Microlocal Analysis of Doppler Synthetic Aperture Radar

Allan Greenleaf

University of Rochester

International Zoom Inverse Problems Seminar
October 29, 2020

Overview

Joint work with Raluca Felea, Romina Gaburro and Cliff Nolan

- Conventional (monostatic) SAR
- Doppler SAR
- Main results
- Future directions
- Supported by NSF DMS-1362271 and -1906186, and a SQuaRE collaboration at the American Institute of Mathematics. Thanks to Margaret Cheney for suggesting this problem and numerous discussions.

Overview

Joint work with Raluca Felea, Romina Gaburro and Cliff Nolan

- Conventional (monostatic) SAR
- Doppler SAR
- Main results
- Future directions
- Supported by NSF DMS-1362271 and -1906186, and a SQuaRE collaboration at the American Institute of Mathematics. Thanks to Margaret Cheney for suggesting this problem and numerous discussions.

Overview

Joint work with Raluca Felea, Romina Gaburro and Cliff Nolan

- Conventional (monostatic) SAR
- Doppler SAR
- Main results
- Future directions
- Supported by NSF DMS-1362271 and -1906186, and a SQuaRE collaboration at the American Institute of Mathematics. Thanks to Margaret Cheney for suggesting this problem and numerous discussions.

Overview

Joint work with Raluca Felea, Romina Gaburro and Cliff Nolan

- Conventional (monostatic) SAR
- Doppler SAR
- Main results
- Future directions
- Supported by NSF DMS-1362271 and -1906186, and a SQuaRE collaboration at the American Institute of Mathematics. Thanks to Margaret Cheney for suggesting this problem and numerous discussions.

Overview

Joint work with Raluca Felea, Romina Gaburro and Cliff Nolan

- Conventional (monostatic) SAR
- Doppler SAR
- Main results
- Future directions
- Supported by NSF DMS-1362271 and -1906186, and a SQuaRE collaboration at the American Institute of Mathematics.
Thanks to Margaret Cheney for suggesting this problem and numerous discussions.

Conventional synthetic aperture radar (SAR)

- EM waves are transmitted by air/spaceborne antenna.
- Waves scatter from features on Earth's surface.
- Monostatic SAR: reflected waves are measured by a receiver co-located with transmitter.
(In bistatic SAR, receiver is separated from transmitter.)
- Transmitted wave is comprised of a train of complex signals, designed to improve temporal resolution, improve signal-to-noise ratio after DSP by receiver. Necessarily wide bandwidth.
- Allows high resolution estimates of two-way travel times and hence distances (ranges) between antenna and surface
- Construct image of surface features via filtered backprojection.

Conventional synthetic aperture radar (SAR)

- EM waves are transmitted by air/spaceborne antenna.
- Waves scatter from features on Earth's surface.
- Monostatic SAR: reflected waves are measured by a receiver co-located with transmitter
(In bistatic SAR, receiver is separated from transmitter.)
- Transmitted wave is comprised of a train of complex signals, designed to improve temporal resolution, improve signal-to-noise ratio after DSP by receiver. Necessarily wide bandwidth
- Allows high resolution estimates of two-way travel times and hence distances (ranges) between antenna and surface.
- Construct image of surface features via filtered backprojection.

Conventional synthetic aperture radar (SAR)

- EM waves are transmitted by air/spaceborne antenna.
- Waves scatter from features on Earth's surface.
- Monostatic SAR: reflected waves are measured by a receiver co-located with transmitter. (In bistatic SAR, receiver is separated from transmitter.)
- Transmitted wave is comprised of a train of complex signals, designed to improve temporal resolution, improve signal-to-noise ratio after DSP by receiver. Necessarily wide bandwidth.
- Allows high resolution estimates of two-way travel times and hence distances (ranges) between antenna and surface
- Construct image of surface features via filtered backprojection.

Conventional synthetic aperture radar (SAR)

- EM waves are transmitted by air/spaceborne antenna.
- Waves scatter from features on Earth's surface.
- Monostatic SAR: reflected waves are measured by a receiver co-located with transmitter. (In bistatic SAR, receiver is separated from transmitter.)
- Transmitted wave is comprised of a train of complex signals, designed to improve temporal resolution, improve signal-to-noise ratio after DSP by receiver. Necessarily wide bandwidth.
- Allows high resolution estimates of two-way travel times and hence distances (ranges) between antenna and surface.
- Construct image of surface features via filtered backprojection.

