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Light scattering



Radiative transport

The propagation of light in disordered media can be described by the

radiative transport equation. The specific intensity I(x, k̂, t) obeys

1

c

∂I

∂t
+ k̂ · ∇xI = σ

∫
dk̂′

[
A(k̂′, k̂)I(x, k̂′)−A(k̂, k̂′)I(x, k̂)

]
.

The phase function A is normalized so that
∫
A(k̂, k̂′)dk̂′ = 1 for all k̂.

At large distances and long times, the specific intensity is well approxi-

mated by the solution to the diffusion equation

1

c

∂u

∂t
= D∆u ,

where I(x, k̂, t) = u(x, t) + `∗k̂ · ∇u(x, t) and D = 1/3c`∗ is related to the

lowest-order angular moment of A.

The RTE can be derived from the high-frequency asymptotics of wave

propagation in random media.



Motivation

• Radiative transport of light is based on classical theories of light

propagation

• Are there quantum effects in multiple light scattering?

— spontaneous emission in random media

— transport of entangled states

• Possible applications to imaging and communications



Quantum optics

• Quantum theory of the interaction of light and matter

• New physics

— nonclassical states of light

— entanglement

• One atom interacting with one photon

• Many-atom problems are exponentially hard



Overview

• Crash course in quantum optics

• New tools for many-body problems

— real-space formulation of QED

— PDEs with random coefficients

• Case studies

— spontaneous emission in random media

— two-photon transport



Quantization of the field

We consider a scalar model of the electromagnetic field (without polar-

ization). The field u obeys the wave equation

∂2u

∂t2
= c2∆u .

We expand the solution into Fourier modes of the form

u(x, t) =
∑
k

uk(t)eik·x

and find that

ük + ω2
kuk = 0 .

This corresponds to independent harmonic oscillator modes with fre-

quency ωk = c|k|.



The oscillators are quantized by promoting the uk to operators in the

usual manner. The Hamiltonian of the quantized field is given by

H =
∑
k

~ωka
†
kak .

The creation and annihilation operators obey the bosonic commutation

relations

[ak, a
†
k′] = δkk′ , [ak, ak′] = 0 .

Here a
†
k and ak are defined by

a
†
k |nk〉 =

√
nk + 1 |nk + 1〉 , ak |nk〉 =

√
nk |nk − 1〉 .

Photons are collective excitations of the quantized field. There are nk
photons in the state |nk〉, each with energy ~ωk.



Two-level atom

We consider a two level atom with Hamiltonian

HA = ~Ωσ†σ ,

where Ω is the transition frequency of the atom. Here σ is the lowering

operator and σ† is the raising operator for the atomic states. That is,

σ = |0〉〈1|, where |0〉 is the ground state and |1〉 is the excited state.

Note that σ obeys the fermionic anticommutation relation {σ, σ†} = 1.

If the atom is initially in its excited state it will remain there forever; it

is an eigenstate.



The atom has an electric dipole moment which couples to the field

according to the interaction Hamiltonian

HI = ~g
∑
k

(
a
†
kσ + akσ

†
)
,

where the coupling constant g is proportional to the dipole moment.

The first term corresponds to loss of a photon by the atom and the

gain of a photon by the field; the second term has the opposite effect.

The coupling to the field causes the excited state to decay; this is called

spontaneous emisssion.



Many atoms

We consider a system of two-level atoms. The atoms are taken to

be sufficiently well separated that interatomic interactions may be ne-

glected.

Spontaneous emission involves transfer of the photon from one atom

to another. This leads to entanglement of the atoms.

The system is described by the Hamiltonian H = HF +HA +HI.

The Hamiltonian of the field is of the form

HF =
∑
k

~ωka
†
kak



The Hamiltonian of the atoms is given by

HA =
∑
j

~Ωσ†jσj .

The operators σj and σ
†
j obey the anticommutation relations

{σj, σ
†
j′} = δjj′ ,

{σj, σj′} = 0 .

The interaction Hamiltonian is of the form

HI =
∑
j

∑
k

~gk
(
ak + a

†
k

) (
eik·xjσj + e−ik·xjσ†j

)
,

where xj is the position of the jth atom.

The number of equations grows exponentially with the number of atoms.



