Liliana Borcea

Mathematics, University of Michigan Ann Arbor

Joint work with:

- Vladimir Druskin Worcester Polytechnic Institute
- Alexander Mamonov University of Houston
- Mikhail Zaslavsky Schlumberger
- Jörn Zimmerling University of Michigan

Support: U.S. Office of Naval Research, N00014-17-1-2057.

Goal of talk

- Describe two approaches for building data driven reduced order models (ROM) for linear PDE's.
- Parabolic PDE and describe ROM construction in Laplace (frequency) domain.
- Hyperbolic PDE and describe causal ROM construction in the time domain.
- Give some details on how we used the ROM for inversion.

Two inverse problems

- Find coefficient $q(\boldsymbol{x})$ of $A=-\nabla \cdot[q(\boldsymbol{x}) \nabla]$ in parabolic PDE

$$
\begin{aligned}
\partial_{t} \mathbf{u}(t, \boldsymbol{x})+A \mathbf{u}(t, \boldsymbol{x}) & =0 \\
\mathbf{u}(0, \boldsymbol{x}) & =\boldsymbol{b}(\boldsymbol{x})=\left(b^{(1)}(\boldsymbol{x}), \ldots, b^{(m)}(\boldsymbol{x})\right) \\
\partial_{n} \mathbf{u}(t, \boldsymbol{x}) & =0 \quad \text { on } \partial \Omega_{\mathrm{ac}}, \quad \mathbf{u}(\mathrm{t}, \boldsymbol{x})=0 \quad \text { on } \partial \Omega_{\mathrm{inac}}
\end{aligned}
$$

- "Sensor functions" $\left(b^{(s)}(\boldsymbol{x})\right)_{s=1}^{m}$ are supported near $\partial \Omega \mathrm{ac}$

Data: matrix $\boldsymbol{D}(t)=\int_{\Omega} d \boldsymbol{x} \boldsymbol{b}^{T}(\boldsymbol{x}) \mathbf{u}(t, \boldsymbol{x})=\langle\boldsymbol{b}, \mathbf{u}(t, \cdot)\rangle$
Work in frequency domain with $2 n$ matrices:

$$
\widehat{\boldsymbol{D}}\left(\omega_{j}\right)=\int_{0}^{\infty} d t e^{-\omega_{j} t} \boldsymbol{D}(t), \quad \partial_{\omega} \widehat{\boldsymbol{D}}\left(\omega_{j}\right), \quad j=1, \ldots, n
$$

Two inverse problems

- Find coefficient $q(x)$ of symmetrized A in hyperbolic PDE*

$$
\begin{aligned}
\partial_{t}^{2} \mathbf{u}(t, \boldsymbol{x})+A \mathbf{u}(t, \boldsymbol{x}) & =0 \\
\mathbf{u}(0, \boldsymbol{x}) & =\boldsymbol{b}(\boldsymbol{x}), \quad \partial_{t} \mathbf{u}(0, \boldsymbol{x})=0 \\
\partial_{n} \mathbf{u}(t, \boldsymbol{x}) & =0 \quad \text { on } \partial \Omega_{\mathrm{ac}}, \quad \mathbf{u}(\mathrm{t}, \boldsymbol{x})=0 \quad \text { on } \partial \Omega_{\text {inac }}
\end{aligned}
$$

Data: 2n matrices $\boldsymbol{D}\left(t_{j}\right)=\int_{\Omega} d \boldsymbol{x} \boldsymbol{b}^{T}(\boldsymbol{x}) \mathbf{u}\left(t_{j}, \boldsymbol{x}\right)=\left\langle\boldsymbol{b}, \mathbf{u}\left(t_{j}, \cdot\right)\right\rangle$ at time instants $t_{j}=j \tau$, for $j=0, \ldots, 2 n-1$

