Liliana Borcea

Mathematics, University of Michigan Ann Arbor

Joint work with:

- Vladimir Druskin Worcester Polytechnic Institute
- Alexander Mamonov University of Houston
- Mikhail Zaslavsky Schlumberger
- Jörn Zimmerling University of Michigan

Support: U.S. Office of Naval Research, N00014-17-1-2057.

- Describe two approaches for building data driven reduced order models (ROM) for linear PDE's.
 - Parabolic PDE and describe ROM construction in Laplace (frequency) domain.
 - Hyperbolic PDE and describe causal ROM construction in the time domain.
- Give some details on how we used the ROM for inversion.

• Find coefficient q(x) of $A = -\nabla \cdot [q(x)\nabla]$ in parabolic PDE

$$\begin{array}{l} \partial_t \mathbf{u}(t, x) + A \mathbf{u}(t, x) = 0\\ \mathbf{u}(0, x) = b(x) = (b^{(1)}(x), \dots, b^{(m)}(x))\\ \partial_n \mathbf{u}(t, x) = 0 \quad \text{on } \partial\Omega_{\mathsf{ac}}, \quad \mathbf{u}(t, x) = 0 \quad \text{on } \partial\Omega_{\mathsf{inac}} \end{array}$$

• "Sensor functions" $\left(b^{(s)}(x)
ight)_{s=1}^m$ are supported near $\partial\Omega_{\mathrm{ac}}$

Data: matrix
$$D(t) = \int_{\Omega} dx b^T(x) \mathbf{u}(t, x) = \langle b, \mathbf{u}(t, \cdot) \rangle$$

Work in frequency domain with 2n matrices:

$$\widehat{D}(\omega_j) = \int_0^\infty dt \, e^{-\omega_j t} D(t), \quad \partial_\omega \widehat{D}(\omega_j), \quad j = 1, \dots, n$$

Two inverse problems

• Find coefficient q(x) of symmetrized A in hyperbolic PDE*

$$\partial_t^2 \mathbf{u}(t, x) + A \mathbf{u}(t, x) = 0$$

$$\mathbf{u}(0, x) = \mathbf{b}(x), \quad \partial_t \mathbf{u}(0, x) = 0$$

$$\partial_n \mathbf{u}(t, x) = 0 \quad \text{on } \partial\Omega_{\text{ac}}, \quad \mathbf{u}(t, x) = 0 \quad \text{on } \partial\Omega_{\text{inac}}$$

Data: 2n matrices
$$D(t_j) = \int_{\Omega} dx \, b^T(x) \mathbf{u}(t_j, x) = \langle b, \mathbf{u}(t_j, \cdot) \rangle$$

at time instants $t_j = j\tau$, for $j = 0, \ldots, 2n-1$

*Acoustics:
$$q = c$$
 = wavespeed, u = pressure/c and $A = -c\Delta(c \cdot)$

4

Parabolic PDE: ROM in the frequency domain

• Laplace transform (droping hats) of field at frequency ω_i is

$$\mathbf{u}_j(x) := \mathbf{u}(\omega_j, x) = (\omega_j I + A)^{-1} \mathbf{b}(x)$$

and we know

$$\mathbf{D}(\omega_j) = \left\langle \boldsymbol{b}, \mathbf{u}_j \right\rangle = \left\langle \boldsymbol{b}, (\omega_j I + A)^{-1} \boldsymbol{b} \right\rangle$$
$$\frac{\partial_\omega \mathbf{D}(\omega_j)}{\partial_\omega \mathbf{D}(\omega_j)} = -\left\langle \boldsymbol{b}, (\omega_j I + A)^{-2} \boldsymbol{b} \right\rangle, \quad j = 1, \dots, n$$

• **ROM** is a pair $A^{\text{ROM}} \in \mathbb{R}^{nm \times nm}$ and $b^{\text{ROM}} \in \mathbb{R}^{nm \times m}$ that interpolates data:

$$egin{aligned} m{D}(\omega_j) &= m{b}^{\mathrm{ROM}^T} (\omega_j m{I} + m{A}^{\mathrm{ROM}})^{-1} m{b}^{\mathrm{ROM}} \ \partial_\omega m{D}(\omega_j) &= -m{b}^{\mathrm{ROM}^T} (\omega_j m{I} + m{A}^{\mathrm{ROM}})^{-2} m{b}^{\mathrm{ROM}}, \quad j = 1, \dots, n \end{aligned}$$