Real-space quantization

In order to treat the atoms and the field on the same footing, we

introduce a real-space representation of the fields. To this end, we

define the operator φ(x) as the Fourier transform of ak:

φ(x) =
∑
k

eik·xak .

Evidently, φ is a Bose field with commutation relations

[φ(x), φ†(x′)] = δ(x− x′) ,

[φ(x), φ(x′)] = 0 .

HF becomes

HF = ~c
∫
d3x(−∆)1/2φ†(x)φ(x) .

This follows from the facts that HF = ~c
∑

k |k|a
†
kak and |k| is the Fourier

multiplier of (−∆)1/2.



The operator (−∆)1/2 is non-local and defined by the Fourier integral

(−∆)1/2f(x) =
∫

d3k

(2π)3
eik·x|k|f̃(k) .

It also has the spatial representation

(−∆)1/2f(x) =
1

π2
P
∫
d3y

f(x)− f(y)

|x− y|4
.

We do not attribute any physical significance to the nonlocality of HF .



To facilitate the treatment of random media, we introduce a continuum

model of the atomic degrees of freedom. The atomic Hamiltonian then

becomes

HA = ~Ω
∫
d3xρ(x)σ†(x)σ(x) ,

where ρ is the number density of atoms. In addition, the atomic oper-

ators are replaced by a Fermi field σ which obeys the anticommutation

relations

{σ(x), σ†(x)} =
1

ρ(x)
δ(x− x′) ,

{σ(x), σ(x)} = 0 .

The interaction Hamiltonian is now

HI = ~g
∫
d3xρ(x)

(
φ†(x)σ(x) + φ(x)σ†(x)

)
.



One-photon states

The total Hamiltonian is given by

H = ~
∫
d3x

[
c(−∆)1/2φ†(x)φ(x) + Ωρ(x)σ†(x)σ(x)

+ gρ(x)
(
φ†(x)σ(x) + φ(x)σ†(x)

) ]
,

Consider a one-photon state of the form

|Ψ〉 =
∫
d3x

[
ψ(x, t)φ†(x) + ρ(x)a(x, t)σ†(x)

]
|0〉 ,

where |0〉 is the combined vacuum state of the field and the ground

state of the atoms. Here a(x, t) denotes the probability amplitude for

exciting an atom and ψ(x, t) is the amplitude for creating a photon.

The amplitudes obey the normalization condition∫
d3x

(
|ψ(x, t)|2 + ρ(x)|a(x, t)|2

)
= 1 .



The dynamics of the state |Ψ〉 is governed by the Schrodinger equation

i~∂t|Ψ〉 = H|Ψ〉 .

We find that a and ψ obey

i∂tψ = c(−∆)1/2ψ + gρ(x)a ,

i∂ta = gψ + Ωa .



Single atom and spontaneous emission

Consider a single atom at the origin with ρ(x) = δ(x). We assume that
the atom is initially in its excited state and that there are no photons
present in the field. The probability that the atom remains in its excited
state decays exponentially at long times (Γt� 1):

|a(0, t)|2 = e−Γt ,

where

Γ =
g2Ω2

πc3
.

This agrees with the classic result of Wigner and Weisskopf from the
1930s. Notably, they did not make use of the PDE point of view.

Likewise the one-photon probability density is

|ψ̃(0, t)|2 =
|g|2

(Ω− δω)2 + Γ2/4
,

where δω is the Lamb shift, which must be renormalized. The above
has the form of a Lorentzian spectral line. This should be compared to
the scattering cross section for a point scatterer in classical optics.



Random media

In a random medium, we wish to determine 〈|a(x, t)|2〉 and 〈|ψ(x, t)|2〉,
where 〈· · · 〉 denotes statistical averaging.

i∂tψ = c(−∆)1/2ψ + gρ(x)a ,

i∂ta = gψ + Ωa .

The atomic density ρ(x) is taken to be a random field of the form

ρ(x) = ρ0(1 + η(x)), where ρ0 is constant. The density fluctuation η is

a statistically homogeneous and isotropic random field with correlations

〈η(x)〉 = 0 ,

〈η(x)η(y)〉 = C(|x− y|) .



The solutions a and ψ oscillate rapidly on the scale of the wavelength.

