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© Introduction
© Main results
© A numerical illustration

@ Elements of proof: mapping properties of unattenuated X-ray
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Introduction

The geodesic X-ray transform

(M, g), OM strictly convex.
0+ SM: “inward” boundary ('fan-beam’).
Geodesics: 7y, (t).

Geodesic X-ray transform of f:

T(x,v)
If(x, v) :/0 Flrn(t)) dt,  (x,v) € 9.SM =S x (fg z).
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Goal: recover f from If. 3/31
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Introduction

Applications of geodesic X-ray transform

@ Radon transform and X-ray CT

@ SPECT and tomography in media with variable index of
refraction

© Seismology and travel-time tomography.
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The non-abelian X-ray transform

E = M x C" trivial bundle over (M, g) a simple Riem. surface
A: hermitian connection on E (= matrix of one-forms)
®: skew-hermitian Higgs field (¢ : M — u(n))

Caa(v)S
S(0) = S

#S0) + (A (7)) + @) S(E) =0
data: S(4(7y)) = Caa(y)S
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X-ray transforms: ing properties, bayesi
Introduction

The non-abelian X-ray transform

E = M x C" trivial bundle over (M, g) a simple Riem. surface
A: hermitian connection on E (= matrix of one-forms)
®: skew-hermitian Higgs field (¢ : M — u(n))

Caa(v)S
S(0) = S

#S0) + (A (7)) + @) S(E) =0
data: S(4(7y)) = Caa(y)S

Inverse problem:
e to recover (A, ®) from Ca ¢ modulo natural obstruction.
e if A=0: to recover ® from Cop.
Vertgeim, Eskin, Novikov, Paternain-Salo-Uhlmann 5/31
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Introduction

Applications of non-abelian X-ray transform

Problem (Polarimetric Neutron Tomography)

To recover a magnetic field from neutron spin-in to spin-out map
( “scattering data” of the magnetic field).

Detector
While a neutron's ‘
trajectory (t) is
unaffected by a

magnetic field B, sample || T
its spin S evolves . J S lll‘
accordlng to potaiser | ](
<_ 1 1 /2 spin rotator
S(t) — B(t) X S(t) ¥ - 7/2 spin rotator
B PN 50(3)-V3|U6d Neutron Source
Higgs field. Src: Sales et al, “3D Polarimetric Neutron

Tomography of Magnetic Fields”, 2017.
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Bayesian approach to noisy inversion 1/2

We consider the problem of recovering a matrix field ®g from
Y; = Co(7) +55, g~ N(0,0%), 1<j<N.
where {yj}jN:l are chosen uniformly at random in fan-beam

coordinates. Denote Dy = {(7j, Yj)},<;< the data set.
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Introduction

Bayesian approach to noisy inversion 1/2

We consider the problem of recovering a matrix field ®g from
Yj:C¢o('7j)+€j7 ngN(0702)7 I1<j<N.
where {yj}jN:l are chosen uniformly at random in fan-beam

coordinates. Denote Dy = {(7j, Yj)},<;< the data set.

Given a prior model for ® and a noise model, Bayes' formula gives
the proba. density of the posterior random variable ®|Dy:

likelihood prior

POMOP)  GTs A

P(oIDw) = 8B
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Introduction

Bayesian approach to noisy inversion 1/2

We consider the problem of recovering a matrix field ®g from
Y= Coo() +¢j, g ~N(0,0%), 1<j<N.

where {71} ', are chosen uniformly at random in fan-beam

coordinates. Denote Dy = {(7j, Yj)},<;< the data set.

Given a prior model for ® and a noise model, Bayes' formula gives
the proba. density of the posterior random variable ®|Dy:

likelihood prior

POWOPO) B 7o)

P(Dn)
With a Gaussian prior and Gaussian noise model, one may arrive
at the log-posterior distribution:

P(®|Dy) =

— log N(®[Dy) = ZIY Co(y)IE + [[@l7

H(»

Note: Not gaussian since <b — Co is non-linear.
7/31
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Introduction

Bayesian approach to noisy inversion 2/2

Rather than looking at the entire posterior object ®|Dy, consider
ONE of its moments (®, )| Dy, where 1) is a 'test’ field.