• Galerkin space: range U(x), $U(x) := (u_1(x), \dots, u_n(x))$ $u(\omega, x) \approx U(x)g(\omega)$ s.t. $U^T[(\omega I + A)Ug(\omega) - b] = 0$

where
$$U^T U = (\langle \mathbf{u}_j, \mathbf{u}_l \rangle)_{1 \le j, l \le n}$$

At $\omega = \omega_j$: $\mathbf{u}(\omega_j, \mathbf{x}) = \mathbf{u}_j(\mathbf{x}) = U(\mathbf{x})e_j \rightsquigarrow g(\omega_j) = e_j$
Here $e_j =$ matrix with j^{th} block equal to I_m and zero elsewhere.

• With $nm \times nm$ matrices: $M = U^T U$ and $S = U^T A U \rightsquigarrow$

$$(\omega M + S)g(\omega) = U^T b, \quad \forall \omega.$$
 (1)

We don't know approximation space but can get M and S and thus $g(\omega)$ from data.

Proof: From data to M and S

 \bullet Diagonal of M is easy:

$$M_{jj} = \left\langle \mathbf{u}_j, \mathbf{u}_j \right\rangle = \left\langle (\omega_j I + A)^{-1} b, (\omega_j I + A)^{-1} b \right\rangle$$
$$= \left\langle b, (\omega_j I + A)^{-2} b \right\rangle = -\partial_\omega \mathbf{D}(\omega_j)$$

• Eq. (1) for
$$\omega = \omega_j$$
 s.t. $g(\omega_j) = e_j$ multiplied on left by $e_l^T \rightsquigarrow$
 $\omega_j M_{lj} + S_{jl} = e_l^T (\omega_j M + S) e_j = \langle \mathbf{u}_l, \mathbf{b} \rangle = D(\omega_l)$

- Taking $l = j \rightsquigarrow S_{jj} = D(\omega_j) + \omega_j \partial_\omega D(\omega_j)$
- If $l \neq j$, we obtain similarly, using symmetries,

$$\omega_l M_{lj} + S_{jl} = D(\omega_j) \rightsquigarrow$$

$$M_{jl} = \frac{\boldsymbol{D}(\omega_l) - \boldsymbol{D}(\omega_j)}{\omega_j - \omega_l}, \quad S_{jl} = \frac{\omega_j \boldsymbol{D}(\omega_j) - \omega_l \boldsymbol{D}(\omega_l)}{\omega_j - \omega_l}, \quad j \neq l$$

• Let columns in V(x) be orthonormal basis of Galerkin space given by Gram-Schmidt

$$U(x) = V(x)R \quad \rightsquigarrow \quad M = U^T U = R^T R$$

Upper triangular ${\it R}$ given by Cholesky factorization of M

• The ROM:

$$\mathbf{A}^{\text{ROM}} = \mathbf{V}^{T} \mathbf{A} \mathbf{V} = \mathbf{R}^{-T} \mathbf{U}^{T} \mathbf{A} \mathbf{U} \mathbf{R}^{-1} = \mathbf{R}^{-T} \mathbf{S} \mathbf{R}^{-1}$$
$$\mathbf{b}^{\text{ROM}} = \mathbf{V}^{T} \mathbf{b} = \mathbf{R}^{-T} \mathbf{U}^{T} \mathbf{b} = \mathbf{R}^{-T} \begin{pmatrix} \mathbf{D}(\omega_{1}) \\ \vdots \\ \mathbf{D}(\omega_{n}) \end{pmatrix}$$

Galerkin eq. $(\omega M + S)g(\omega) = U^T b$ with U = VR & $M = R^T R$ $\rightsquigarrow R^T(\omega I + \underbrace{R^{-T}SR^{-1}}_{A^{\text{ROM}}})Rg(\omega) = R^T \underbrace{V^T b}_{b^{\text{ROM}}}$

• ROM Galerkin equation:

$$(\omega I + A^{\text{rom}})\mathbf{u}^{\text{rom}}(\omega) = b^{\text{rom}}, \qquad \mathbf{u}^{\text{rom}}(\omega) = Rg(\omega)$$