- Laplace transform (droping hats) of field at frequency ω_{j} is

$$
\mathbf{u}_{j}(\boldsymbol{x}):=\mathbf{u}\left(\omega_{j}, \boldsymbol{x}\right)=\left(\omega_{j} I+A\right)^{-1} \boldsymbol{b}(\boldsymbol{x})
$$

and we know

$$
\begin{aligned}
\boldsymbol{D}\left(\omega_{j}\right) & =\left\langle\boldsymbol{b}, \mathbf{u}_{j}\right\rangle=\left\langle\boldsymbol{b},\left(\omega_{j} I+A\right)^{-1} \boldsymbol{b}\right\rangle \\
\partial_{\omega} \boldsymbol{D}\left(\omega_{j}\right) & =-\left\langle\boldsymbol{b},\left(\omega_{j} I+A\right)^{-2} \boldsymbol{b}\right\rangle, \quad j=1, \ldots, n
\end{aligned}
$$

- ROM is a pair $\boldsymbol{A}^{\text {Rom }} \in \mathbb{R}^{n m \times n m}$ and $b^{\text {rom }} \in \mathbb{R}^{n m \times m}$ that interpolates data:

$$
\begin{aligned}
\boldsymbol{D}\left(\omega_{j}\right) & =\boldsymbol{b}^{\mathrm{ROM} T}\left(\omega_{j} \boldsymbol{I}+\boldsymbol{A}^{\mathrm{ROM}}\right)^{-1} \boldsymbol{b}^{\mathrm{ROM}} \\
\partial_{\omega} \boldsymbol{D}\left(\omega_{j}\right) & =-\boldsymbol{b}^{\mathrm{ROM}}{ }^{T}\left(\omega_{j} \boldsymbol{I}+\boldsymbol{A}^{\mathrm{ROM}}\right)^{-2} \boldsymbol{b}^{\mathrm{ROM}}, \quad j=1, \ldots, n
\end{aligned}
$$

ROM via Galerkin approximation

- Galerkin space: range $\boldsymbol{U}(\boldsymbol{x}), \boldsymbol{U}(\boldsymbol{x}):=\left(\mathbf{u}_{1}(\boldsymbol{x}), \ldots, \mathbf{u}_{n}(\boldsymbol{x})\right)$

$$
\mathbf{u}(\omega, \boldsymbol{x}) \approx \boldsymbol{U}(\boldsymbol{x}) \boldsymbol{g}(\omega) \text { s.t. } \boldsymbol{U}^{T}[(\omega I+\boldsymbol{A}) \boldsymbol{U} \boldsymbol{g}(\omega)-\boldsymbol{b}]=0
$$

where $\boldsymbol{U}^{T} \boldsymbol{U}=\left(\left\langle\mathbf{u}_{j}, \mathbf{u}_{l}\right\rangle\right)_{1 \leq j, l \leq n}$
At $\omega=\omega_{j}: \quad \mathbf{u}\left(\omega_{j}, \boldsymbol{x}\right)=\mathbf{u}_{j}(\boldsymbol{x})=\boldsymbol{U}(\boldsymbol{x}) \boldsymbol{e}_{j} \rightsquigarrow \boldsymbol{g}\left(\omega_{j}\right)=\boldsymbol{e}_{j}$
Here $e_{j}=$ matrix with $j^{\text {th }}$ block equal to \boldsymbol{I}_{m} and zero elsewhere.

- With $n m \times n m$ matrices: $M=\boldsymbol{U}^{T} \boldsymbol{U}$ and $\boldsymbol{S}=\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{U}$

$$
\begin{equation*}
(\omega \boldsymbol{M}+\boldsymbol{S}) \boldsymbol{g}(\omega)=\boldsymbol{U}^{T} \boldsymbol{b}, \quad \forall \omega \tag{1}
\end{equation*}
$$

We don't know approximation space but can get M and S and thus $g(\omega)$ from data.

- Diagonal of \boldsymbol{M} is easy:

$$
\begin{aligned}
M_{j j} & =\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle=\left\langle\left(\omega_{j} I+A\right)^{-1} \boldsymbol{b},\left(\omega_{j} I+A\right)^{-1} \boldsymbol{b}\right\rangle \\
& =\left\langle\boldsymbol{b},\left(\omega_{j} I+A\right)^{-2} \boldsymbol{b}\right\rangle=-\partial_{\omega} \boldsymbol{D}\left(\omega_{j}\right)
\end{aligned}
$$