Conventional synthetic aperture radar (SAR)

- EM waves are transmitted by air/spaceborne antenna.
- Waves scatter from features on Earth's surface.
- Monostatic SAR: reflected waves are measured by a receiver co-located with transmitter. (In bistatic SAR, receiver is separated from transmitter.)
- Transmitted wave is comprised of a train of complex signals, designed to improve temporal resolution, improve signal-to-noise ratio after DSP by receiver. Necessarily wide bandwidth.
- Allows high resolution estimates of two-way travel times and hence distances (ranges) between antenna and surface.
- Construct image of surface features via filtered backprojection.

Conventional synthetic aperture radar (SAR)

- EM waves are transmitted by air/spaceborne antenna.
- Waves scatter from features on Earth's surface.
- Monostatic SAR: reflected waves are measured by a receiver co-located with transmitter. (In bistatic SAR, receiver is separated from transmitter.)
- Transmitted wave is comprised of a train of complex signals, designed to improve temporal resolution, improve signal-to-noise ratio after DSP by receiver. Necessarily wide bandwidth.
- Allows high resolution estimates of two-way travel times and hence distances (ranges) between antenna and surface.
- Construct image of surface features via filtered backprojection.

Conventional synthetic aperture radar (SAR)

- Large literature. Will focus on microlocal techniques, analyzing effect of flight path geometry, characterizing artifacts and suggesting ways to remove or avoid them, e.g., beam forming.

- Microlocal analysis a reasonable tool to use for conventional SAR: complex waveforms employed have high frequency content.
- Want to apply MLA to Doppler SAR, using relative velocity data rather than distance/range data. Since DSAR is narrowband, not obvious that MLA should be useful, but obtain positive results.

Conventional synthetic aperture radar (SAR)

- Large literature. Will focus on microlocal techniques, analyzing effect of flight path geometry, characterizing artifacts and suggesting ways to remove or avoid them, e.g., beam forming.
- A few (of many) papers: Nolan-Cheney (2002,2004); Felea (2007); Felea-Gaburro-Nolan (2013); Stefanov-Uhlmann (2013).
- Microlocal analysis a reasonable tool to use for conventional SAR: complex waveforms employed have high frequency content.
- Want to apply MLA to Doppler SAR, using relative velocity data rather than distance/range data. Since DSAR is narrowband, not obvious that MLA should be useful, but obtain positive results.

Conventional synthetic aperture radar (SAR)

- Large literature. Will focus on microlocal techniques, analyzing effect of flight path geometry, characterizing artifacts and suggesting ways to remove or avoid them, e.g., beam forming.
- A few (of many) papers: Nolan-Cheney (2002,2004); Felea (2007); Felea-Gaburro-Nolan (2013); Stefanov-Uhlmann (2013).
- Microlocal analysis a reasonable tool to use for conventional SAR: complex waveforms employed have high frequency content.
- Want to apply MLA to Doppler SAR, using relative velocity data rather than distance/range data. Since DSAR is narrowband, not obvious that MLA should be useful, but obtain positive results.

Conventional synthetic aperture radar (SAR)

- Large literature. Will focus on microlocal techniques, analyzing effect of flight path geometry, characterizing artifacts and suggesting ways to remove or avoid them, e.g., beam forming.
- A few (of many) papers: Nolan-Cheney (2002,2004); Felea (2007); Felea-Gaburro-Nolan (2013); Stefanov-Uhlmann (2013).
- Microlocal analysis a reasonable tool to use for conventional SAR: complex waveforms employed have high frequency content.
- Want to apply MLA to Doppler SAR, using relative velocity data rather than distance/range data. Since DSAR is narrowband, not obvious that MLA should be useful, but obtain positive results.

Doppler SAR: Overview

- Goal: To image a stationary scene located on a flat Earth, using DSAR data collected from a flight path at constant height.
- Eventually focus on two model flight paths: linear and circular. Analyze artifacts and describe artifact-free regions.
- Our analysis involves multiple approximations, the most important of which are:
- Modifying these to make the model more accurate might result in different conclusions, but we have evidence that our results are robust
to altering the start-stop approximation

Doppler SAR: Overview

- Goal: To image a stationary scene located on a flat Earth, using DSAR data collected from a flight path at constant height.
- Eventually focus on two model flight paths: linear and circular. Analyze artifacts and describe artifact-free regions.
- Our analysis involves multiple approximations, the most important of which are:
- Modifying these to make the model more accurate might result in different conclusions, but we have evidence that our results are robust
to altering the start-stop approximation

Doppler SAR: Overview

- Goal: To image a stationary scene located on a flat Earth, using DSAR data collected from a flight path at constant height.
- Eventually focus on two model flight paths: linear and circular. Analyze artifacts and describe artifact-free regions.
- Our analysis involves multiple approximations, the most important of which are:
(1) The Born (single scattering) approximation
(2) The form of reflectivity function.
(3) Start-stop approximation (and a linear approximation)
- Modifying these to make the model more accurate might result in different conclusions, but we have evidence that our results are robust
to altering the start-stop approximation.

