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Lorentzian Calderón problem

Let (M, g) be a smooth Lorentzian manifold with timelike boundary.
Let V ∈ C∞(M) and consider the Cauchy data set

C (V ) = {(u, ∂νu)|∂M : u ∈ C∞(M) and �u + Vu = 0 on M}.

Calderón problem. Find V given C (V ).

The classical Calderón problem has the same formulation except that

I (M, g) is a smooth Riemannian manifold with boundary

I � is replaced by the Laplacian on (M, g)

The Riemannian/Lorentzian Calderón problem is

I solved when g is the Euclidean/Minkowski metric
[Sylvester-Uhlmann’87]/[Stefanov’89]

I open when g is a perturbation of the Euclidean/Minkowski metric



Simple cylinders of negative spatial curvature

A special case of our results reads:

Theorem [Alexakis-Feizmohammadi-L.O.]. Let

M = R×M0, g(t, x) = −dt2 + g0(x),

where (M0, g0) is a simple1 Riemannian manifold with negative curvature.
Then the Lorentzian Calderón problem has a unique solution on (M, g̃),
where g̃ is a small perturbation of g in C∞0 (M int).

The unperturbed case has been solved previously, a particular case of
[Feizmohammadi-Ilmavirta-Kian-L.O.’20].

In general, contrary to (M, g), the perturbed Lorentzian manifold (M, g̃)
has no symmetries and g̃(t, x) is not real analytic in t.

1That is, a compact, simply connected manifold with strictly convex boundary.



Previous results in the ultrastatic case

Suppose that (M, g) is ultrastatic, that is,

M = R×M0, g(t, x) = −dt2 + g0(x),

where (M0, g0) is a compact Riemannian manifold with boundary. Then
the Lorentzian Calderón problem has been solved if

I V does not depend on t, using the Boundary Control method
[Belishev’87], [Belishev-Kurylev’92], . . .

I (M0, g0) has injective geodesic ray transform, using geometric optics
[Stefanov’89], . . . , [Feizmohammadi-Ilmavirta-Kian-L.O.’20]

The “ultrastatic” Riemannian case g = dt2 + g0(x), with M as above, has
been solved if (M0, g0) has injective geodesic ray transform, by using
complex geometric optics [Sylvester-Uhlmann’87], . . . , [Dos Santos

Ferreira-Kurylev-Lassas-Salo’16].



Conformal rescaling

If the Lorentzian Calderón problem is solved on (M, g) of dimension 1 + n,
then it is also solved on (M, cg) for any strictly positive c ∈ C∞(M).

Idea of the proof. We write �g for the wave operator on (M, g), that is,

�gu = −
n∑

j ,k=0

|det g |−
1
2
∂

∂x j

(
|det g |

1
2 g jk ∂u

∂xk

)
.

If a function w satisfies the equation �cgw = 0, then the function

u = c(n−1)/4w

satisfies the equation �gu + Vu = 0, with V = c−(n−1)/4�gc
(n−1)/4.

This rescaling allows us also to reduce the problem to find a conformal
factor to the problem to find a potential, if n > 1.



Previous Lorentzian results outside the ultrastatic case

The Boundary Control method generalizes to the case that M = R×M0

and both g and V are real analytic in t [Eskin’07].

I The method uses the optimal unique continuation result [Tataru’95]

I Tataru’s result does not hold if V is only smooth in t [Alinhac’83]

Geometric optics allows for a reduction to inversion of the light ray
transform [Stefanov-Yang’18]. This transform has been inverted only if

I (M, g) is real analytic and satisfies a certain convexity condition
[Stefanov’17]

I (M, g) is stationary1 and satisfies a certain convexity condition
[Feizmohammadi-Ilmavirta-L.O.’20]

Contrary to our result, in all the previous results g needs to be real
analytic with respect to a suitably chosen time variable.

1There is a smooth complete timelike Killing vector field



Causality vocabulary

Let (M, g) be a Lorentzian manifold and write 〈·, ·〉 for the inner product.

A tangent vector v ∈ TxM \ 0 is

I spacelike if 〈v , v〉 > 0

I lightlike if 〈v , v〉 = 0

I timelike if 〈v , v〉 < 0

I causal if it is lightlike or timelike

A hypersurface is timelike if its
normal vectors are spacelike.

