(Φn)→ Π(·|Y ) under conditions on `(Φ) that do not
require convexity.
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A numerical illustration

Illustration of consistency - posterior mean

N = 400, σ = 0.05, δ = 2.5 · 10−5

MCMC sample average over 105 iterations

truth:
16 / 31



X-ray transforms: mapping properties, bayesian inversion

A numerical illustration

Illustration of consistency - posterior mean
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X-ray transforms: mapping properties, bayesian inversion

A numerical illustration

Illustration of approximate normality - histograms

〈Φ, 〉, 〈Φ, 〉, 〈Φ, 〉

N = 600, 106 iterations

N = 1000, 106 iterations
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X-ray transforms: mapping properties, bayesian inversion

Elements of proof: mapping properties of unattenuated X-ray

The ’classical’ functional setting L2(M)→ L2
µ(∂+SM)

The case of simple surfaces

Simple = ∂M stricly
convex + no conjugate
points + no geodesic of

infinite length.

Recovery of f from If is injective [Mukh. ’75], ill-posed of order
1/2 in that one may derive the stability estimate

‖f ‖L2(M) ≤ C‖I ]If ‖
H1(M̃)

, (I ] : L2(M)− L2
µ(∂+SM) adjoint)

where M̃ is a simple extension of M. [Stef.-Uhl. ’04]

Question: Can one obtain mapping properties of I ]I that do not
require an extension ?

18 / 31
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Elements of proof: mapping properties of unattenuated X-ray

The ’classical’ functional setting L2(M)→ L2
µ(∂+SM)

Extendibility property

In the L2(M)→ L2
µ(∂+SM) setting, the normal operator looks like

I ]If (x) = 2

∫
Sx

∫ τ(x ,v)

0
f (γx ,v (t)) dt dS(v).

If M̃ is a simple extension of M, one could define Ĩ ]I similarly, and
notice that

rM ◦ Ĩ ]I ◦ eM = I ]I .

Moreover, Ĩ ]I ∈ Ψ−1
ell (M̃) and satisfies a −1/2 transmission

condition at ∂M, a symmetry condition on its full symbol
expansion relating σ(x , νx) and σ(x ,−νx) at every point x ∈ ∂M.
[Boutet de Monvel, Hörmander, Grubb]

19 / 31
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If M̃ is a simple extension of M, one could define Ĩ ]I similarly, and
notice that

rM ◦ Ĩ ]I ◦ eM = I ]I .

Moreover, Ĩ ]I ∈ Ψ−1
ell (M̃) and satisfies a −1/2 transmission

condition at ∂M, a symmetry condition on its full symbol
expansion relating σ(x , νx) and σ(x ,−νx) at every point x ∈ ∂M.
[Boutet de Monvel, Hörmander, Grubb]
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Elements of proof: mapping properties of unattenuated X-ray

The ’classical’ functional setting L2(M)→ L2
µ(∂+SM)

Mapping properties of I ∗I

Theorem (M.-Nickl-Paternain, AoS ’19)

The map I ]I is an isomorphism in the settings below:

(i) I ]I : d−1/2C∞(M)→ C∞(M), d(x) = dist(x , ∂M)

(ii) I ]I : H−1/2(s)(M)→ Hs+1(M), s > −1, (bi-continuous).

Hµ(s)(M): Hörmander µ-transmission spaces.
∩sHµ(s)(M) = dµC∞(M).

Proof of (i) (sketch):

1 I ]I is Fredholm. Uses the µ-transmission property for ΨDOs.

2 I ]I has trivial kernel and co-kernel.
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X-ray transforms: mapping properties, bayesian inversion

Elements of proof: mapping properties of unattenuated X-ray

The ’classical’ functional setting L2(M)→ L2
µ(∂+SM)

Comments

⊕ It’s sharp and does not require extension.

⊕ Classical Sobolev scales cannot be used everywhere.

	 The Hörmander transmission spaces aren’t great to work with
(not clear what I (H−1/2(s)(M)) looks like)

	 Cannot iterate because the smooth spaces don’t match !
(E.g.: what is I ∗I (C∞(M)) or I ∗I (Hs(M)) ?)

Questions:

Can we get C∞(M)→ C∞(M) isomorphism ?

what kind of Sobolev scale would come with that ?

Hunch: change the weight on the co-domain because in fact,
I : L2(M)→ L2(∂+SM) is bounded. It is also the functional
setting where the SVD is known in the Euclidean disk !
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X-ray transforms: mapping properties, bayesian inversion

Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L2(D)→ L2(∂+SD)

The Euclidean disk

The SVD has been long known [Cormack, Maass, Louis...].

Zernike polynomials:
Zn,k , n ∈ N0, 0 ≤ k ≤ n. Uniquely defined through:

Zn,0 = zn.

∂z̄Zn,k = −∂zZn,k−1,
1 ≤ k ≤ n.

Zn,k |∂M(e iβ) = e i(n−2k)β.

〈Zn,k ,Zn′,k′〉 =
π

n + 1
δn,n′ δk,k′ .