Doppler SAR: Overview

- Goal: To image a stationary scene located on a flat Earth, using DSAR data collected from a flight path at constant height.
- Eventually focus on two model flight paths: linear and circular. Analyze artifacts and describe artifact-free regions.
- Our analysis involves multiple approximations, the most important of which are:
(1) The Born (single scattering) approximation.
(2) The form of reflectivity function.
(3) Start-stop approximation (and a linear approximation)
- Modifying these to make the model more accurate might result in
different conclusions, but we have evidence that our results are robust
to altering the start-stop approximation.

Doppler SAR: Overview

- Goal: To image a stationary scene located on a flat Earth, using DSAR data collected from a flight path at constant height.
- Eventually focus on two model flight paths: linear and circular. Analyze artifacts and describe artifact-free regions.
- Our analysis involves multiple approximations, the most important of which are:
(1) The Born (single scattering) approximation.
(2) The form of reflectivity function.
(3) Start-stop approximation (and a linear approximation).
- Modifying these to make the model more accurate might result in different conclusions, but we have evidence that our results are robust to altering the start-stop approximation.

Doppler SAR: Overview

- Goal: To image a stationary scene located on a flat Earth, using DSAR data collected from a flight path at constant height.
- Eventually focus on two model flight paths: linear and circular. Analyze artifacts and describe artifact-free regions.
- Our analysis involves multiple approximations, the most important of which are:
(1) The Born (single scattering) approximation.
(2) The form of reflectivity function.

3 Start-stop approximation (and a linear approximation).

Modifying these to make the model more accurate might result in different conclusions, but we have evidence that our results are robust to altering the start-stop approximation

Doppler SAR: Overview

- Goal: To image a stationary scene located on a flat Earth, using DSAR data collected from a flight path at constant height.
- Eventually focus on two model flight paths: linear and circular. Analyze artifacts and describe artifact-free regions.
- Our analysis involves multiple approximations, the most important of which are:
(1) The Born (single scattering) approximation.
(2) The form of reflectivity function.
(3) Start-stop approximation (and a linear approximation).
- Modifying these to make the model more accurate might result in different conclusions, but we have evidence that our results are robust to altering the start-stop approximation.

Doppler and SAR: History

- Using Doppler radar (frequency shift) data, collected by a stationary receiver, to image moving or rotating objects is familiar from weather radar and has been used in planetary astronomy (Thomson-Ponsonby (1968)).
- Alternatively, can try to combine Doppler and SAR to image fixed objects from a moving platform. Proposed by Borden-Cheney (2005) studied further for bistatic data and named Doppler SAR by Wang-Yazici $(2012,2014)$. Related approaches by Coetzee-Baker-Griffiths (2006), Sun-Feng-Lu (2010), etc.
- Here: study monostatic DSAR for model flight paths. After a suitable manipulation of the raw data, forward scattering operator becomes an FIO and microlocal analysis an appropriate tool

Doppler and SAR: History

- Using Doppler radar (frequency shift) data, collected by a stationary receiver, to image moving or rotating objects is familiar from weather radar and has been used in planetary astronomy (Thomson-Ponsonby (1968)).
- Alternatively, can try to combine Doppler and SAR to image fixed objects from a moving platform. Proposed by Borden-Cheney (2005), studied further for bistatic data and named Doppler SAR by Wang-Yazici $(2012,2014)$. Related approaches by Coetzee-Baker-Griffiths (2006), Sun-Feng-Lu (2010), etc.
- Here: study monostatic DSAR for model flight paths. After a suitable manipulation of the raw data, forward scattering operator becomes an FIO and microlocal analysis an appropriate tool.

Doppler and SAR: History

- Using Doppler radar (frequency shift) data, collected by a stationary receiver, to image moving or rotating objects is familiar from weather radar and has been used in planetary astronomy (Thomson-Ponsonby (1968)).
- Alternatively, can try to combine Doppler and SAR to image fixed objects from a moving platform. Proposed by Borden-Cheney (2005), studied further for bistatic data and named Doppler SAR by Wang-Yazici $(2012,2014)$. Related approaches by Coetzee-Baker-Griffiths (2006), Sun-Feng-Lu (2010), etc.
- Here: study monostatic DSAR for model flight paths. After a suitable manipulation of the raw data, forward scattering operator becomes an FIO and microlocal analysis an appropriate tool.