Important questions:

© What relevant estimators Wy of ($o, 1) can we extract from
this posterior distribution ? Examples: mean and MAP, when

they exist.
@ Are they easily computable 7
© Consistency: does Wy — (P, V) as N — oo in any sense 7
@ UQ: does the posterior density “contract” about \/I\JN so one

can get confidence/credible sets ?
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@ The 'classical’ functional setting L?(M) — L/%((LSM)
@ The Euclidean disk: setting L?(D) — L?(0,SD)

@ Elements of proof: mapping properties of attenuated X-ray



X-ray transforms: ing properties, bayesian inversion

Main results

Main messages of this talk

@ Making UQ statements for inverse problems requires a refined
understanding of mapping properties of the forward and/or
the 'normal’ (linearized) operator.
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X-ray transforms: ing properties, bayesian inversion

Main messages of this talk

@ Making UQ statements for inverse problems requires a refined
understanding of mapping properties of the forward and/or
the 'normal’ (linearized) operator.

@ For X-ray problems on manifolds with boundary, these
mapping properties (the natural Hilbert scales involved and
their Fréchet limits) are highly sensitive to the choice of
certain weights.

© Said choice of weights can come from: theoretical tractability
(“choose the easiest one !") or noise model (“choose the
practical one !").

9/31



X-ray transforms: ing properties, bayesian inversion
Main results

Main results 1/3

Theorem (M’, 2019, arXiv preprint 1910.13691)

On M the Euclidean disk, if ly: L2(M) — L?(0-SM) is the X-ray
transform with adjoint I, we have

IGlo: C¥(M) =5 C®(M), Klp: HS(M) = H*TY(M), s>0,

where HS := D(L®) upon defining

L=—(1-p)0+(p"—3p)0,+p 20) + 1.

- The L? topology on 0, SM is not the usual, 'symplectic’ one.
- Generalizations to special cases of simple surfaces also exist.
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Main results 2/3

Theorem (M'-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

On M the Euclidean disk, let © € C2°(M,so(n)), and let the
attenuated X-ray transform

lo: L>(M,C") — L[2(8,SM,C").
Then I3le is an isomorphism

C®(M,C") = C®(M,C"), H*(M,C") = H**}(M,C"), s>0.

- based on setting up a suitable Fredholm setting, using the Hs
scale and © = 0 as reference case.
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Main result 3/3 - application to UQ

Consider the problem of recovering ®g € C2°(M, s0(n)) from
Vi = Co(y) +ej. g5~ N(0,07), 1<j<N.

As above, let Dy := {7, Y;}}.;, and choose a prior among a

flexible class and a test field ) € C°>°(M,s0(n)). Denote ®py the
posterior mean (from [M.-Nickl-Paternain, CPAM ’20], it exists and
converges to ®g as N — 00).

Theorem (M.-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

We have as N — oo and in P} -probability, the weak convergence
o

VN(® — By, )] Dy = N0, oy (18, foy) ¢ 2200, shay)-
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Main result 3/3 - application to UQ

Consider the problem of recovering ®g € C2°(M, s0(n)) from
Vi = Co(y) +ej. g5~ N(0,07), 1<j<N.

As above, let Dy := {7, Y;}}.;, and choose a prior among a

flexible class and a test field ) € C°>°(M,s0(n)). Denote ®py the
posterior mean (from [M.-Nickl-Paternain, CPAM ’20], it exists and
converges to ®g as N — 00).

Theorem (M.-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

We have as N — oo and in P} -probability, the weak convergence
o

VN(® — By, )] Dy = N0, oy (18, foy) ¢ 2200, shay)-

- lg, is an attenuated X-ray transform where ©¢ depends on ®g,

related to the linearization of the map ¢ — Cg at g.
12/31
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© A numerical illustration

o
@ The 'classical’ functional setting L?(M) — L/%((LSM)
@ The Euclidean disk: setting L?(D) — L?(0,SD)
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Computational domain, unknown

M: Euclidean unit disk.
Unstructured mesh with 886 nodes.

