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Goal of talk

• Describe two approaches for building data driven reduced

order models (ROM) for linear PDE’s.

– Parabolic PDE and describe ROM construction in Laplace

(frequency) domain.

– Hyperbolic PDE and describe causal ROM construction

in the time domain.

• Give some details on how we used the ROM for inversion.
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Two inverse problems

• Find coefficient q(x) of A = −∇ · [q(x)∇] in parabolic PDE

∂tu(t,x) +Au(t,x) = 0

u(0,x) = b(x) = (b(1)(x), . . . , b(m)(x))

∂nu(t,x) = 0 on ∂Ωac, u(t,x) = 0 on ∂Ωinac

• “Sensor functions”
(
b(s)(x)

)m
s=1

are supported near ∂Ωac

Data: matrix D(t) =
∫

Ω
dxbT (x)u(t,x) = 〈b,u(t, ·)〉

Work in frequency domain with 2n matrices:

D̂(ωj) =
∫ ∞

0
dt e−ωjtD(t), ∂ωD̂(ωj), j = 1, . . . , n
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Two inverse problems

• Find coefficient q(x) of symmetrized A in hyperbolic PDE∗

∂2
t u(t,x) +Au(t,x) = 0

u(0,x) = b(x), ∂tu(0,x) = 0

∂nu(t,x) = 0 on ∂Ωac, u(t,x) = 0 on ∂Ωinac

Data: 2n matrices D(tj) =
∫

Ω
dxbT (x)u(tj,x) =

〈
b,u(tj, ·)

〉
at time instants tj = jτ, for j = 0, . . . ,2n− 1

∗Acoustics: q = c = wavespeed, u =pressure/c and A = −c∆(c·) 4



Parabolic PDE: ROM in the frequency domain

• Laplace transform (droping hats) of field at frequency ωj is

uj(x) := u(ωj,x) = (ωjI +A)−1b(x)

and we know

D(ωj) =
〈
b,uj

〉
=
〈
b, (ωjI +A)−1b

〉
∂ωD(ωj) = −

〈
b, (ωjI +A)−2b

〉
, j = 1, . . . , n

• ROM is a pair AROM ∈ Rnm×nm and bROM ∈ Rnm×m that interpo-

lates data:

D(ωj) = bROM
T

(ωjI + AROM)−1bROM

∂ωD(ωj) = −bROM
T

(ωjI + AROM)−2bROM, j = 1, . . . , n
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ROM via Galerkin approximation

• Galerkin space: range U(x), U(x) :=
(
u1(x), . . . ,un(x)

)
u(ω,x) ≈ UUU(x)g(ω) s.t. UUUT

[
(ωI + A)UUUg(ω)− b

]
= 0

where UTU =
(〈

uj,ul
〉)

1≤j,l≤n

At ω = ωj : u(ωj,x) = uj(x) = UUU(x)ej  g(ωj) = ej

Here ej = matrix with jth block equal to Im and zero elsewhere.

• With nm× nm matrices: M = UUUTUUU and S = UUUTAUUU  

(ωM + S)g(ω) = UUUTb, ∀ω. (1)

We don’t know approximation space but can get M and S and
thus g(ω) from data.

6



Proof: From data to M and S

• Diagonal of M is easy:

Mjj =
〈
uj,uj

〉
=
〈
(ωjI +A)−1b, (ωjI +A)−1b

〉
=
〈
b, (ωjI +A)−2b

〉
= −∂ωD(ωj)

• Eq. (1) for ω = ωj s.t. g(ωj) = ej multiplied on left by eTl  

ωjMlj + Sjl = eTl (ωjM + S)ej = 〈ul, b〉 = D(ωl)

• Taking l = j  Sjj = D(ωj) + ωj∂ωD(ωj)

• If l 6= j, we obtain similarly, using symmetries,

ωlMlj + Sjl = D(ωj)  

Mjl =
D(ωl)−D(ωj)

ωj − ωl
, Sjl =

ωjD(ωj)− ωlD(ωl)

ωj − ωl
, j 6= l

7



ROM via Galerkin projection

• Let columns in V (x) be orthonormal basis of Galerkin space

given by Gram-Schmidt

UUU(x) = V (x)R  M = UUUTUUU = RTR

Upper triangular R given by Cholesky factorization of M

• The ROM:

AROM = V TAV = R−TUUUTAUUUR−1 = R−TSR−1

bROM = V Tb = R−TUUUTb = R−T

D(ω1)
...