Doppler SAR: Setup

- Antenna transmits along flightpath $\gamma(t)$ at constant altitude, h, and co-located receiver measures waves scattered by surface features.
- To obtain high-resolution Doppler shift measurements, transmit a single frequency continuous wave (CW) signal.
- Ignore polarization and model the wave using scalar equation,

where $\mathbf{y}=\left(\mathbf{y}^{\prime}, y_{3}\right) \in \mathbb{R}^{3}, E$ is (one component of) the electric field, f describes the source, and $c(\mathbf{y})$ is the wave propagation speed

Doppler SAR: Setup

- Antenna transmits along flightpath $\gamma(t)$ at constant altitude, h, and co-located receiver measures waves scattered by surface features.
- To obtain high-resolution Doppler shift measurements, transmit a single frequency continuous wave (CW) signal.
- Ignore polarization and model the wave using scalar equation,

where $\mathbf{y}=\left(\mathbf{y}^{\prime}, y_{3}\right) \in \mathbb{R}^{3}, E$ is (one component of) the electric field, f describes the source, and $c(\mathbf{y})$ is the wave propagation speed.

Doppler SAR: Setup

- Antenna transmits along flightpath $\gamma(t)$ at constant altitude, h, and co-located receiver measures waves scattered by surface features.
- To obtain high-resolution Doppler shift measurements, transmit a single frequency continuous wave (CW) signal.
- Ignore polarization and model the wave using scalar equation,

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c^{2}(\mathbf{y})} \partial_{t}^{2}\right) E(t, \mathbf{y})=f(t, \mathbf{y}) \tag{1}
\end{equation*}
$$

where $\mathbf{y}=\left(\mathbf{y}^{\prime}, y_{3}\right) \in \mathbb{R}^{3}, E$ is (one component of) the electric field, f describes the source, and $c(\mathbf{y})$ is the wave propagation speed.

Doppler SAR: Setup

- CW source modeled as

$$
f(t, \mathbf{y})=e^{-i \omega_{0} t} \delta(\mathbf{y}-\gamma(t))
$$

- Assumes radiating isotropically. For beam forming, is anisotropic; affects amplitudes but not phase functions or geometry, and will suppress.
- Assumption 1. Between the flight path and the ground, $c(\mathbf{y})=c_{0}$, the constant speed of light in dry air.

Def. The reflectivity function is $\frac{1}{c_{0}^{2}}-\frac{1}{c^{2}(y)}$.

- Assumption 2. The reflectivity function is of the form

$$
V\left(\mathbf{y}^{\prime}\right) \delta\left(u_{3}\right), \mathbf{y}^{\prime} \in \mathbb{R}^{2} . \quad \text { Call } V \text { the scene. }
$$

Doppler SAR: Setup

- CW source modeled as

$$
f(t, \mathbf{y})=e^{-i \omega_{0} t} \delta(\mathbf{y}-\gamma(t))
$$

- Assumes radiating isotropically. For beam forming, is anisotropic; affects amplitudes but not phase functions or geometry, and will suppress.
- Assumption 1. Between the flight path and the ground, $c(y)=c_{0}$, the constant speed of light in dry air.

Def. The reflectivity function is $\frac{1}{c_{0}^{2}}-\frac{1}{c^{2}(y)}$

- Assumption 2. The reflectivity function is of the form $V\left(\mathbf{y}^{\prime}\right) \delta\left(u_{3}\right), \mathbf{y}^{\prime} \in \mathbb{R}^{2} . \quad$ Call V the scene.

Doppler SAR: Setup

- CW source modeled as

$$
f(t, \mathbf{y})=e^{-i \omega_{0} t} \delta(\mathbf{y}-\gamma(t))
$$

- Assumes radiating isotropically. For beam forming, is anisotropic; affects amplitudes but not phase functions or geometry, and will suppress.
- Assumption 1. Between the flight path and the ground, $c(\mathbf{y})=c_{0}$, the constant speed of light in dry air.

Def. The reflectivity function is $\frac{1}{c_{0}^{2}}-\frac{1}{c^{2}(\mathbf{y})}$.

- Assumption 2. The reflectivity function is of the form $V\left(\mathbf{y}^{\prime}\right) \delta\left(y_{3}\right), \mathbf{y}^{\prime} \in \mathbb{R}^{2} . \quad$ Call V the scene.