1F

1 1
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Computational domain, unknown

M: Euclidean unit disk.
Unstructured mesh with 886 nodes.
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A numerical illustration

Noiseless

real(C,,) real(C, ) imag(C,,) imag(C,;)
o4 92 0 0z 04 o4 0z o o0z 04 a4 03 02 01 0 01 oz

real(Cy) real(C,,) imag(C,y)

N
.!
o
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A numerical illustration

Forward data 4+ sampling

Noiseless, randomly sampled (N = 800)

real(C,,) real(C,,) imag(C,,) imag(C,

12)

8 o8 o 2 2 2 04 02 0 02 0 a4 2 0 2
real(C,) real(C,.) imag(C,,) imag(C,,)

0 02 ] 02 04 086 0% 03 0% 094 09 0% 04 03 02 o1 o a1 02 o4 0z o 02 04
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Forward data 4+ sampling

Noisy (0 = 0.1), randomly sampled (N = 800)

real(C, ) real(C,,) imag(C,,) imag(C,,)
EE—— ) EETT ) )
o o 05 04 a2 o 02 o o o o o
real(C,) real(C,;) imag(Cy) imag(C,,)
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inversion

A numerical illustration

Forward data 4+ sampling

Noisy (0 = 0.1), randomly sampled (N = 800)

real(C, ) real(C,,) imag(C,,) imag(C,,)
i
08 09 1 11 12 13 05 o 05 04 a2 o 02 0s 04 02 o 02
real(C,) real(C,;) imag(Cy) imag(C,,)
o4 02 o 02 o4 o4 02 o 0z os

Prior (Matérn) parameters: v =3, ¢
.y 1 ’ lz
o' (|
e . 'i
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A numerical illustration

Computation of the posterior mean by MCMC

We compute a family of posterior draws using preconditioned
Crank-Nicolson [Cotter, Stuart, Roberts & White ’13].

Fix § € (0,1/2), &9 =0, and for n =0 : Ns do:
© Draw VW ~ MM and set p, = /1 —28 ¢, + /20 V.
@ With £(®) = L SN |Y — Co(7))% the log-likelihood,

| pn with proba. 1 A exp(£(Pn) — £(pn)),
set  Pnyy _{ ®,, otherwise.

® Visualize ® = N% SN &, and histograms of moments.
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X-ray transforms: ing properties, bayesian inversion
A numerical illustration

Computation of the posterior mean by MCMC

We compute a family of posterior draws using preconditioned
Crank-Nicolson [Cotter, Stuart, Roberts & White ’13].
Fix § € (0,1/2), &9 =0, and for n =0 : Ns do:

@ Draw W ~ M and set p, = V1 — 2§ &, + V26 V.

Q@ With ¢(®) = % J_N:1 Y — C¢(’yj)]2F the log-likelihood,

| pn with proba. 1 A exp(£(Pn) — £(pn)),
set  Pnyy _{ ®,, otherwise.

® Visualize ® = N% SN &, and histograms of moments.

@ One can show that {®,}, forms a Markov chain with unique
invariant measure N(-|(Y;, x)),).

@ No inversion required, only forward solves !

@ [Hairer-Stuart-Vollmer ’14] prove non-asymptotic mixing

Law(®,) — M(-|Y) under conditions on ¢(®) that do not
require convexity.
15/31
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A numerical illustration

lllustration of consistency - posterior mean

N = 400, 0 = 0.05, 6 =2.5-107°

MCMC sample average over 10° iterations

1 1
05
05 05 ' 05
0
0 o W e 0
05 0.5 ' 05 05
Rl X A
4 05 0 05 1 -

I
truth: % o0 8 S
R A

16 /31



X-ray transforms: ing properties, bayesian inversion

A numerical illustration

[llustration of consistency - posterior mean

N =800, o = 0.05, 6 =2.5-10"°
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A numerical illustration

lllustration of approximate normality - histograms

17/31



@ Elements of proof: mapping properties of unattenuated X-ray
@ The 'classical’ functional setting L?(M) — Lﬁ((LSM)
@ The Euclidean disk: setting L?(D) — L?(0,SD)