A path γ is causal if its tangent
vectors γ̇(s) are causal.
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Geometric assumptions

We prove that the Calderón problem has a unique solution on a smooth
Lorentzian manifold (M, g) that shares some features with simple
cylinders of negative spatial curvature.

Roughly speaking, the features are

1. space and time can be split apart

2. (M, g) satisfies a curvature bound

3. (M, g) is “simple”

More precisely, for point 1, we assume that

(H1) There is a smooth, proper, surjective τ : M → R with timelike ∇τ .

This guarantees that M is diffeomorphic to R×M0 with M0 a compact
manifold with boundary [Hintz-Uhlmann’19], and that the direct problem
for the wave equation can be solved on (M, g) [Hörmander, Vol 3].



Spacetime curvature bound

Definition [Andersson-Howard’98]. For K ∈ R, we write R ≤ K if

〈R(X ,Y )Y ,X 〉 ≤ K
(
〈X ,X 〉 〈Y ,Y 〉 − 〈X ,Y 〉2

)
for all X ,Y ∈ TpM and p ∈ M. Here R is the curvature tensor on (M, g).

In the Riemannian case, R ≤ K is equivalent with the sectional curvature
bound Sec(X ,Y ) ≤ K for all linearly independent X ,Y ∈ TpM, p ∈ M.

In the Lorentzian case, if Sec(X ,Y ) ≤ K whenever it is well-defined, then
the manifold is of constant curvature [Kulkarni’79].

Writing diam(M) for the supremum of the lengths of inextendible
spacelike geodesics on M, we assume that

(H2) R ≤ K for some K ∈ R, and if K > 0 then diam(M) < π
2
√
K

.



Spacetime simplicity

For a point p ∈ M, we define E (p) to be the set of
points in M that are not causally related to p,

E (p) = {q ∈ M : q 6= p and there is no

causal path from p to q}.

Figure. p in red, ∂M in gray, ∂E(p) ∩M int in blue

We assume

(H3) For any lightlike geodesic γ and any points p and q on γ, the only
causal path from p to q is along γ. For all p ∈ M, the exponential
map expp is a diffeomorphism from the spacelike vectors1 onto E (p).

(H4) All lightlike geodesics are non-trapped.

(H5) All lightlike geodesics have finite order of contact with ∂M.

1in its maximal domain of definition



Solution to the Lorentzian Calderón problem

Theorem [Alexakis-Feizmohammadi-L.O.]. Let a smooth Lorentzian
manifold (M, g) with timelike boundary satisfy (H1)–(H5), and let
V1,V2 ∈ C∞(M). If C (V1) = C (V2) then V1 = V2.

In fact, we prove a slightly stronger result that allows for data on a finite
time interval and vanishing initial conditions.

The proof is based on

I New optimal unique continuation result

I Construction of focusing solutions: u|t=t0 = 0 and ∂tu|t=t0 = cδx0 for
a point (t0, x0) ∈ R×M0 = M and a constant c ∈ R



Unique continuation

Theorem [Alexakis-Feizmohammadi-L.O.]. Let a smooth Lorentzian
manifold (M, g) with timelike ∂M satisfy (H1)–(H5). Let V ∈ C∞(M)
and let u ∈ Hs(M) with s ∈ R. Suppose that (�+ V )u = 0 in E (p) and
u = ∂νu = 0 on E (p) ∩ ∂M for some p ∈ M int. Then u = 0 in E (p).

The Minkowski case, with u ∈ C 2(M), was known
[Alexakis-Shao’15].

The proof is based on

I Carleman estimate

I Microlocal analysis to handle s < 2

Figure. p in red, ∂M in gray, ∂E(p) ∩M int in blue



Unique continuation

Theorem [Alexakis-Feizmohammadi-L.O.]. Let a smooth Lorentzian
manifold (M, g) with timelike ∂M satisfy (H1)–(H5). Let V ∈ C∞(M)
and let u ∈ Hs(M) with s ∈ R. Suppose that (�+ V )u = 0 in E (p) and
u = ∂νu = 0 on E (p) ∩ ∂M for some p ∈ M int. Then u = 0 in E (p).