- Eq. (1) for $\omega=\omega_{j}$ s.t. $\boldsymbol{g}\left(\omega_{j}\right)=\boldsymbol{e}_{j}$ multiplied on left by $\boldsymbol{e}_{l}^{T} \rightsquigarrow$

$$
\omega_{j} M_{l j}+S_{j l}=e_{l}^{T}\left(\omega_{j} \boldsymbol{M}+\boldsymbol{S}\right) \boldsymbol{e}_{j}=\left\langle\mathbf{u}_{l}, \boldsymbol{b}\right\rangle=\boldsymbol{D}\left(\omega_{l}\right)
$$

- Taking $l=j \rightsquigarrow \quad S_{j j}=\boldsymbol{D}\left(\omega_{j}\right)+\omega_{j} \partial_{\omega} \boldsymbol{D}\left(\omega_{j}\right)$
- If $l \neq j$, we obtain similarly, using symmetries,

$$
\begin{gathered}
\omega_{l} M_{l j}+S_{j l}=\boldsymbol{D}\left(\omega_{j}\right) \rightsquigarrow \\
M_{j l}=\frac{\boldsymbol{D}\left(\omega_{l}\right)-\boldsymbol{D}\left(\omega_{j}\right)}{\omega_{j}-\omega_{l}}, \quad S_{j l}=\frac{\omega_{j} \boldsymbol{D}\left(\omega_{j}\right)-\omega_{l} \boldsymbol{D}\left(\omega_{l}\right)}{\omega_{j}-\omega_{l}}, \quad j \neq l
\end{gathered}
$$

ROM via Galerkin projection

- Let columns in $\boldsymbol{V}(\boldsymbol{x})$ be orthonormal basis of Galerkin space given by Gram-Schmidt

$$
\boldsymbol{U}(\boldsymbol{x})=\boldsymbol{V}(\boldsymbol{x}) \boldsymbol{R} \quad \rightsquigarrow \quad M=\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{R}^{T} \boldsymbol{R}
$$

Upper triangular R given by Cholesky factorization of M

- The ROM:

$$
\begin{gathered}
\boldsymbol{A}^{\mathrm{rom}}=\boldsymbol{V}^{T} \boldsymbol{A} \boldsymbol{V}=\boldsymbol{R}^{-T} \boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{U} \boldsymbol{R}^{-1}=\boldsymbol{R}^{-T} \boldsymbol{S} \boldsymbol{R}^{-1} \\
\boldsymbol{b}^{\mathrm{rom}}=\boldsymbol{V}^{T} \boldsymbol{b}=\boldsymbol{R}^{-T} \boldsymbol{U}^{T} \boldsymbol{b}=\boldsymbol{R}^{-T}\left(\begin{array}{c}
\boldsymbol{D}\left(\omega_{1}\right) \\
\vdots \\
\boldsymbol{D}\left(\omega_{n}\right)
\end{array}\right)
\end{gathered}
$$

ROM equation

Galerkin eq. $(\omega \boldsymbol{M}+\boldsymbol{S}) \boldsymbol{g}(\omega)=\boldsymbol{U}^{T} \boldsymbol{b}$ with $\boldsymbol{U}=\boldsymbol{V} \boldsymbol{R}$ \& $\boldsymbol{M}=\boldsymbol{R}^{T} \boldsymbol{R}$

$$
\rightsquigarrow \quad \boldsymbol{R}^{T}(\omega \boldsymbol{I}+\underbrace{\boldsymbol{R}^{-T} \boldsymbol{S} \boldsymbol{R}^{-1}}_{\boldsymbol{A}^{\text {Rom }}}) \boldsymbol{R} \boldsymbol{g}(\omega)=\boldsymbol{R}^{T} \underbrace{\boldsymbol{V}^{T} \boldsymbol{b}}_{\boldsymbol{b}^{\text {Rom }}}
$$

- ROM Galerkin equation:

$$
\left(\omega \boldsymbol{I}+\boldsymbol{A}^{\mathrm{RoM}}\right) \mathbf{u}^{\mathrm{RoM}}(\omega)=\boldsymbol{b}^{\mathrm{rom}}, \quad \mathbf{u}^{\mathrm{rom}}(\omega)=\boldsymbol{R} g(\omega)
$$