Data driven ROM satisfies discrete equivalent of the PDE

• Using
$$\boldsymbol{g}(\omega_j) = \boldsymbol{e}_j,$$
 for $j = 1, \dots, n$,

$$\mathbf{u}_j^{\scriptscriptstyle{\mathsf{ROM}}} := \mathbf{u}^{\scriptscriptstyle{\mathsf{ROM}}}(\omega_j) = Re_j = V^T U e_j = V^T \mathbf{u}_j$$

and therefore

$$\mathbf{u}_j(x) = VV^T\mathbf{u}_j(x) = V(x)\mathbf{u}_j^{\text{ROM}}$$

ROM data interpolation

• For $j = 1, \ldots, n$ we have

$$D(\omega_j) = \left\langle \boldsymbol{b}, \mathbf{u}_j \right\rangle = \underbrace{\langle \boldsymbol{b}, \boldsymbol{V} \rangle}_{\boldsymbol{b}^{\text{ROM}}} \underbrace{(\omega_j \boldsymbol{I} + \boldsymbol{A}^{\text{ROM}})^{-1} \boldsymbol{b}^{\text{ROM}}}_{\mathbf{u}_j^{\text{ROM}}}$$

• For derivative:

$$egin{aligned} \partial_{\omega} D(\omega_j) &= -\left\langle b, (\omega_j I + A)^{-2} b
ight
angle &= -\left\langle \mathbf{u}_j, \mathbf{u}_j
ight
angle \ &= -\left\langle V \mathbf{u}_j^{ ext{rom}}, V \mathbf{u}_j^{ ext{rom}}
ight
angle \ &= -\mathbf{u}_j^{ ext{rom}^T} \left\langle V, V
ight
angle \mathbf{u}_j^{ ext{rom}} \ &= -\mathbf{u}_j^{ ext{rom}^T} \mathbf{u}_j^{ ext{rom}} \end{aligned}$$

• For any orthogonal matrix $L \in \mathbb{R}^{nm imes nm}$ the data is also interpolated by

$$\widetilde{m{A}}^{\scriptscriptstyle{ extsf{rom}}} := m{L}^T m{A}^{\scriptscriptstyle{ extsf{rom}}} m{L}$$
 and $\widetilde{m{b}}^{\scriptscriptstyle{ extsf{rom}}} := m{L}^T m{b}^{\scriptscriptstyle{ extsf{rom}}}$

 \bullet We use L that makes $\widetilde{A}^{\rm \tiny ROM}$ block tridiagonal and $\widetilde{b}^{\rm \tiny ROM}$ zero except in the first block

ROM eq. $(\omega I + \widetilde{A}^{\text{ROM}})\widetilde{\mathbf{u}}^{\text{ROM}}(\omega) = \widetilde{b}^{\text{ROM}}$ is finite difference scheme for

$$(\omega I + A)u(\omega, x) = b(x)$$

with 3-point stencil in depth

• Transformation to block tridiagonal is via the Lanczos iteration

- Sensitivities are large in grid cells calculated for q = 0
- This grid tells us if we have good frequency samples

• Instead of Least Squares data fit, we find coefficient q by minimizing misfit between data driven $\widetilde{A}^{\rm ROM}$ and the ROM calculated for the trial q.

Inversion results 2-D (initial guess $q \equiv 1$)

• Other results based on estimates $u_j(x) = V(x)u_j^{\text{ROM}} \approx V_0(x)u_j^{\text{ROM}}$ were discussed in Shari Moskow's talk.

Hyperbolic PDE: Causal ROM construction

• Find coefficient q(x) of self-adjoint, positive definite A in

$$\partial_t^2 \mathbf{u}(t, x) + A \mathbf{u}(t, x) = 0$$

 $\mathbf{u}(0, x) = \mathbf{b}(x), \quad \partial_t \mathbf{u}(0, x) = 0$

with homogeneous boundary conditions.