Doppler SAR: Setup

- CW source modeled as

$$
f(t, \mathbf{y})=e^{-i \omega_{0} t} \delta(\mathbf{y}-\gamma(t))
$$

- Assumes radiating isotropically. For beam forming, is anisotropic; affects amplitudes but not phase functions or geometry, and will suppress.
- Assumption 1. Between the flight path and the ground, $c(\mathbf{y})=c_{0}$, the constant speed of light in dry air.

Def. The reflectivity function is $\frac{1}{c_{0}^{2}}-\frac{1}{c^{2}(\mathbf{y})}$.

- Assumption 2. The reflectivity function is of the form $V\left(\mathbf{y}^{\prime}\right) \delta\left(y_{3}\right), \mathbf{y}^{\prime} \in \mathbb{R}^{2}$. Call V the scene.

Doppler SAR: Setup

Formal linearization:

- Write $c=c_{0}+\delta c, E=E_{0}+\delta E \Longrightarrow$

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c_{0}^{2}} \partial_{t}^{2}\right) \delta E(t, \mathbf{y})=-V(\mathbf{y}) \partial_{t}^{2} E_{0}(t, \mathbf{y}) \tag{2}
\end{equation*}
$$

where the incident field E_{0} satisfies (1) with c replaced by c_{0}.

- Assumption 3. Start-stop approximation: The speed of wave
propagation is so much $\gg|\dot{\gamma}|$ that the point where the scattered wave is detected by the receiver is the same as where the antenna transmitted it.

The start-stop approx is widely used in radar, incl conventional SAR. For CW waves, harder to justify, but can do this ex post facto, since (i) for linear γ, further correction leads to a similar result for the FIO geometry, and (ii) for circular γ, the FIO geometry is structurally stable.

Doppler SAR: Setup

Formal linearization:

- Write $c=c_{0}+\delta c, E=E_{0}+\delta E \Longrightarrow$

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c_{0}^{2}} \partial_{t}^{2}\right) \delta E(t, \mathbf{y})=-V(\mathbf{y}) \partial_{t}^{2} E_{0}(t, \mathbf{y}) \tag{2}
\end{equation*}
$$

where the incident field E_{0} satisfies (1) with c replaced by c_{0}.

- Assumption 3. Start-stop approximation: The speed of wave propagation is so much $\gg|\dot{\gamma}|$ that the point where the scattered wave is detected by the receiver is the same as where the antenna transmitted it.
- The start-stop approx is widely used in radar, incl conventional SAR.
For CW waves, harder to justify, but can do this ex post facto, since
(i) for linear γ, further correction leads to a similar result for the FIO geometry, and (ii) for circular γ, the FIO geometry is structurally stable.

Doppler SAR: Setup

Formal linearization:

- Write $c=c_{0}+\delta c, E=E_{0}+\delta E \Longrightarrow$

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c_{0}^{2}} \partial_{t}^{2}\right) \delta E(t, \mathbf{y})=-V(\mathbf{y}) \partial_{t}^{2} E_{0}(t, \mathbf{y}) \tag{2}
\end{equation*}
$$

where the incident field E_{0} satisfies (1) with c replaced by c_{0}.

- Assumption 3. Start-stop approximation: The speed of wave propagation is so much $\gg|\dot{\gamma}|$ that the point where the scattered wave is detected by the receiver is the same as where the antenna transmitted it.
- The start-stop approx is widely used in radar, incl conventional SAR. For CW waves, harder to justify, but can do this ex post facto, since (i) for linear γ, further correction leads to a similar result for the FIO geometry, and (ii) for circular γ, the FIO geometry is structurally stable.

Doppler SAR: Setup

- For point on the surface, $\mathbf{x} \in \mathbb{R}^{2}$, let

$$
\mathbf{R}(t):=(\mathbf{x}, 0)-\gamma(t) \quad \text { and } \quad R(t):=|\mathbf{R}(t)| .
$$

Suppress dependence on \mathbf{x}.

- Under the start-stop approximation, total time of travel for a transmitted wave is $T_{t o t} \approx 2 c_{0}^{-1} R(t)$.
- Using Green's function for the free wave equation,

the scattered wave measured on the antenna is

Doppler SAR: Setup

- For point on the surface, $\mathbf{x} \in \mathbb{R}^{2}$, let

$$
\mathbf{R}(t):=(\mathbf{x}, 0)-\gamma(t) \quad \text { and } \quad R(t):=|\mathbf{R}(t)| .
$$

Suppress dependence on \mathbf{x}.