Data driven ROM satisfies discrete equivalent of the PDE

- Using $\boldsymbol{g}\left(\omega_{j}\right)=e_{j}$, for $j=1, \ldots, n$,

$$
\mathbf{u}_{j}^{\mathrm{rom}}:=\mathbf{u}^{\mathrm{rom}}\left(\omega_{j}\right)=\boldsymbol{R} e_{j}=\boldsymbol{V}^{T} \boldsymbol{U} e_{j}=\boldsymbol{V}^{T} \mathbf{u}_{j}
$$

and therefore

$$
\mathbf{u}_{j}(x)=V V^{T} \mathbf{u}_{j}(x)=V(x) \mathbf{u}_{j}^{\text {rom }}
$$

ROM data interpolation

- For $j=1, \ldots, n$ we have

$$
\boldsymbol{D}\left(\omega_{j}\right)=\left\langle\boldsymbol{b}, \mathbf{u}_{j}\right\rangle=\underbrace{\langle\boldsymbol{b}, \boldsymbol{V}\rangle}_{\boldsymbol{b}^{\mathrm{ROM}} T} \underbrace{\left(\omega_{j} \boldsymbol{I}+\boldsymbol{A}^{\mathrm{ROM}}\right)^{-1} \boldsymbol{b}^{\mathrm{ROM}}}_{\mathbf{u}_{j}^{\mathrm{ROM}}}
$$

- For derivative:

$$
\begin{aligned}
\partial_{\omega} \boldsymbol{D}\left(\omega_{j}\right) & =-\left\langle\boldsymbol{b},\left(\omega_{j} I+\boldsymbol{A}\right)^{-2} \boldsymbol{b}\right\rangle=-\left\langle\mathbf{u}_{j}, \mathbf{u}_{j}\right\rangle \\
& =-\left\langle\boldsymbol{V} \mathbf{u}_{j}^{\text {ROM }}, \boldsymbol{V} \mathbf{u}_{j}^{\text {ROM }}\right\rangle \\
& =-\mathbf{u}_{j}^{\text {ROM }}{ }^{T}\langle\boldsymbol{V}, \boldsymbol{V}\rangle \mathbf{u}_{j}^{\text {ROM }} \\
& =-\mathbf{u}_{j}^{\text {R®M }}{ }^{T} \mathbf{u}_{j}^{\text {ROM }}
\end{aligned}
$$

- For any orthogonal matrix $L \in \mathbb{R}^{n m \times n m}$ the data is also interpolated by

$$
\widetilde{\boldsymbol{A}^{\mathrm{rom}}}:=\boldsymbol{L}^{T} \boldsymbol{A}^{\mathrm{Rom}} \boldsymbol{L} \quad \text { and } \quad \widetilde{\boldsymbol{b}}^{\mathrm{rom}}:=\boldsymbol{L}^{T} \boldsymbol{b}^{\mathrm{rom}}
$$

- We use \boldsymbol{L} that makes $\widetilde{\boldsymbol{A}}^{\text {rom }}$ block tridiagonal and $\widetilde{\boldsymbol{b}}^{\text {rom }}$ zero except in the first block

ROM eq. $\quad\left(\omega \boldsymbol{I}+\widetilde{\boldsymbol{A}}^{\text {rom }}\right) \widetilde{\mathbf{u}}^{\text {bom }}(\omega)=\widetilde{\boldsymbol{b}}^{\text {rom }}$ is finite difference scheme for

$$
(\omega I+\boldsymbol{A}) u(\omega, \boldsymbol{x})=\boldsymbol{b}(x)
$$

with 3-point stencil in depth

- Transformation to block tridiagonal is via the Lanczos iteration

- Sensitivities are large in grid cells calculated for $q=0$
- This grid tells us if we have good frequency samples

Black: True q
Blue: 1st iteration
Red: 5th iteration

ROM (top to bottom) size is $n=4,5,6$

Relative error displayed in each plot

- Instead of Least Squares data fit, we find coefficient q by minimizing misfit between data driven $\widetilde{\boldsymbol{A}^{\text {rom }}}$ and the ROM calculated for the trial q.