• Data are

$$D(t_j) = \langle \boldsymbol{b}, u(j\tau, \cdot) \rangle = \langle \boldsymbol{b}, \cos(j\tau\sqrt{A})\boldsymbol{b} \rangle, \quad j = 0, \dots, 2n-1.$$

• **ROM** is not for A but for wave propagator $\mathcal{P} = \cos(\tau \sqrt{A})$

Note: $\mathbf{u}_j(\mathbf{x}) := \mathbf{u}(j\tau, \mathbf{x}) = \cos(j\tau\sqrt{A})\mathbf{b}(\mathbf{x}) = \cos(j\operatorname{arccos} \mathcal{P})\mathbf{b}(\mathbf{x})$

 $\mathcal{T}_j(\mathcal{P}) = \cos(j \operatorname{arccos} \mathcal{P}) = \mathsf{T}_{chebyshev}$ polynomial of first kind

Dynamical system for propagation and Galerkin projection

• Recurrence relation of Chebyshev polynomials ~>>

$$egin{aligned} & \mathbf{u}_{j+1}(x) = 2\mathcal{P}\mathbf{u}_{j}(x) - \mathbf{u}_{j-1}(x), \quad j \geq 0, \quad x \in \Omega \ & \mathbf{u}_{0}(x) = b(x) \ & \mathbf{u}_{1}(x) = \mathbf{u}_{-1}(x) \end{aligned}$$

• Galerkin space: range $U(x), U(x) := (\mathbf{u}_0(x), \dots, \mathbf{u}_{n-1}(x))$

 $\mathbf{u}_j(m{x}) pprox m{U}(m{x})m{g}_j$, with $m{g}_j \in \mathbb{R}^{nm imes m}$ satisfying

$$U^{T}(Ug_{j+1} - 2\mathcal{P}Ug_{j} + Ug_{j-1}) = 0, \quad U^{T}U = (\langle \mathbf{u}_{j}, \mathbf{u}_{l} \rangle)_{0 \le j, l \le n-1}$$

First n coefficients: $\pmb{g}_0=\pmb{e}_1,\ \ldots,\ \pmb{g}_{n-1}=\pmb{e}_n$

From data to Galerkin projection

- Galerkin eq. $Mg_{j+1} = 2Sg_j Mg_{j-1}, \quad j \ge 0$ $g_j = e_{j+1}, \quad 0 \le j \le n-1$
- Data $\mapsto nm \times nm$ matrices $M = U^T U$ and $S = U^T \mathcal{P} U$:

$$\begin{split} \boldsymbol{M}_{lj} &= \left\langle \mathbf{u}_{l}, \mathbf{u}_{j} \right\rangle = \left\langle \mathcal{T}_{l}(\mathcal{P})\boldsymbol{b}, \mathcal{T}_{j}(\mathcal{P})\boldsymbol{b} \right\rangle \\ &= \left\langle \boldsymbol{b}, \mathcal{T}_{l}(\mathcal{P})\mathcal{T}_{j}(\mathcal{P})\boldsymbol{b} \right\rangle = \frac{1}{2} \left\langle \boldsymbol{b}, \left[\mathcal{T}_{l+j}(\mathcal{P}) + \mathcal{T}_{|l-j|}(\mathcal{P}) \right] \boldsymbol{b} \right\rangle \\ &= \frac{1}{2} \left(\boldsymbol{D}_{l+j} + \boldsymbol{D}_{|l-j|} \right) \end{split}$$

Similarly,

$$S_{lj} = \langle \mathbf{u}_l, \mathcal{P}\mathbf{u}_j \rangle = \frac{1}{4} (D_{l+j+1} + D_{|j-l+1|} + D_{|j-l-1|} + D_{|l+j-1|})$$

ROM dynamical system

• Square root
$$M = R^T R$$
 (Cholesky) $\rightsquigarrow R = \begin{pmatrix} R_{11} & R_{12} & \dots & R_{1n} \\ 0 & R_{22} & \dots & R_{2n} \\ \vdots & & & \\ 0 & 0 & \dots & R_{nn} \end{pmatrix}$

• Multiply Galerkin eq. $Mg_{j+1} = 2Sg_j - Mg_{j-1}$ by R^{-T} on left

$$\begin{split} \mathbf{u}_{j+1}^{\text{ROM}} &= 2\mathcal{P}^{\text{ROM}} \mathbf{u}_{j}^{\text{ROM}} - \mathbf{u}_{j-1}^{\text{ROM}} = \mathbf{0}, \quad j \ge \mathbf{0} \\ \mathbf{u}_{0}^{\text{ROM}} &= \boldsymbol{b}^{\text{ROM}} \\ \mathbf{u}_{1}^{\text{ROM}} &= \mathbf{u}_{-1}^{\text{ROM}} \end{split}$$