- Under the start-stop approximation, total time of travel for a transmitted wave is $T_{t o t} \approx 2 c_{0}^{-1} R(t)$.
- Using Green's function for the free wave equation,
the scattered wave measured on the antenna is

Doppler SAR: Setup

- For point on the surface, $\mathbf{x} \in \mathbb{R}^{2}$, let

$$
\mathbf{R}(t):=(\mathbf{x}, 0)-\gamma(t) \quad \text { and } \quad R(t):=|\mathbf{R}(t)| .
$$

Suppress dependence on \mathbf{x}.

- Under the start-stop approximation, total time of travel for a transmitted wave is $T_{t o t} \approx 2 c_{0}^{-1} R(t)$.
- Using Green's function for the free wave equation,

$$
G(t, \mathbf{y})=\frac{\delta(t-|\mathbf{y}| / c)}{4 \pi|\mathbf{y}|}
$$

the scattered wave measured on the antenna is

$$
\begin{equation*}
d(t):=\delta E(t, \gamma(t)) \approx \int_{\mathbb{R}^{2}} \frac{e^{-i \omega_{0}\left(t-2 R(t) / c_{0}\right)}}{(4 \pi R(t))^{2}} p(t, \mathbf{x}) V(\mathbf{x}) d \mathbf{x} \tag{3}
\end{equation*}
$$

Suppress antenna-dependent p.

Doppler SAR: Windowed Fourier transform

We now convert the one-dim signal $d(t)$ to a function of two variables.

- Like most radar problems, multiple time scales.
- $c_{0} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{sec} \gg$ plane $\approx 3 \cdot 10^{2} \mathrm{~m} / \mathrm{sec}$, satellite $\approx 10^{4} \mathrm{~m} / \mathrm{sec}$.
- Also frequencies involved are large, typically $\omega_{0} \geq 1 \mathrm{GHz}=10^{9} / \mathrm{sec}$.
- Analyze data $d(t)$ by introducing a "slow time" s and a frequency ω : multiply d by a windowing function, whose duration is
(1) small relative to the antenna motion (i.e., the distance the antenna travels during the window is small relative to a wavelength), but
(2) large enough so that the transmitted signal undergoes a sufficient number of cycles over the support of the window so as to be amenable to Fourier analysis.

Doppler SAR: Windowed Fourier transform

We now convert the one-dim signal $d(t)$ to a function of two variables.

- Like most radar problems, multiple time scales.
- $c_{0} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{sec} \gg$ plane $\approx 3 \cdot 10^{2} \mathrm{~m} / \mathrm{sec}$, satellite $\approx 10^{4} \mathrm{~m} / \mathrm{sec}$.
- Also frequencies involved are large, typically $\omega_{0} \geq 1 \mathrm{GHz}=10^{9} / \mathrm{sec}$
- Analyze data $d(t)$ by introducing a "slow time" s and a frequency w multiply d by a windowing function, whose duration is
(1) small relative to the antenna motion (i.e., the distance the antenna travels during the window is small relative to a wavelength), but
(2) large enough so that the transmitted signal undergoes a sufficient number of cycles over the support of the window so as to be amenable to Fourier analysis.

Doppler SAR: Windowed Fourier transform

We now convert the one-dim signal $d(t)$ to a function of two variables.

- Like most radar problems, multiple time scales.
- $c_{0} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{sec} \gg$ plane $\approx 3 \cdot 10^{2} \mathrm{~m} / \mathrm{sec}$, satellite $\approx 10^{4} \mathrm{~m} / \mathrm{sec}$.
- Also frequencies involved are large, typically $\omega_{0} \geq 1 \mathrm{GHz}=10^{9} / \mathrm{sec}$.
- Analyze data $d(t)$ by introducing a "slow time" s and a frequency multiply d by a windowing function, whose duration is
(1) small relative to the antenna motion (i.e., the distance the antenna travels during the window is small relative to a wavelength), but
(2) large enough so that the transmitted signal undergoes a sufficient number of cycles over the support of the window so as to be amenable to Fourier analysis.

Doppler SAR: Windowed Fourier transform

We now convert the one-dim signal $d(t)$ to a function of two variables.