- Other results based on estimates $u_{j}(\boldsymbol{x})=\boldsymbol{V}(\boldsymbol{x}) \mathbf{u}_{j}^{\mathrm{rom}} \approx V_{0}(\boldsymbol{x}) \mathbf{u}_{j}^{\text {rom }}$ were discussed in Shari Moskow's talk.
- Find coefficient $q(\boldsymbol{x})$ of self-adjoint, positive definite A in

$$
\begin{aligned}
\partial_{t}^{2} \mathbf{u}(t, \boldsymbol{x})+A \mathbf{u}(t, \boldsymbol{x}) & =0 \\
\mathbf{u}(0, \boldsymbol{x}) & =\boldsymbol{b}(\boldsymbol{x}), \quad \partial_{t} \mathbf{u}(0, \boldsymbol{x})=0
\end{aligned}
$$

with homogeneous boundary conditions.

- Data are

$$
\boldsymbol{D}\left(t_{j}\right)=\langle\boldsymbol{b}, u(j \tau, \cdot)\rangle=\langle\boldsymbol{b}, \cos (j \tau \sqrt{A}) \boldsymbol{b}\rangle, \quad j=0, \ldots, 2 n-1
$$

- $\mathbf{R O M}$ is not for A but for wave propagator $\mathcal{P}=\cos (\tau \sqrt{A})$

Note: $\mathbf{u}_{j}(\boldsymbol{x}):=\mathbf{u}(j \tau, \boldsymbol{x})=\cos (j \tau \sqrt{A}) \boldsymbol{b}(\boldsymbol{x})=\cos (j \arccos \mathcal{P}) \boldsymbol{b}(\boldsymbol{x})$
$\mathcal{T}_{j}(\mathcal{P})=\cos (j \arccos \mathcal{P})=$ Tchebyshev polynomial of first kind

Dynamical system for propagation and Galerkin projection

- Recurrence relation of Chebyshev polynomials \rightsquigarrow

$$
\begin{aligned}
\mathbf{u}_{j+1}(\boldsymbol{x}) & =2 \mathcal{P} \mathbf{u}_{j}(\boldsymbol{x})-\mathbf{u}_{j-1}(\boldsymbol{x}), \quad j \geq 0, \quad \boldsymbol{x} \in \Omega \\
\mathbf{u}_{0}(\boldsymbol{x}) & =\boldsymbol{b}(\boldsymbol{x}) \\
\mathbf{u}_{1}(\boldsymbol{x}) & =\mathbf{u}_{-1}(\boldsymbol{x})
\end{aligned}
$$

- Galerkin space: range $\boldsymbol{U}(\boldsymbol{x}), \boldsymbol{U}(\boldsymbol{x}):=\left(\mathbf{u}_{0}(\boldsymbol{x}), \ldots, \mathbf{u}_{n-1}(\boldsymbol{x})\right)$
$\mathrm{u}_{j}(\boldsymbol{x}) \approx \boldsymbol{U}(\boldsymbol{x}) \boldsymbol{g}_{j}$, with $\boldsymbol{g}_{j} \in \mathbb{R}^{n m \times m}$ satisfying

$$
\boldsymbol{U}^{T}\left(\boldsymbol{U} \boldsymbol{g}_{j+1}-2 \mathcal{P} \boldsymbol{U} \boldsymbol{g}_{j}+\boldsymbol{U} \boldsymbol{g}_{j-1}\right)=0, \quad \boldsymbol{U}^{T} \boldsymbol{U}=\left(\left\langle\mathbf{u}_{j}, \mathbf{u}_{l}\right\rangle\right)_{0 \leq j, l \leq n-1}
$$

First n coefficients: $g_{0}=e_{1}, \ldots, g_{n-1}=e_{n}$

From data to Galerkin projection

- Galerkin eq. $\quad \boldsymbol{M} \boldsymbol{g}_{j+1}=\mathbf{S} \boldsymbol{S} \boldsymbol{g}_{j}-\boldsymbol{M} \boldsymbol{g}_{j-1}, \quad j \geq 0$

$$
\boldsymbol{g}_{j}=\boldsymbol{e}_{j+1}, \quad 0 \leq j \leq n-1
$$

- Data $\mapsto n m \times n m$ matrices $M=\boldsymbol{U}^{T} \boldsymbol{U}$ and $S=\boldsymbol{U}^{T} \mathcal{P} \boldsymbol{U}$:

$$
\begin{aligned}
\boldsymbol{M}_{l j} & =\left\langle\mathbf{u}_{l}, \mathbf{u}_{j}\right\rangle=\left\langle\mathcal{T}_{l}(\mathcal{P}) \boldsymbol{b}, \mathcal{T}_{j}(\mathcal{P}) \boldsymbol{b}\right\rangle \\
& =\left\langle\boldsymbol{b}, \mathcal{T}_{l}(\mathcal{P}) \mathcal{T}_{j}(\mathcal{P}) \boldsymbol{b}\right\rangle=\frac{1}{2}\left\langle\boldsymbol{b},\left[\mathcal{T}_{l+j}(\mathcal{P})+\mathcal{T}_{|l-j|}(\mathcal{P})\right] \boldsymbol{b}\right\rangle \\
& =\frac{1}{2}\left(D_{l+j}+D_{|l-j|}\right)
\end{aligned}
$$

Similarly,

$$
S_{l j}=\left\langle\mathbf{u}_{l}, \mathcal{P} \mathbf{u}_{j}\right\rangle=\frac{1}{4}\left(D_{l+j+1}+D_{|j-l+1|}+D_{|j-l-1|}+D_{|l+j-1|}\right)
$$

ROM dynamical system

- Square root $\boldsymbol{M}=\boldsymbol{R}^{T} \boldsymbol{R}$ (Cholesky) $\rightsquigarrow \boldsymbol{R}=\left(\begin{array}{cccc}\boldsymbol{R}_{11} & \boldsymbol{R}_{12} & \ldots & \boldsymbol{R}_{1 n} \\ 0 & \boldsymbol{R}_{22} & \ldots & \boldsymbol{R}_{2 n} \\ \vdots & 0 & \ldots & \boldsymbol{R}_{n n}\end{array}\right)$
- Multiply Galerkin eq. $\boldsymbol{M} \boldsymbol{g}_{j+1}=2 \boldsymbol{S} \boldsymbol{g}_{j}-\boldsymbol{M} \boldsymbol{g}_{j-1}$ by \boldsymbol{R}^{-T} on left

$$
\begin{aligned}
\mathbf{u}_{j+1}^{\mathrm{ROM}} & =2 \mathcal{P}^{\mathrm{ROM}} \mathbf{u}_{j}^{\mathrm{ROM}}-\mathbf{u}_{j-1}^{\mathrm{ROM}}=0, \quad j \geq 0 \\
\mathbf{u}_{0}^{\mathrm{ROM}} & =\boldsymbol{b}^{\mathrm{ROM}} \\
\mathbf{u}_{1}^{\text {ROM }} & =\mathbf{u}_{-1}^{\text {ROM }}
\end{aligned}
$$

- ROM snapshots: $\mathbf{u}_{j}^{\text {Rom }}=\boldsymbol{R} \boldsymbol{g}_{j}$ and propagator $\mathcal{P}^{\text {ROM }}=\boldsymbol{R}^{-T} \boldsymbol{S} \boldsymbol{R}^{-1}$
- Gram-Schmidt: $\boldsymbol{U}(\boldsymbol{x})=\boldsymbol{V}(\boldsymbol{x}) \boldsymbol{R} \rightsquigarrow \mathbf{u}_{j}^{\mathrm{ROM}}=\boldsymbol{R} \boldsymbol{g}_{j}=\boldsymbol{V}^{T} \underbrace{\boldsymbol{U} \boldsymbol{g}_{j}}_{\approx \mathbf{u}_{j}}$ and

$$
\mathcal{P}^{\mathrm{ROM}}=\boldsymbol{R}^{-T} \boldsymbol{S} \boldsymbol{R}^{-1}=\boldsymbol{R}^{-T} \boldsymbol{U}^{T} \mathcal{P} \boldsymbol{U} \boldsymbol{R}^{-1}=\boldsymbol{V}^{T} \mathcal{P} \boldsymbol{V}
$$