We are interested in high-frequency asymptotics. Here the propagation

distance is long compared to the wavelength, the propagation time is

large compared to the period, and ρ is slowly varying.

We introduce slow space and time coordinates x → x/ε and t → t/ε,

where ε is small. The rescaled amplitudes aε(x, t) = a(x/ε, t/ε) and

ψε(x, t) = ψ(x/ε, t/ε) satisfy

iε∂tψε = εc(−∆)1/2ψε + gρ0

(
1 +
√
εη(x/ε)

)
aε ,

iε∂taε = gψε + Ωaε .

We consider the high-frequency limit ε → 0 and rescale η so that the

randomness is sufficiently weak with C = O(ε).

The high-frequency, weak disorder regime is precisely the setting in

which radiative transport theory holds for classical wave fields.



Wigner transform

The Wigner transform is defined by

Wε(x,k, t) =
∫

d3x′

(2π)3
e−ik·x

′
Uε(x− εx′/2, t)⊗U∗ε(x + εx′/2, t) ,

where Uε(x, t) = (ψε(x, t), aε(x, t)). W can be thought of as a phase-

space probability density. The probability densities |ψε(x, t)|2 and |aε(x, t)|2

are related to the Wigner transform by

|ψε(x, t)|2 =
∫
d3kW ε

11(x,k, t) ,

|aε(x, t)|2 =
∫
d3kW ε

22(x,k, t) .

The diagonal elements of W are real-valued, but not generally non-

negative. However, in the high-frequency limit ε → 0, W becomes

nonnegative.



Radiative transport

The average Wigner transform can be decomposed into modes:

W0(x,k, t) = a+(x,k, t)A+(k) + a−(x,k, t)A−(k) .

It can be seen that in the high-frequency limit, the modes a± obey a

kinetic equation of the form

1

c
∂ta±+ k̂ · ∇xa±+ σ±a± =

∫
dk̂′A(k,k′)a±(x,k′, t) .

The absorption coefficients σ± depend on the parameters ρ0, g, k,Ω.

The phase function A is related to density correlations. This is a long

story.

The diffusion approximation for a± is constructed in the standard way.



Key ingredients

• The Wigner transform can be shown to obey an evolution equation

εi∂tWε = L[η]Wε

• We consider Wε in the high-frequency limit ε → 0 and introduce a

multiscale expansion of the form

Wε(x,k, t) = W0(x,k, t) +
√
εW1(x,X,k, t) + εW2(x,X,k, t) + · · · ,

where X = x/ε is a fast variable and W0 is taken to be deterministic.

• By separating terms of order O(1), O(
√
ε) and O(ε), we obtain a

hierarchy of kinetic equations. By averaging over η and introducing

a suitable closure, we get the required kinetic equations.



Spontaneous emission

We suppose that the atoms are initially excited in a volume of linear

dimensions ls and that there are no photons present in the field:

a(x,0) =

(
1

πl2s

)3/4

e−|x|
2/2l2s ,

ψ(x,0) = 0 .

The kinetic equations are solved in the diffusion approximation for an

infinite medium. We assume isotropic scattering with A = 1/(4π) and

set Ωls/c = 1, ρ0(g/Ω)2 = 1.

At long times (Ωt� 1)

〈|a(x, t)|2〉 =
C1

t3/2
+O

(
1

t5/2

)
,

〈|ψ(x, t)|2〉 =
C2

t3/2
+O

(
1

t5/2

)
.
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Figure 1. Time dependence of field and atomic probability densities.

The corresponding initial conditions for u˘px, |k|, tq are then given by

u`px, |k|, 0q “
ż

dk̂
pW0q11px,k, 0q “pλ`pkq ´ Ωq2 ` g2ρ0

‰

pλ`pkq ´ Ωq2 ´ pλ´pkq ´ Ωq2

´
pW0q22px,k, 0q

” pλ´pkq´Ωq2
g2ρ0

ı “pλ`pkq ´ Ωq2 ` g2ρ0

‰

pλ`pkq ´ Ωq2 ´ pλ´pkq ´ Ωq2 , (131)

u´px, |k|, 0q “
ż

dk̂
pW0q11px,k, 0q “pλ`pkq ´ Ωq2 ` g2ρ0

‰

pλ´pkq ´ Ωq2 ´ pλ`pkq ´ Ωq2

´
pW0q22px,k, 0q

” pλ`pkq´Ωq2
g2ρ0

ı “pλ´pkq ´ Ωq2 ` g2ρ0

‰

pλ´pkq ´ Ωq2 ´ pλ`pkq ´ Ωq2 . (132)