@ Elements of proof: mapping properties of unattenuated X-ray
@ The 'classical’ functional setting L2(M) — Li(8+SM)
The Euclidean disk: setting L2(D) — L%(9,SD)
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Elements of proof: mapping properties of unattenuated X-ray
The "classical’ functional setting L=(M) — L5, (01 SM)

The case of simple surfaces

Simple = OM stricly :
convex + no conjugate
points 4+ no geodesic of o

infinite length.
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Elements of proof: mapping properties of unattenuated X-ray

The "classical’ functional setting L=(M) — L5, (01 SM)

L

The case of simple surfaces

Simple = OM stricly
convex + no conjugate
points 4+ no geodesic of

infinite length.

Recovery of f from If is injective [Mukh. 751, ill-posed of order
1/2 in that one may derive the stability estimate

”fHL2(M) < CHlﬂlf“Hl(,\'Z)a (II:1 : L2(M) — Li((‘hSM) adJomt)

where M is a simple extension of M. [Stef.-Unl. 04]
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Elements of proof: mapping properties of unattenuated X-ray

The "classical’ functional setting L=(M) — L5, (01 SM)

L

The case of simple surfaces

Simple = OM stricly
convex + no conjugate
points 4+ no geodesic of

infinite length.

Recovery of f from If is injective [Mukh. 751, ill-posed of order
1/2 in that one may derive the stability estimate

”fHL2(M) < CHlﬂlf“Hl(,\'Z)a (II:1 : L2(M) — Li((‘hSM) adJomt)

where M is a simple extension of M. [Stef.-Unl. 04]

Question: Can one obtain mapping properties of /*/ that do not
require an extension ?

18/31
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Elements of proof: mapping properties of unattenuated X-ray

The "classical’ functional setting L=(M) — L5, (01 SM)

L

Extendibility property

In the L*(M) — L2(84SM) setting, the normal operator looks like

7(x,v)
IFIf (x) = 2/ /0 F(7xv (1)) dt dS(v).
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Elements of proof: mapping properties of unattenuated X-ray
The "classical’ functional setting L=(M) — L5, (01 SM)

Extendibility property

In the L*(M) — L2(84SM) setting, the normal operator looks like
7(x,v)
IFIf (x) = 2/ / F(7xv (1)) dt dS(v).
x /0

If Mis a simple extension of M, one could define itivl similarly, and
notice that

rMolAﬁJloeM:IﬁI.

Moreover, It] € \Ue_”l(l\7l) and satisfies a —1/2 transmission
condition at dM, a symmetry condition on its full symbol
expansion relating o(x, vx) and o(x, —vx) at every point x € OM.
[Boutet de Monvel, Hormander, Grubb]
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Elements of proof: mapping properties of unattenuated X-ray

The "classical’ functional setting L=(M) — L5, (01 SM)

Mapping properties of [*/

Theorem (M.-Nickl-Paternain, AoS '19)

The map I*1 is an isomorphism in the settings below:

(i) I1: d7Y2C®(M) — C®(M),  d(x) = dist(x, OM)
(if) 141 H=Y26) (M) — HS*Y(M), s> —1, (bi-continuous).

20/31



X-ray transforms: ing properties, bayesian inversion

Elements of proof: mapping properties of unattenuated X-ray

The "classical’ functional setting L=(M) — L5, (01 SM)

Mapping properties of [*/

Theorem (M.-Nickl-Paternain, AoS '19)

The map I*1 is an isomorphism in the settings below:
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Elements of proof: mapping properties of unattenuated X-ray

The "classical’ functional setting L=(M) — L5, (01 SM)

Mapping properties of [*/

Theorem (M.-Nickl-Paternain, AoS '19)

The map I*1 is an isomorphism in the settings below:

(i) I1: d7Y2C®(M) — C®(M),  d(x) = dist(x, OM)
(if) 141 H=Y26) (M) — HS*Y(M), s> —1, (bi-continuous).