Preserving causality is important

- 1-D ilustration (1 source/receiver): snapshots $\mathbf{u}(j \tau, \boldsymbol{x})$ plotted vs. $j=0,1, \ldots$ (horizontal axis) and \boldsymbol{x} (vertical axis)
\bullet ROM snapshots: $\left(\mathbf{u}_{0}^{\mathrm{ROM}}, \ldots, \mathbf{u}_{n-1}^{\mathrm{ROM}}\right)=\boldsymbol{R}=\left(\begin{array}{cccc}\boldsymbol{R}_{11} & \boldsymbol{R}_{12} & \ldots & \boldsymbol{R}_{1 n} \\ \mathbf{0} & \boldsymbol{R}_{22} & \ldots & \boldsymbol{R}_{2 n} \\ \vdots & & & \\ \mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{R}_{n n}\end{array}\right)$
- In higher dimensions we have $m \times m$ blocks (m sources/receivers). Rows of blocks model advancement of wavefront.
- Gram-Schmidt $\boldsymbol{U}(\boldsymbol{x})=\boldsymbol{V}(\boldsymbol{x}) \boldsymbol{R}$ maps nearly triangular $\boldsymbol{U}(\boldsymbol{x})$ to $\boldsymbol{R} \rightsquigarrow \boldsymbol{V}(\boldsymbol{x})$ weakly dependent of reflectivity.

Illustration for sound waves in 1-D

Illustration for sound waves in 2-D

Array with $m=50$ sensors \times
Snapshots plotted for a single source \circ

Qualitative imaging*

- Consider internal "fictitious source" at $\boldsymbol{y} \in \Omega$:

$$
\delta_{\boldsymbol{y}}(\boldsymbol{x}):=\boldsymbol{V} \boldsymbol{V}^{T} \delta(\boldsymbol{x}-\boldsymbol{y})=\sum_{j=0}^{n-1} v_{j}(\boldsymbol{x})\left\langle v_{j}, \delta(\cdot-\boldsymbol{y})\right\rangle=\boldsymbol{V}(\boldsymbol{x}) \boldsymbol{V}^{T}(\boldsymbol{y})
$$

- Generated wave after one time step τ :

$$
\mathcal{P} \delta_{\boldsymbol{y}}(\boldsymbol{x}) \approx \boldsymbol{V} \boldsymbol{V}^{T} \mathcal{P} \delta_{\boldsymbol{y}}(\boldsymbol{x})=\boldsymbol{V} \boldsymbol{V}^{T} \mathcal{P} \boldsymbol{V} \boldsymbol{V}^{T} \delta(\boldsymbol{x}-\boldsymbol{y})=\boldsymbol{V}(\boldsymbol{x}) \mathcal{P}^{\mathrm{ROM}} \boldsymbol{V}^{T}(\boldsymbol{y})
$$

\rightsquigarrow Backprojection imaging function:

$$
\mathcal{I}(\boldsymbol{y}):=\boldsymbol{V}_{o}(\boldsymbol{y})\left(\mathcal{P}^{\mathrm{ROM}}-\mathcal{P}_{o}^{\text {ROM }}\right) \boldsymbol{V}_{o}^{T}(\boldsymbol{y}), \quad \forall \boldsymbol{y} \in \Omega
$$

*Results for acoustic wave equation: Druskin, Mamonov, Zaslavsky - SIAM Imaging Sci., 2018

Backprojection vs Reverse Time Migration

True c

ROM backprojection

Kinematic model c_{o}

RTM image

Kinematic model c_{o}

ROM backprojection

Other inversion results

- Quantitative inversion for reflectivity (rough part of wave speed):
B., Druskin, Mamonov, Zaslavsky, Zimmerling, Reduced Order Model Approach to Inverse Scattering, SIAM Imaging Sciences 13 (2), 2020, p. 685-723.
- ROM used to approx. derivative of reflectivity $\mapsto\left\{\boldsymbol{D}_{j}\right\}_{0 \leq j \leq 2 n-1}$ i.e., linearized (Born) model assumed in conventional imaging:
B., Druskin, Mamonov, Zaslavsky, Untangling the nonlinearity in inverse scattering with data-driven reduced order models, Inverse Problems 34 (6), 2018, p. 065008
B., Druskin, Mamonov, Zaslavsky, Robust nonlinear processing of active array data in inverse scattering via truncated reduced order models, Journal Comp. Physics 381, 2019, p. 1-26.
- With Josselin Garnier we are working on other applications and on velocity estimation.