- Like most radar problems, multiple time scales.
- $c_{0} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{sec} \gg$ plane $\approx 3 \cdot 10^{2} \mathrm{~m} / \mathrm{sec}$, satellite $\approx 10^{4} \mathrm{~m} / \mathrm{sec}$.
- Also frequencies involved are large, typically $\omega_{0} \geq 1 \mathrm{GHz}=10^{9} / \mathrm{sec}$.
- Analyze data $d(t)$ by introducing a "slow time" s and a frequency ω : multiply d by a windowing function, whose duration is
(1) small relative to the antenna motion (i.e., the distance the antenna travels during the window is small relative to a wavelength), but
(2) large enough so that the transmitted signal undergoes a sufficient number of cycles over the support of the window so as to be amenable to Fourier analysis.

Doppler SAR: Windowed Fourier transform

- We take the window about $s=t$ to be of the form $\ell\left(\omega_{0}(t-s)\right)$, where $\ell(t)$ is smooth, identically equal to 1 for $|t| \leq L$ and supported in $|t| \leq 2 L$, for some appropriately chosen $L>0$.
- Although of compact support, it is natural to consider $\ell(\cdot)$ as being a symbol of order zero (see below), as the functions $\ell\left(\omega_{0} \cdot\right)$ are symbols of order 0 uniformly in ω_{0} and L.
- Thus, using the expression (3) for $d(t)$, we form

Doppler SAR: Windowed Fourier transform

- We take the window about $s=t$ to be of the form $\ell\left(\omega_{0}(t-s)\right)$, where $\ell(t)$ is smooth, identically equal to 1 for $|t| \leq L$ and supported in $|t| \leq 2 L$, for some appropriately chosen $L>0$.
- Although of compact support, it is natural to consider $\ell(\cdot)$ as being a symbol of order zero (see below), as the functions $\ell\left(\omega_{0} \cdot\right)$ are symbols of order 0 uniformly in ω_{0} and L.
- Thus, using the expression (3) for $d(t)$, we form

Doppler SAR: Windowed Fourier transform

- We take the window about $s=t$ to be of the form $\ell\left(\omega_{0}(t-s)\right)$, where $\ell(t)$ is smooth, identically equal to 1 for $|t| \leq L$ and supported in $|t| \leq 2 L$, for some appropriately chosen $L>0$.
- Although of compact support, it is natural to consider $\ell(\cdot)$ as being a symbol of order zero (see below), as the functions $\ell\left(\omega_{0} \cdot\right)$ are symbols of order 0 uniformly in ω_{0} and L.
- Thus, using the expression (3) for $d(t)$, we form

$$
\begin{align*}
W_{0}(s, \omega) & :=\int e^{i \omega(t-s)} \ell\left(\omega_{0}(t-s)\right) d(t) d t \\
& =\int e^{i \omega(t-s)} \ell\left(\omega_{0}(t-s)\right) \int \frac{e^{-i \omega_{0}\left(t-2 R(t) / c_{0}\right)}}{(4 \pi R(t))^{2}} V(\mathbf{x}) d \mathbf{x} d t \tag{4}
\end{align*}
$$

Doppler SAR: Windowed Fourier transform

- Taylor expand $R(t)$ about $t=s$,

$$
R(t)=R(s)+\dot{R}(s)(t-s)+\cdots
$$

(Dot denotes differentiation with respect to time.)

- Keep only the linear terms, insert into (4), change variables $t \mapsto \tau=t-s$. Get

$a\left(s, \omega_{0}, \mathbf{x} ; \tau\right)$

Doppler SAR: Windowed Fourier transform

- Taylor expand $R(t)$ about $t=s$,

$$
R(t)=R(s)+\dot{R}(s)(t-s)+\cdots
$$

(Dot denotes differentiation with respect to time.)

- Keep only the linear terms, insert into (4), change variables $t \mapsto \tau=t-s$. Get

$a\left(s, \omega_{0}, \mathbf{x} ; \tau\right)$

Doppler SAR: Windowed Fourier transform

- Taylor expand $R(t)$ about $t=s$,

$$
R(t)=R(s)+\dot{R}(s)(t-s)+\cdots
$$

(Dot denotes differentiation with respect to time.)

- Keep only the linear terms, insert into (4), change variables $t \mapsto \tau=t-s$. Get

$$
\begin{align*}
& W(s, \omega):=\int[\int e^{i \tau\left(\omega-\omega_{0}+2 \omega_{0} \dot{R}(s) / c_{0}\right)} \times \\
&\underbrace{\left(\ell\left(\omega_{0} \tau\right) e^{i \omega_{0}\left(2 R(s) / c_{0}-s\right)}\right) /\left((4 \pi R(s))^{2}\right)}_{a\left(s, \omega_{0}, \mathbf{x} ; \tau\right)} d \tau] \\
& V(\mathbf{x}) d \mathbf{x} \tag{5}
\end{align*}
$$