H!$)(M): Hérmander p-transmission spaces.
NsHHE (M) = d*C>(M).

Proof of (i) (sketch):
@ /%1 is Fredholm. Uses the u-transmission property for WDOs.

@ !/ has trivial kernel and co-kernel.
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Elements of proof: mapping properties of unattenuated X-ray
The classical’ functional setting L=(M) — L%, (0+SM)

1

Comments

@ It's sharp and does not require extension.
& Classical Sobolev scales cannot be used everywhere.

© The Hormander transmission spaces aren't great to work with
(not clear what [(H~/2(5)(M)) looks like)

© Cannot iterate because the smooth spaces don't match !
(E.g.: what is I*/(C°°(M)) or I*I(H*(M)) ?)

21/31



X-ray transforms: ing properties, bayesian inversion

Elements of proof: mapping properties of unattenuated X-ray
The classical’ functional setting L=(M) — L%, (0+SM)

1

Comments

@ It's sharp and does not require extension.
& Classical Sobolev scales cannot be used everywhere.

© The Hormander transmission spaces aren't great to work with
(not clear what [(H~/2(5)(M)) looks like)

© Cannot iterate because the smooth spaces don't match !
(E.g.: what is I*/(C°°(M)) or I*I(H*(M)) ?)

Questions:
e Can we get C*°(M) — C*°(M) isomorphism ?

@ what kind of Sobolev scale would come with that ?

21/31



X-ray transforms: ing properties, bayesian inversion

Elements of proof: mapping properties of unattenuated X-ray

The "classical’ functional setting L=(M) — L5, (01 SM)

Comments

@ It's sharp and does not require extension.
& Classical Sobolev scales cannot be used everywhere.

© The Hormander transmission spaces aren't great to work with
(not clear what [(H~/2(5)(M)) looks like)

© Cannot iterate because the smooth spaces don't match !
(E.g.: what is I*/(C°°(M)) or I*I(H*(M)) ?)
Questions:
e Can we get C*°(M) — C*°(M) isomorphism ?
@ what kind of Sobolev scale would come with that ?

Hunch: change the weight on the co-domain because in fact,
I: [2(M) — L?(04SM) is bounded. It is also the functional
setting where the SVD is known in the Euclidean disk !
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@ Elements of proof: mapping properties of unattenuated X-ray
® The 'classical’ functional setting L?>(M) — L%((LSM)
@ The Euclidean disk: setting L?(D) — L2(0,.SD)



Elements of proof: mapping properties of unattenuated X-ray

The SVD has been Iong known [Cormack, Maass, Louis...].

Zernike polynomials:
Znk, n€Ng, 0 < k< n.

11 1
N 5 2 2

A AL ]
)
A 5" 5! 3 Wy
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Elements of proof: mapping properties of unattenuated X-ray
T )

he Euclidean disk: setting L*(D) — L(0,SD

The Euclidean disk

The SVD has been long known [Cormack, Maass, Louis...].

Zernike polynomials:

Zni, N E€Np, 0< k < n. Uniquely defined through:
Q [*] Zn70 =z".
- o ' ° 8ZZn,k = _azZn,k—L
Jll‘ 7! 1 S k S n.
V. \< Z) - iBY — Ai(n—2k
- . 2‘ -z.’j o Zn7k|3/\/l(e"8) = e’( )B.
= “
S00& _
& &\ W,
P Ty s <% Z Zv )= ——— 00 Os 4t
p s ( : Y ‘ < n,ks n,k> n+1 n,n’ Ok k
A A A A
- Ye oY Y o 1o "F [Kazantzev-Bukhgeym ’07]
Q-7 O W O,
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Elements of proof: mapping properties of unattenuated X-ray
The Euclidean disk: setting L°(D) — L°(0+SD)

The Euclidean disk

The SVD has been long known [Cormack, Maass, Louis...].