D(ωn)
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ROM equation

Galerkin eq. (ωM +S)g(ω) = UUUTb with UUU = V R & M = RTR

 RT (ωI + R−TSR−1︸ ︷︷ ︸
AROM

)Rg(ω) = RT V Tb︸ ︷︷ ︸
bROM

• ROM Galerkin equation:

(ωI + AROM)uROM(ω) = bROM, uROM(ω) = Rg(ω)

Data driven ROM satisfies discrete equivalent of the PDE

• Using g(ωj) = ej, for j = 1, . . . , n,

uROM

j := uROM(ωj) = Rej = V TUUUej = V Tuj

and therefore

uj(x) = V V Tuj(x) = V (x)uROM

j
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ROM data interpolation

• For j = 1, . . . , n we have

D(ωj) =
〈
b,uj

〉
= 〈b,V 〉︸ ︷︷ ︸

bROMT

(ωjI + AROM)−1bROM︸ ︷︷ ︸
uROM

j

• For derivative:

∂ωD(ωj) = −
〈
b, (ωjI + A)−2b

〉
= −

〈
uj,uj

〉
= −

〈
V uROM

j ,V uROM

j

〉

= −uROM
T

j 〈V ,V 〉uROM

j

= −uROM
T

j uROM

j
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Which is the best ROM?

• For any orthogonal matrix L ∈ Rnm×nm the data is also inter-

polated by

ÃROM := LTAROML and b̃ROM := LTbROM

•We use L that makes ÃROM block tridiagonal and b̃ROM zero except

in the first block

ROM eq. (ωI + ÃROM)ũROM(ω) = b̃ROM is finite difference scheme for

(ωI + A)u(ω,x) = b(x)

with 3−point stencil in depth

• Transformation to block tridiagonal is via the Lanczos iteration
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Sensitivity of map q 7→ entries in ÃROM in 1−D
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• Sensitivities are large in grid cells calculated for q = 0

• This grid tells us if we have good frequency samples
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Inversion results (initial guess q ≡ 1)

Black: True q

Blue: 1st iteration

Red: 5th iteration

ROM (top to bottom)

size is n = 4,5,6

Relative error displayed

in each plot

• Instead of Least Squares data fit, we find coefficient q by min-
imizing misfit between data driven ÃROM and the ROM calculated
for the trial q.
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Inversion results 2-D (initial guess q ≡ 1)

• Other results based on estimates uj(x) = V (x)uROM

j ≈ V0(x)uROM

j

were discussed in Shari Moskow’s talk.
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Hyperbolic PDE: Causal ROM construction

• Find coefficient q(x) of self-adjoint, positive definite A in

∂2
t u(t,x) +Au(t,x) = 0

u(0,x) = b(x), ∂tu(0,x) = 0

with homogeneous boundary conditions.

• Data are

D(tj) = 〈b, u(jτ, ·)〉 =
〈
b, cos(jτ

√
A)b

〉
, j = 0, . . . ,2n− 1.

• ROM is not for A but for wave propagator P = cos
(
τ
√
A
)

Note: uj(x) := u(jτ,x) = cos(jτ
√
A)b(x) = cos

(
j arccosP)b(x)

Tj(P) = cos
(
j arccosP) = Tchebyshev polynomial of first kind
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Dynamical system for propagation and Galerkin projection

• Recurrence relation of Chebyshev polynomials  

uj+1(x) = 2Puj(x)− uj−1(x), j ≥ 0, x ∈ Ω

u0(x) = b(x)

u1(x) = u−1(x)

• Galerkin space: range U(x), U(x) :=
(
u0(x), . . . ,un−1(x)

)
uj(x) ≈ U(x)gj, with gj ∈ Rnm×m satisfying

UT
(
Ugj+1 − 2PUgj + Ugj−1

)
= 0, UTU =

(〈
uj,ul

〉)
0≤j,l≤n−1

First n coefficients: g0 = e1, . . . , gn−1 = en
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From data to Galerkin projection