- ROM snapshots: $\mathbf{u}_j^{\text{ROM}} = Rg_j$ and propagator $\mathcal{P}^{\text{ROM}} = R^{-T}SR^{-1}$
- Gram-Schmidt: $U(x) = V(x)R \rightsquigarrow \mathbf{u}_j^{\text{ROM}} = Rg_j = V^T \underbrace{Ug_j}_{\approx \mathbf{u}_j}$ and

$$\mathcal{P}^{\text{rom}} = \mathbf{R}^{-T} \mathbf{S} \mathbf{R}^{-1} = \mathbf{R}^{-T} \mathbf{U}^T \mathcal{P} \mathbf{U} \mathbf{R}^{-1} = \mathbf{V}^T \mathcal{P} \mathbf{V}$$

Preserving causality is important

• 1-D ilustration (1 source/receiver): snapshots $\mathbf{u}(j\tau, x)$ plotted vs. j = 0, 1, ... (horizontal axis) and x (vertical axis)

• ROM snapshots:
$$(\mathbf{u}_0^{\text{ROM}}, \dots, \mathbf{u}_{n-1}^{\text{ROM}}) = R = \begin{pmatrix} R_{11} & R_{12} & \dots & R_{1n} \\ 0 & R_{22} & \dots & R_{2n} \\ \vdots & & & \\ 0 & 0 & \dots & R_{nn} \end{pmatrix}$$

- In higher dimensions we have $m \times m$ blocks (*m* sources/receivers). Rows of blocks model advancement of wavefront.

• Gram-Schmidt U(x) = V(x)R maps nearly triangular U(x) to $R \rightsquigarrow V(x)$ weakly dependent of reflectivity.

Illustration for sound waves in 1-D

Illustration for sound waves in 2-D

Array with m = 50 sensors \times Snapshots plotted for a single source o • Consider internal "fictitious source" at $y\in \Omega$:

$$\delta_{\boldsymbol{y}}(\boldsymbol{x}) := \boldsymbol{V} \boldsymbol{V}^T \delta(\boldsymbol{x} - \boldsymbol{y}) = \sum_{j=0}^{n-1} v_j(\boldsymbol{x}) \left\langle v_j, \delta(\cdot - \boldsymbol{y}) \right\rangle = \boldsymbol{V}(\boldsymbol{x}) \boldsymbol{V}^T(\boldsymbol{y})$$

 \bullet Generated wave after one time step τ :

$$\mathcal{P}\delta_{m{y}}(x)pprox VV^T\mathcal{P}\delta_{m{y}}(x)=VV^T\mathcal{P}VV^T\delta(x-y)=V(x)\mathcal{P}^{\scriptscriptstyle ext{Pom}}V^T(y)$$

→ Backprojection imaging function:

$$\mathcal{I}(\boldsymbol{y}) := V_o(\boldsymbol{y}) ig(\mathcal{P}^{\scriptscriptstyle{ extsf{rom}}} - \mathcal{P}_o^{\scriptscriptstyle{ extsf{rom}}} ig) V_o^T(\boldsymbol{y}), \qquad orall \boldsymbol{y} \in \Omega.$$

*Results for acoustic wave equation: Druskin, Mamonov, Zaslavsky - SIAM Imaging Sci., 2018

22

Backprojection vs Reverse Time Migration

23

Backprojection vs Reverse Time Migration

• Quantitative inversion for reflectivity (rough part of wave speed):

B., Druskin, Mamonov, Zaslavsky, Zimmerling, *Reduced Order Model Approach to Inverse Scattering*, SIAM Imaging Sciences 13 (2), 2020, p. 685-723.

• ROM used to approx. derivative of reflectivity $\mapsto \{D_j\}_{0 \le j \le 2n-1}$ i.e., linearized (Born) model assumed in conventional imaging:

B., Druskin, Mamonov, Zaslavsky, Untangling the nonlinearity in inverse scattering with data-driven reduced order models, Inverse Problems 34 (6), 2018, p. 065008

B., Druskin, Mamonov, Zaslavsky, *Robust nonlinear processing* of active array data in inverse scattering via truncated reduced order models, Journal Comp. Physics 381, 2019, p. 1-26.

• With Josselin Garnier we are working on other applications and on velocity estimation.