Zernike polynomials:

ZoineNg, 0< k<n Uniquely defined through:
n,ks y U S KT
Q o Zpo=2".
- ° 8ZZn,k = _azZn,k—ln
. [ ) 1< k<n.
A —~ i i(n—
A A © Zyylom(e?) = e'n=2k)5,
SODE -
o, O\, Wr;
- = <Zn,kvzn’,k/> I §n,n’ 5k,k’-
LT I00 oF ) n+t1
Yo Y Y o1 "F [Kazantzev-Bukhgeym ’07]
Q77 O W &
C  itn—2k)(B+atr)/ Li(nt1)a n_—i(nt1)a
Z, k] = P (e +(—1)"e )
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X-ray transforms: ing properties, bayesian inversion

Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L°(D) — L°(0+SD)

Euclidean disk: less known facts (see . »191)

Denote /* the adjoint in this setting (/* = Iﬁi). Let T = 0g — Oa
and £ := —((1—p?)02 + (1/p—3p)d, + 1/p*D3) + 1. Facts:
o /oL =(—T?)oland Lol*=1*o(—T?), hence [I*],£] = 0.
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Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L°(D) — L°(0+SD)

Euclidean disk: less known facts (see . »191)

Denote /* the adjoint in this setting (/* = Iﬁi). Let T = 0g — Oa
and £ := —((1—p?)02 + (1/p—3p)d, + 1/p*D3) + 1. Facts:
o /oL =(—T?)oland Lol*=1*o(—T?), hence [I*],£] = 0.

o LZy k= (n+1)*Zyx so | L(I"])? = 4nld
o Upon defining A¥(D) = {u € L2, £¥/2u € L7}, we have

17 e = clifllge Yo, MeH*(D) = C=(D),

so I*] is indeed a C*°-isomorphism !
Comments:

@ The appropriate smoothness is w.r.t {L£}, whose ellipticity
degenerates in a prescribed way at the boundary.

o HY(D) 2 HY(D).
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X-ray transforms: ing properties, bayesi

inversion

Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L°(D) — L°(0+SD)

Euclidean disk: on the data side . 19]

The relation / o £ = (—T?) o I indicates that smoothness in £
translates into smoothness along (—T?2).

Define H;/j_((?jLSM) ={we L%, (—~T?)*2w € L2} to obtain

11l a2 o, spy = Mfllmy, — VF5 VK.
sp (|T) L2(0:SM) a N

« range [ : T

~

Similar anisotropic scales constructed in [Natterer,
Assylbekov-Stefanov ’19, Paternain-Salo ’19]

sp (id3)
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X-ray transforms: ing properties, k

yesian inversion

Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L°(D) — L°(0+SD)

Euclidean disk: on the data side . 19]

The relation / o £ = (—T?) o I indicates that smoothness in £
translates into smoothness along (—T?2).

Define H;/j_((?jLSM) ={we L%, (—~T?)*2w € L2} to obtain

||/f|| k+1/2(8 sD) CHfHHk (D)’ \V/f, Vk.

L2(0.SM) “ 2

« range [ : T

~

Similar anisotropic scales constructed in [Natterer,
Assylbekov-Stefanov ’19, Paternain-Salo ’19]

There also exists a projection operator onto range(/).

sp (IT1)

sp (id3)
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X-ray transforms:

properties, bayesian inversion
Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L°(D) — L°(0+SD)

How far do these results generalize 7

The results above are sensitive to both the geometry and the

boundary. In [Mishra-M. >19], [M. >19]: generalizations to

geodesic disks of constant curvature, modeled over

Mg, = (Dg, (1 + k|z[*)?|dz|?),  R%|x| < 1.
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@ Sharp range description (smoothing properties and moment
conditions), SVD of low and /j.
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Elements of proof: mapping properties of unattenuated X-ray

The Euclidean disk: setting L°(D) — L°(0+SD)

How far do these results generalize 7

The results above are sensitive to both the geometry and the
boundary. In [Mishra-M. >19], [M. >19]: generalizations to
geodesic disks of constant curvature, modeled over

Mg, = (D, (1 +5]2[*)7*|dz|),  R?|s| < 1.
Results: On Mg ., there is a weight function w such that
Io: L2(I\/IR,,€, w) — L2(8+5I\/IR,,€) satisfies:
@ Iilp is a C*° isomorphism.
@ There are differential operators £ and — T2 such that
owo L= (=T*olw, and  L([ilw)*=id.
@ Sharp range description (smoothing properties and moment

conditions), SVD of low and /j.