[Kazantzev-Bukhgeym ’07]

I [Zn,k ] =
C

n + 1
e i(n−2k)(β+α+π)(e i(n+1)α + (−1)ne−i(n+1)α).
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Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L2(D)→ L2(∂+SD)

Euclidean disk: less known facts (see [M. ’19])

Denote I ∗ the adjoint in this setting (I ∗ = I ] 1
µ). Let T = ∂β − ∂α

and L := −((1− ρ2)∂2
ρ + (1/ρ− 3ρ)∂ρ + 1/ρ2∂2

ω) + 1. Facts:

I ◦L = (−T 2) ◦ I and L◦ I ∗ = I ∗ ◦ (−T 2), hence [I ∗I ,L] = 0.

LZn,k = (n + 1)2Zn,k so L(I ∗I )2 = 4πId

Upon defining H̃k(D) = {u ∈ L2,Lk/2u ∈ L2}, we have

‖I ∗If ‖
H̃k+1 = c‖f ‖

H̃k ∀k , ∩kH̃k(D) = C∞(D),

so I ∗I is indeed a C∞-isomorphism !

Comments:

The appropriate smoothness is w.r.t {L}, whose ellipticity
degenerates in a prescribed way at the boundary.

H̃1(D) ) H1(D).
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Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L2(D)→ L2(∂+SD)

Euclidean disk: on the data side [M. ’19]

The relation I ◦ L = (−T 2) ◦ I indicates that smoothness in L
translates into smoothness along (−T 2).

Define H
1/2
T ,+(∂+SM) = {w ∈ L2

+, (−T 2)k/2w ∈ L2
+} to obtain

‖If ‖
H

k+1/2
T ,+ (∂+SD)

= c‖f ‖
H̃k (D)

, ∀f , ∀k .

sp (i∂β)

sp (|T |)
L2
+(∂+SM)

range I

Similar anisotropic scales constructed in [Natterer,

Assylbekov-Stefanov ’19, Paternain-Salo ’19]

There also exists a projection operator onto range(I ).
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Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L2(D)→ L2(∂+SD)

How far do these results generalize ?

The results above are sensitive to both the geometry and the
boundary. In [Mishra-M. ’19], [M. ’19]: generalizations to
geodesic disks of constant curvature, modeled over

MR,κ = (DR , (1 + κ|z |2)−2|dz |2), R2|κ| < 1.

Results: On MR,κ, there is a weight function w such that
I0 : L2(MR,κ,w)→ L2(∂+SMR,κ) satisfies:

I ∗0 I0 is a C∞ isomorphism.

There are differential operators L and −T 2 such that

I0w ◦ L = (−T 2) ◦ I0w , and L(I ∗0 I0w)2 = id .

Sharp range description (smoothing properties and moment
conditions), SVD of I0w and I ∗0 .

Open question: find more (simple !) surfaces where this works.
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Elements of proof: mapping properties of attenuated X-ray

Recalls

Let (M, g) be a simple Riemannian surface with geodesic vector
field X , and Θ ∈ C∞(M, u(n)) a ’Higgs field’. We define the
attenuated X-ray transform IΘ : L2(M,Cn)→ L2

µ/τ (∂+SM,Cn) as

IΘf = u|∂+SM ,

where u : SM → Cn solves the transport equation

Xu + Θu = −f (SM), u|∂−SM = 0.

Most recent results on the problem of recovering f from IΘf (case
n ≥ 2):

Injectivity: [Paternain-Salo-Uhlmann ’12].

L2 − H1 stability estimate: [M.-Nickl-Paternain ’20].
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Elements of proof: mapping properties of attenuated X-ray

Main theorems

Theorem (M’-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

Let (M, g) a convex, non-trapping manifold with
Θ ∈ C∞(M,Cn×n). Then the operator I ∗ΘIΘ maps C∞(M,Cn)
into itself.

Obtaining the converse mapping property currently requires strong
assumptions on the background geometry + compact support.

Theorem (M’-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

On M the Euclidean disk, let Θ ∈ C∞c (M, u(n)), and let the attenuated
X-ray transform

IΘ : L2(M,Cn)→ L2
µ/τ (∂+SM,Cn).

Then I ∗ΘIΘ is an isomorphism

C∞(M,Cn)
∼=−→ C∞(M,Cn), H̃s(M,Cn)

∼=−→ H̃s+1(M,Cn), s ≥ 0.
27 / 31
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Elements of proof: mapping properties of attenuated X-ray

Elements of proof - forward mapping properties
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Conclusion

On the geodesic X-ray transform on the Euclidean disk (. . . and
constant curvature disks)

1 Functional relations, link with degenerate elliptic operators.

2 Sharp mapping properties of I ∗I and I , SVD of I for a special
choice of weights on M and ∂+SM.

3 Mapping properties for attenuated X-ray transforms with
compactly supported attenuation.

4 Consequences for statistical inversions: Bernstein-vonMises
theorems on asymptotic posterior normality.

Perspectives:

how far can we take 1-2 on simple surfaces ?

higher dimensions ?

case with non-trivial connections ?
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