• Galerkin eq. Mgj+1= 2Sgj −Mgj−1, j ≥ 0

gj = ej+1, 0 ≤ j ≤ n− 1

• Data 7→ nm× nm matrices M = UTU and S = UTPU :

Mlj =
〈
ul,uj

〉
=
〈
Tl(P)b, Tj(P)b

〉

=
〈
b, Tl(P)Tj(P)b

〉
=

1

2

〈
b,
[
Tl+j(P) + T|l−j|(P)

]
b
〉

=
1

2

(
Dl+j + D|l−j|

)
Similarly,

Slj =
〈
ul,Puj

〉
=

1

4

(
Dl+j+1 + D|j−l+1|+ D|j−l−1|+ D|l+j−1|

)
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ROM dynamical system

• Square root M = RTR (Cholesky)  R =

R11 R12 . . . R1n
0 R22 . . . R2n
...
0 0 . . . Rnn



• Multiply Galerkin eq. Mgj+1 = 2Sgj −Mgj−1 by R−T on left

uROM

j+1
= 2PROMuROM

j
− uROM

j−1
= 0, j ≥ 0

uROM

0
= bROM

uROM

1
= uROM

−1

• ROM snapshots: uROM

j = Rgj and propagator PROM = R−TSR−1

• Gram-Schmidt: U(x) = V (x)R  uROM

j
= Rgj = V T Ugj︸ ︷︷ ︸

≈uj

and

PROM = R−TSR−1 = R−TUTPUR−1 = V TPV
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Preserving causality is important

• 1-D ilustration (1 source/receiver): snapshots u(jτ,x) plotted
vs. j = 0,1, . . . (horizontal axis) and x (vertical axis)

• ROM snapshots: (uROM

0 , . . . ,uROM

n−1) = R =

R11 R12 . . . R1n
0 R22 . . . R2n
...
0 0 . . . Rnn


− In higher dimensions we have m×m blocks (m sources/receivers).
Rows of blocks model advancement of wavefront.

• Gram-Schmidt U(x) = V (x)R maps nearly triangular U(x) to
R  V (x) weakly dependent of reflectivity.
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Illustration for sound waves in 1-D
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Illustration for sound waves in 2-D

reflectivity co

Uo Vo U V

Array with m = 50 sensors ×
Snapshots plotted for a single source ◦
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Qualitative imaging∗

• Consider internal “fictitious source” at y ∈ Ω :

δy(x) := V V T δ(x− y) =
n−1∑
j=0

vj(x)
〈
vj, δ(· − y)

〉
= V (x)V T (y)

• Generated wave after one time step τ :

Pδy(x) ≈ V V TPδy(x) = V V TPV V T δ(x− y) = V (x)PROMV T (y)

 Backprojection imaging function:

I(y) := Vo(y)
(
PROM − PROM

o

)
V T
o (y), ∀y ∈ Ω.
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∗Results for acoustic wave equation: Druskin, Mamonov, Zaslavsky - SIAM
Imaging Sci., 2018



Backprojection vs Reverse Time Migration

True c Kinematic model co

ROM backprojection RTM image
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Backprojection vs Reverse Time Migration

True c Kinematic model co

ROM backprojection RTM image
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Other inversion results

•Quantitative inversion for reflectivity (rough part of wave speed):

B., Druskin, Mamonov, Zaslavsky, Zimmerling, Reduced Order
Model Approach to Inverse Scattering, SIAM Imaging Sciences
13 (2), 2020, p. 685-723.

• ROM used to approx. derivative of reflectivity 7→ {Dj}0≤j≤2n−1
i.e., linearized (Born) model assumed in conventional imaging:

B., Druskin, Mamonov, Zaslavsky, Untangling the nonlinearity
in inverse scattering with data-driven reduced order models, In-
verse Problems 34 (6), 2018, p. 065008

B., Druskin, Mamonov, Zaslavsky, Robust nonlinear processing
of active array data in inverse scattering via truncated reduced
order models, Journal Comp. Physics 381, 2019, p. 1-26.

• With Josselin Garnier we are working on other applications and
on velocity estimation.
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