Open question: find more (simple !) surfaces where this works.
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@ The 'classical’ functional setting L?(M) — Lﬁ((LSM)
@ The Euclidean disk: setting L?(D) — L?(0,SD)

e Elements of proof: mapping properties of attenuated X-ray



X-ray transforms: ing properties, bayesian inversion

Elements of proof: mapping properties of attenuated X-ray

Recalls

Let (M, g) be a simple Riemannian surface with geodesic vector

field X, and © € C*°(M,u(n)) a 'Higgs field". We define the

attenuated X-ray transform lg : L2(M,C") — Li/T((?JrSI\/I,C”) as
lof = uls, sm,

where u: SM — C" solves the transport equation

Xu+Ou=—f (5M), ulo_sm = 0.
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Recalls

Let (M, g) be a simple Riemannian surface with geodesic vector
field X, and © € C*°(M,u(n)) a 'Higgs field". We define the
attenuated X-ray transform lg : L2(M,C") — Li/T(&rSI\/I,C”) as

lof = ula, sm,
where u: SM — C" solves the transport equation

Xu+Ou=—f (5M), ulo_sm = 0.

Most recent results on the problem of recovering f from lgf (case
n>?2):

@ Injectivity: [Paternain-Salo-Uhlmann ’12].
o [? — H' stability estimate: [M.-Nickl-Paternain ’20].
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Main theorems

Theorem (M’-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

Let (M, g) a convex, non-trapping manifold with
© € C°(M,C"™ ™). Then the operator I§le maps C>(M,C")
into itself.
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Main theorems

Theorem (M’-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

Let (M, g) a convex, non-trapping manifold with
© € C°(M,C"™ ™). Then the operator I§le maps C>(M,C")
into itself.

Obtaining the converse mapping property currently requires strong
assumptions on the background geometry + compact support.

Theorem (M'-Nickl-Paternain, 2020, arXiv preprint 2007.15892)

On M the Euclidean disk, let © € C°(M,u(n)), and let the attenuated
X-ray transform

lo: L2(M,C") — L2, (04 SM,C").

Then I3lo is an isomorphism

C®(M,C") =5 C®(M,C"), H*(M,C") = H*}(M,C"), s>0.
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Elements of proof: mapping properties of attenuated X-ray

Elements of proof - forward mapping properties
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Elements of proof - isomorphism properties
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Elements of proof: mapping properties of attenuated X-ray

Conclusion

On the geodesic X-ray transform on the Euclidean disk (...and
constant curvature disks)

@ Functional relations, link with degenerate elliptic operators.

@ Sharp mapping properties of /*/ and I, SVD of /| for a special
choice of weights on M and 0;SM.

© Mapping properties for attenuated X-ray transforms with
compactly supported attenuation.

@ Consequences for statistical inversions: Bernstein-vonMises
theorems on asymptotic posterior normality.
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Conclusion

On the geodesic X-ray transform on the Euclidean disk (...and
constant curvature disks)

@ Functional relations, link with degenerate elliptic operators.

@ Sharp mapping properties of /*/ and I, SVD of /| for a special
choice of weights on M and 0;SM.

© Mapping properties for attenuated X-ray transforms with
compactly supported attenuation.

@ Consequences for statistical inversions: Bernstein-vonMises
theorems on asymptotic posterior normality.

Perspectives:
@ how far can we take 1-2 on simple surfaces ?
@ higher dimensions ?

@ case with non-trivial connections ?
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