The Minkowski case, with u ∈ C 2(M), was known
[Alexakis-Shao’15].

The proof is based on

I Carleman estimate

I Microlocal analysis to handle s < 2

Figure. p in red, ∂M in black, ∂E(p) ∩M int in blue



Carleman estimate

We prove an estimate of the form∫
Ω
|u|2e2` .

∫
Ω
|(�+ V )u|2e2` +

∣∣∣∣∫
Ω

divB

∣∣∣∣ ,
where B is a certain vector field, Ω is the exterior of a hyperboloid in
normal coordinates at p, and ` is a carefully chosen weight function.

The level sets of ` are given by the hyperboloids
{(t, x) ∈ M : r(t, x) = ρ}, ρ > 0, where

r(t, x) =
(
−t2 + (x1)2 + · · ·+ (xn)2

)1/2
.

Also Ω = {r > ρ0} for some ρ0 > 0.

Figure. ∂M in black, {r = 0} in blue, {r = ρ} in orange



Hyperboloids in the Minkowski space

The function

r(t, x) =
(
−t2 + (x1)2 + · · ·+ (xn)2

)1/2

is a distance function in the sense that 〈∇r ,∇r〉 = 1.

Recall that a function f is pseudoconvex if Hess f (X ,X ) > 0 for all
lightlike vectors X orthogonal to ∇f .

The function r is not pseudoconvex:

Hess r(X ,X ) =
1

r

(
〈X ,X 〉 − 〈∇r ,X 〉2

)
,

and Hess r(X ,X ) = 0 for all lightlike vectors X orthogonal to ∇r .



The weight function

Fix ρ > 0 and set ` = F ◦ r where

F (r) = 4 log(r − ρ) + τ(r − ρ)2.

Let ε > 0 and set τ = Cε−2 for large C > 0. Write Ω(ρ) = {r > ρ}.

We prove a Carleman estimate on Ω(ρ+ ε).

Note that

F (ρ+ ε) = 4 log ε+ C → −∞

as ε→ 0.

Figure. {r = ρ} in orange, {r = ρ+ ε} in brown



Unique continuation using the Carleman estimate

With ` = F ◦ r , we prove∫
Ω(ρ+ε)

|u|2e2` .
∫

Ω(ρ+ε)
|(�+ V )u|2e2` +

∣∣∣∣∣
∫

Ω(ρ+ε)
divB

∣∣∣∣∣ .
Recall that F (ρ+ ε) = 4 log ε+C . Hence e2` = O(ε8) on {r = ρ+ ε}, and∫

Ω(ρ+ε)
divB → 0, as ε→ 0,

assuming that u = ∂νu = 0 on E (p) ∪ ∂M. If also (�+ V )u = 0, then∫
Ω(ρ)
|u|2(r − ρ)8 = 0.

Thus u = 0 on Ω(ρ). Letting ρ→ 0 we conclude that u = 0 on E (p).



Existence of focusing solutions

We assume without loss of generality that
M = R×M0. Let p = (t0, x0) ∈ M int.

There is f such that the solution u of
(�+ V )u = 0 on M

u|∂M = f

u|t�0 = 0

satisfies u|t=t0 = 0 and ∂tu|t=t0 = δx0 , and
supp(f ) ∩ E (p) = ∅.

This follows from our unique continuation
result and [Bardos-Lebeau-Rauch’92].

Figure. ∂E(p) ∩M int in blue, supp(f ) in orange



Conclusion of the proof

Solutions with u|t=t0 = 0, ∂tu|t=t0 = cδx0

for some c ∈ R can be found by requiring
that u = ∂νu = 0 on E (p) ∩ ∂M and that
u ∈ Hs(M) for suitable s ∈ R.

Let v be another solution. Then∫ t0

−∞

∫
M0

v(�+ V )u − u(�+ V )v dxdt = 0,

and an integration by parts gives cv(t0, x0).
We force c to depend smoothly on (t0, x0).

If c−1(�+ V )c = �+ Ṽ and c = 1 on ∂M,
then c = 1 on M and Ṽ = V .

Figure. ∂E(p) ∩M int in blue, {t = t0} in orange