We suppose that the atoms are initially excited near the origin in a volume of linear
dimensions ls and that there are no photons present in the field. We thus impose the
following initial conditions on the amplitudes:

?
ρ0apx, 0q “

ˆ
1

πl2s

˙3{4
e´|x|2{2l2s , (133)

ψpx, 0q “ 0 . (134)



Two-photon states

Recall the Hamiltonian

H = ~
∫
d3x

[
c(−∆)1/2φ†(x)φ(x) + Ωρ(x)σ†(x)σ(x)

+ gρ(x)
(
φ†(x)σ(x) + φ(x)σ†(x)

) ]
,

Consider a two-photon state of the form

|Ψ〉 =
∫
d3x1d

3x2

[
ψ2(x1,x2, t)φ

†(x1)φ†(x2) + ρ(x1)ψ1(x1,x2, t)φ
†(x1)σ†(x2)

+ ρ(x1)ρ(x2)a(x1,x2, t)σ
†(x1)σ†(x2)

]
|0〉 .

Here a denotes the amplitude for exciting two atoms, ψ2 is the amplitude

for creating two photons, and ψ1 is the amplitude for jointly exciting an

atom and creating a photon. Here a is antisymmetric (fermionic) and

ψ2 is symmetric (bosonic).

Note that there can be entanglement of both the photons and the

atoms.



The dynamics of the state |Ψ〉 is governed by the Schrodinger equation

i~∂t|Ψ〉 = H|Ψ〉 .

We find that a, ψ1 and ψ2 obey

i∂tψ2 = c(−∆x1)1/2ψ2 + c(−∆x2)1/2ψ2 +
g

2

(
ρ(x1)ψ1 + ρ(x2)ψ̃1

)
,

i∂tψ1 =
[
c(−∆x2)1/2 + Ω

]
ψ1 − 2gρ(x2)a+ 2gψ2 ,

i∂ta =
g

2
(ψ̃1 − ψ1) + 2Ωa ,

where ψ̃1(x1,x2) = ψ1(x2,x1).

For the case of a single atom, we obtain a modified exponential decay

of the population of the excited state, which describes the process of

stimulated emission.



Radiative transport

In a random medium, the average Wigner transform can be expanded

into modes in a manner similar to the one-photon problem. It can be

seen that in the high-frequency limit, the modes ai(x1,k1,x2,k2), where

i = 1,2,3,4 obey kinetic equations of the form

1

c
∂tai + k̂1 · ∇x1ai + k̂2 · ∇x2ai + σiai = Tiai .

The coefficients σi depend on the parameters ρ0, g, k,Ω. The transport

operator Ti is related to density correlations.

The diffusion approximation for ai is constructed in the standard way.



We suppose that two photons are present in the field and that the atoms

are initially in their ground states:

ψ2(x1,x2,0) = e−|x1−y0|2/2l2s e−|x2−y1|2/2l2s + e−|x1−y1|2/2l2s e−|x2−y0|2/2l2s ,

ψ1(x1,x2,0) = 0 ,

a(x1,x2,0) = 0 .

We note that the initial two-photon state is entangled (not separable).

Entanglement cannot be created by scattering an unentangled incident

state.

The kinetic equations are solved in the diffusion approximation for an

infinite medium. We assume isotropic scattering and set Ωls/c = 1,

ρ0(g/Ω)2 = 1.
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Conclusions

• Many-body problems in quantum optics present fundamental math-

ematical challenges

— computational cost grows exponentially with the number of atoms

— this is more than a technical problem; it is a problem of principle

• Real-space quantization

• Kinetic equations

• Applications to spontaneous emission in random media and trans-

port of entangled two-photon states.



Open problems

• Entanglement measures

• Imaging with entangled two-photon states

• Localization for (−∆)1/2 + V (x)

• Resonances for (−∆)1/2 + V (x)



THANK YOU!


