### Lorentzian Calderón problem under curvature bounds

Lauri Oksanen University College London

Based on a joint work with Spyros Alexakis (Toronto) and Ali Feizmohammadi (UCL)

### Lorentzian Calderón problem

Let (M, g) be a smooth Lorentzian manifold with timelike boundary. Let  $V \in C^{\infty}(M)$  and consider the Cauchy data set

 $\mathscr{C}(V) = \{(u, \partial_{\nu} u)|_{\partial M} : u \in C^{\infty}(M) \text{ and } \Box u + Vu = 0 \text{ on } M\}.$ 

Calderón problem. Find V given  $\mathscr{C}(V)$ .

The classical Calderón problem has the same formulation except that

- ▶ (M,g) is a smooth Riemannian manifold with boundary
- ▶ □ is replaced by the Laplacian on (M,g)

The Riemannian/Lorentzian Calderón problem is

- solved when g is the Euclidean/Minkowski metric [SYLVESTER-UHLMANN'87]/[STEFANOV'89]
- open when g is a perturbation of the Euclidean/Minkowski metric

## Simple cylinders of negative spatial curvature

A special case of our results reads:

Theorem [ALEXAKIS-FEIZMOHAMMADI-L.O.]. Let

$$M = \mathbb{R} \times M_0$$
,  $g(t, x) = -dt^2 + g_0(x)$ ,

where  $(M_0, g_0)$  is a simple<sup>1</sup> Riemannian manifold with negative curvature. Then the Lorentzian Calderón problem has a unique solution on  $(M, \tilde{g})$ , where  $\tilde{g}$  is a small perturbation of g in  $C_0^{\infty}(M^{\text{int}})$ .

The unperturbed case has been solved previously, a particular case of [FEIZMOHAMMADI-ILMAVIRTA-KIAN-L.O.'20].

In general, contrary to (M, g), the perturbed Lorentzian manifold  $(M, \tilde{g})$  has no symmetries and  $\tilde{g}(t, x)$  is not real analytic in t.

<sup>&</sup>lt;sup>1</sup>That is, a compact, simply connected manifold with strictly convex boundary.

### Previous results in the ultrastatic case

Suppose that (M, g) is ultrastatic, that is,

$$M = \mathbb{R} \times M_0$$
,  $g(t, x) = -dt^2 + g_0(x)$ ,

where  $(M_0, g_0)$  is a compact Riemannian manifold with boundary. Then the Lorentzian Calderón problem has been solved if

- V does not depend on t, using the Boundary Control method [BELISHEV'87], [BELISHEV-KURYLEV'92], ...
- (*M*<sub>0</sub>, *g*<sub>0</sub>) has injective geodesic ray transform, using geometric optics [STEFANOV'89], ..., [FEIZMOHAMMADI-ILMAVIRTA-KIAN-L.O.'20]

The "ultrastatic" Riemannian case  $g = dt^2 + g_0(x)$ , with M as above, has been solved if  $(M_0, g_0)$  has injective geodesic ray transform, by using complex geometric optics [SYLVESTER-UHLMANN'87], ..., [Dos SANTOS FERREIRA-KURYLEV-LASSAS-SALO'16].

### Conformal rescaling

If the Lorentzian Calderón problem is solved on (M, g) of dimension 1 + n, then it is also solved on (M, cg) for any strictly positive  $c \in C^{\infty}(M)$ .

Idea of the proof. We write  $\Box_g$  for the wave operator on (M, g), that is,

$$\Box_g u = -\sum_{j,k=0}^n |\det g|^{-\frac{1}{2}} \frac{\partial}{\partial x^j} \left( |\det g|^{\frac{1}{2}} g^{jk} \frac{\partial u}{\partial x^k} \right).$$

If a function w satisfies the equation  $\Box_{cg} w = 0$ , then the function

$$u = c^{(n-1)/4} w$$

satisfies the equation  $\Box_g u + Vu = 0$ , with  $V = c^{-(n-1)/4} \Box_g c^{(n-1)/4}$ .

This rescaling allows us also to reduce the problem to find a conformal factor to the problem to find a potential, if n > 1.

## Previous Lorentzian results outside the ultrastatic case

The Boundary Control method generalizes to the case that  $M = \mathbb{R} \times M_0$ and both g and V are real analytic in t [ESKIN'07].

- ▶ The method uses the optimal unique continuation result [TATARU'95]
- ▶ Tataru's result does not hold if V is only smooth in t [ALINHAC'83]

Geometric optics allows for a reduction to inversion of the light ray transform [STEFANOV-YANG'18]. This transform has been inverted only if

- (M, g) is real analytic and satisfies a certain convexity condition [STEFANOV'17]
- ► (M, g) is stationary<sup>1</sup> and satisfies a certain convexity condition [FEIZMOHAMMADI-ILMAVIRTA-L.O.'20]

Contrary to our result, in all the previous results g needs to be *real analytic* with respect to a suitably chosen time variable.

<sup>&</sup>lt;sup>1</sup>There is a smooth complete timelike Killing vector field

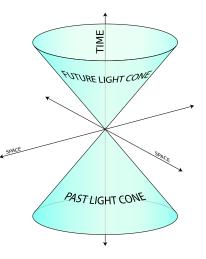
### Causality vocabulary

Let (M,g) be a Lorentzian manifold and write  $\langle \cdot, \cdot \rangle$  for the inner product.

- A tangent vector  $v \in T_x M \setminus 0$  is
  - spacelike if  $\langle v, v \rangle > 0$
  - $\blacktriangleright \text{ lightlike if } \langle v, v \rangle = 0$
  - timelike if  $\langle v, v \rangle < 0$
  - causal if it is lightlike or timelike

A hypersurface is timelike if its normal vectors are spacelike.

A path  $\gamma$  is causal if its tangent vectors  $\dot{\gamma}(s)$  are causal.



### Geometric assumptions

We prove that the Calderón problem has a unique solution on a smooth Lorentzian manifold (M, g) that shares some features with simple cylinders of negative spatial curvature.

Roughly speaking, the features are

- 1. space and time can be split apart
- 2. (M,g) satisfies a curvature bound
- 3. (M,g) is "simple"

More precisely, for point 1, we assume that

(H1) There is a smooth, proper, surjective  $\tau : M \to \mathbb{R}$  with timelike  $\nabla \tau$ .

This guarantees that M is diffeomorphic to  $\mathbb{R} \times M_0$  with  $M_0$  a compact manifold with boundary [HINTZ-UHLMANN'19], and that the direct problem for the wave equation can be solved on (M, g) [Hörmander, Vol 3].

## Spacetime curvature bound

Definition [ANDERSSON-HOWARD'98]. For  $K \in \mathbb{R}$ , we write  $R \leq K$  if  $\langle R(X, Y)Y, X \rangle \leq K \left( \langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2 \right)$ 

for all  $X, Y \in T_pM$  and  $p \in M$ . Here R is the curvature tensor on (M, g).

In the Riemannian case,  $R \le K$  is equivalent with the sectional curvature bound  $Sec(X, Y) \le K$  for all linearly independent  $X, Y \in T_pM$ ,  $p \in M$ . In the Lorentzian case, if  $Sec(X, Y) \le K$  whenever it is well defined, then

In the Lorentzian case, if  $Sec(X, Y) \leq K$  whenever it is well-defined, then the manifold is of constant curvature [KULKARNI'79].

Writing diam(M) for the supremum of the lengths of inextendible spacelike geodesics on M, we assume that

(H2)  $R \leq K$  for some  $K \in \mathbb{R}$ , and if K > 0 then diam $(M) < \frac{\pi}{2\sqrt{K}}$ .

# Spacetime simplicity

For a point  $p \in M$ , we define E(p) to be the set of points in M that are not causally related to p,

 $E(p) = \{q \in M : q \neq p \text{ and there is no} \$ causal path from p to  $q\}.$ 

Figure. *p* in red,  $\partial M$  in gray,  $\partial E(p) \cap M^{\text{int}}$  in blue



#### We assume

- (H3) For any lightlike geodesic  $\gamma$  and any points p and q on  $\gamma$ , the only causal path from p to q is along  $\gamma$ . For all  $p \in M$ , the exponential map  $\exp_p$  is a diffeomorphism from the spacelike vectors<sup>1</sup> onto E(p).
- (H4) All lightlike geodesics are non-trapped.
- (H5) All lightlike geodesics have finite order of contact with  $\partial M$ .

<sup>&</sup>lt;sup>1</sup>in its maximal domain of definition

## Solution to the Lorentzian Calderón problem

Theorem [ALEXAKIS-FEIZMOHAMMADI-L.O.]. Let a smooth Lorentzian manifold (M, g) with timelike boundary satisfy (H1)–(H5), and let  $V_1, V_2 \in C^{\infty}(M)$ . If  $\mathscr{C}(V_1) = \mathscr{C}(V_2)$  then  $V_1 = V_2$ .

In fact, we prove a slightly stronger result that allows for data on a finite time interval and vanishing initial conditions.

The proof is based on

- New optimal unique continuation result
- ► Construction of focusing solutions:  $u|_{t=t_0} = 0$  and  $\partial_t u|_{t=t_0} = c\delta_{x_0}$  for a point  $(t_0, x_0) \in \mathbb{R} \times M_0 = M$  and a constant  $c \in \mathbb{R}$

## Unique continuation

Theorem [ALEXAKIS-FEIZMOHAMMADI-L.O.]. Let a smooth Lorentzian manifold (M, g) with timelike  $\partial M$  satisfy (H1)–(H5). Let  $V \in C^{\infty}(M)$  and let  $u \in H^{s}(M)$  with  $s \in \mathbb{R}$ . Suppose that  $(\Box + V)u = 0$  in E(p) and  $u = \partial_{\nu}u = 0$  on  $E(p) \cap \partial M$  for some  $p \in M^{\text{int}}$ . Then u = 0 in E(p).

The Minkowski case, with  $u \in C^2(M)$ , was known [ALEXAKIS-SHAO'15].

The proof is based on

- Carleman estimate
- Microlocal analysis to handle s < 2</p>

Figure. *p* in red,  $\partial M$  in gray,  $\partial E(p) \cap M^{\text{int}}$  in blue



### Unique continuation

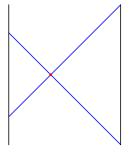
Theorem [ALEXAKIS-FEIZMOHAMMADI-L.O.]. Let a smooth Lorentzian manifold (M, g) with timelike  $\partial M$  satisfy (H1)–(H5). Let  $V \in C^{\infty}(M)$  and let  $u \in H^{s}(M)$  with  $s \in \mathbb{R}$ . Suppose that  $(\Box + V)u = 0$  in E(p) and  $u = \partial_{\nu}u = 0$  on  $E(p) \cap \partial M$  for some  $p \in M^{\text{int}}$ . Then u = 0 in E(p).

The Minkowski case, with  $u \in C^2(M)$ , was known [ALEXAKIS-SHAO'15].

The proof is based on

- Carleman estimate
- Microlocal analysis to handle s < 2</p>

Figure. *p* in red,  $\partial M$  in black,  $\partial E(p) \cap M^{\text{int}}$  in blue



### Carleman estimate

We prove an estimate of the form

$$\int_{\Omega} |u|^2 e^{2\ell} \lesssim \int_{\Omega} |(\Box + V)u|^2 e^{2\ell} + \left| \int_{\Omega} \operatorname{div} B \right|,$$

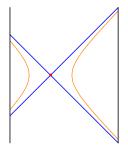
where *B* is a certain vector field,  $\Omega$  is the exterior of a hyperboloid in normal coordinates at *p*, and  $\ell$  is a carefully chosen weight function.

The level sets of 
$$\ell$$
 are given by the hyperboloids  $\{(t, x) \in M : r(t, x) = \rho\}, \rho > 0$ , where

$$r(t,x) = (-t^2 + (x^1)^2 + \dots + (x^n)^2)^{1/2}$$

Also  $\Omega = \{r > \rho_0\}$  for some  $\rho_0 > 0$ .

Figure.  $\partial M$  in black,  $\{r = 0\}$  in blue,  $\{r = \rho\}$  in orange



## Hyperboloids in the Minkowski space

The function

$$r(t,x) = (-t^2 + (x^1)^2 + \dots + (x^n)^2)^{1/2}$$

is a distance function in the sense that  $\langle \nabla r, \nabla r \rangle = 1$ .

Recall that a function f is pseudoconvex if Hess f(X, X) > 0 for all lightlike vectors X orthogonal to  $\nabla f$ .

The function *r* is **not** pseudoconvex:

Hess 
$$r(X,X) = \frac{1}{r} \left( \langle X,X \rangle - \langle \nabla r,X \rangle^2 \right),$$

and Hess r(X, X) = 0 for all lightlike vectors X orthogonal to  $\nabla r$ .

### The weight function

Fix  $\rho > 0$  and set  $\ell = F \circ r$  where

$$F(r) = 4\log(r-\rho) + \tau(r-\rho)^2.$$

Let  $\epsilon > 0$  and set  $\tau = C\epsilon^{-2}$  for large C > 0. Write  $\Omega(\rho) = \{r > \rho\}$ .

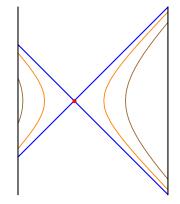
We prove a Carleman estimate on  $\Omega(\rho + \epsilon)$ .

Note that

$$F(\rho + \epsilon) = 4 \log \epsilon + C \to -\infty$$

as  $\epsilon \rightarrow 0$ .

Figure.  $\{r = \rho\}$  in orange,  $\{r = \rho + \epsilon\}$  in brown



### Unique continuation using the Carleman estimate

With  $\ell = F \circ r$ , we prove

$$\int_{\Omega(\rho+\epsilon)} |u|^2 e^{2\ell} \lesssim \int_{\Omega(\rho+\epsilon)} |(\Box+V)u|^2 e^{2\ell} + \left| \int_{\Omega(\rho+\epsilon)} \operatorname{div} B \right|.$$

Recall that  $F(\rho + \epsilon) = 4 \log \epsilon + C$ . Hence  $e^{2\ell} = O(\epsilon^8)$  on  $\{r = \rho + \epsilon\}$ , and

$$\int_{\Omega(
ho+\epsilon)} \operatorname{div} B o 0, \quad ext{as } \epsilon o 0,$$

assuming that  $u = \partial_{\nu} u = 0$  on  $E(p) \cup \partial M$ . If also  $(\Box + V)u = 0$ , then

$$\int_{\Omega(\rho)} |u|^2 (r-\rho)^8 = 0.$$

Thus u = 0 on  $\Omega(\rho)$ . Letting  $\rho \to 0$  we conclude that u = 0 on E(p).

## Existence of focusing solutions

We assume without loss of generality that  $M = \mathbb{R} \times M_0$ . Let  $p = (t_0, x_0) \in M^{\text{int}}$ .

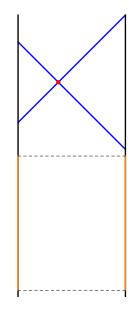
There is f such that the solution u of

$$\begin{cases} (\Box + V)u = 0 & \text{on } M \\ u|_{\partial M} = f \\ u|_{t \ll 0} = 0 \end{cases}$$

satisfies  $u|_{t=t_0} = 0$  and  $\partial_t u|_{t=t_0} = \delta_{x_0}$ , and  $supp(f) \cap E(p) = \emptyset$ .

This follows from our unique continuation result and [BARDOS-LEBEAU-RAUCH'92].

Figure.  $\partial E(p) \cap M^{\text{int}}$  in blue, supp(f) in orange



### Conclusion of the proof

Solutions with  $u|_{t=t_0} = 0$ ,  $\partial_t u|_{t=t_0} = c \delta_{x_0}$ for some  $c \in \mathbb{R}$  can be found by requiring that  $u = \partial_{\nu} u = 0$  on  $E(p) \cap \partial M$  and that  $u \in H^s(M)$  for suitable  $s \in \mathbb{R}$ .

Let v be another solution. Then

$$\int_{-\infty}^{t_0}\int_{M_0}v(\Box+V)u-u(\Box+V)v\,dxdt=0$$

and an integration by parts gives  $cv(t_0, x_0)$ . We force c to depend smoothly on  $(t_0, x_0)$ .

If 
$$c^{-1}(\Box + V)c = \Box + \tilde{V}$$
 and  $c = 1$  on  $\partial M$ ,  
then  $c = 1$  on  $M$  and  $\tilde{V} = V$ .

Figure.  $\partial E(p) \cap M^{\text{int}}$  in blue,  $\{t = t_0\}$  in orange