Doppler SAR: The DSAR transform

Define the DSAR transform as the map $\mathcal{F}: V(\mathbf{x}) \rightarrow W(s, \omega)$. The phase function $\phi(s, \omega, \mathbf{x} ; \tau):=\tau\left(\omega-\omega_{0}+2 \omega_{0} \dot{R}(s) / c_{0}\right)$ is an nondegenerate operator phase function in the sense of Hörmander, the amplitude is of order 0 in τ, and we have

Theorem

Under assumptions above, the mapping \mathcal{F} is a Fourier integral operator of order $-1 / 2$ associated with the canonical relation

$$
\begin{aligned}
& \mathcal{C}=\{(s, \omega_{0}-2 \omega_{0} \dot{R} / c_{0}, 2 \omega_{0} \tau \ddot{R} / c_{0}, \tau ; \mathbf{x}, \underbrace{-2 \tau \omega_{0} d_{\mathbf{x}} \dot{R} / c_{0}}_{\xi}) \\
&\left.: s \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{2}, \tau \in \mathbb{R} \backslash 0\right\} \\
& \subset\left(T^{*} \mathbb{R}_{s, \omega}^{2} \backslash \mathbf{0}\right) \times\left(T^{*} \mathbb{R}_{\mathbf{x}}^{2} \backslash \mathbf{0}\right) .
\end{aligned}
$$

Doppler SAR: The DSAR transform

Well known from applications of microlocal analysis to linear or linearized inverse problems that one should study the projections from \mathcal{C} :

- The left projection, $\pi_{L}: \mathcal{C} \rightarrow T^{*} \mathbb{R}^{2}$, defined by

$$
\begin{equation*}
\pi_{L}:(s, \omega, \sigma, \tau ; \mathbf{x}, \xi) \mapsto(s, \omega, \sigma, \tau) \tag{6}
\end{equation*}
$$

and

- The right projection, $\pi_{R}: \mathcal{C} \rightarrow T^{*} \mathbb{R}^{2}$, given by

$$
\pi_{R}:(s, \omega, \sigma, \tau ; \mathbf{x}, \xi) \mapsto(\mathbf{x}, \xi) .
$$

Doppler SAR: The DSAR transform

Well known from applications of microlocal analysis to linear or linearized inverse problems that one should study the projections from \mathcal{C} :

- The left projection, $\pi_{L}: \mathcal{C} \rightarrow T^{*} \mathbb{R}^{2}$, defined by

$$
\begin{equation*}
\pi_{L}:(s, \omega, \sigma, \tau ; \mathbf{x}, \xi) \mapsto(s, \omega, \sigma, \tau) \tag{6}
\end{equation*}
$$

and

- The right projection, $\pi_{R}: \mathcal{C} \rightarrow T^{*} \mathbb{R}^{2}$, given by

$$
\begin{equation*}
\pi_{R}:(s, \omega, \sigma, \tau ; \mathbf{x}, \xi) \mapsto(\mathbf{x}, \xi) \tag{7}
\end{equation*}
$$

Doppler SAR: The DSAR transform

- At any point $\lambda_{0} \in \mathcal{C}$, if $\operatorname{det}\left(d \pi_{R}\right) \neq 0$, then $\operatorname{det}\left(d \pi_{L}\right) \neq 0$ as well, and \mathcal{C} is a local canonical graph.
- Adding the condition that π_{L} is 1-1 (\leftrightarrow Bolker condition in tomography, travel time injectivity condition in linearized seismology) gives

with ellipticity \leftrightarrow an illumination condition. This leads to imaging by filtered backprojection; can determine singularities of $V(\mathbf{x})$ from sings of $W(s, \omega)$.
- So: for model flightpaths γ, want to find $\Sigma:=\left\{\operatorname{det}\left(d \pi_{R}\right)=0\right\} \subset \mathcal{C}$ and, if $\Sigma \neq \emptyset$, study structure of π_{R}, π_{L} at Σ, and globally.

Doppler SAR: The DSAR transform

- At any point $\lambda_{0} \in \mathcal{C}$, if $\operatorname{det}\left(d \pi_{R}\right) \neq 0$, then $\operatorname{det}\left(d \pi_{L}\right) \neq 0$ as well, and \mathcal{C} is a local canonical graph.
- Adding the condition that π_{L} is 1-1 (\leftrightarrow Bolker condition in tomography, travel time injectivity condition in linearized seismology) gives

$$
(\mathcal{F})^{*} \mathcal{F} \in \Psi^{-1}\left(\mathbb{R}_{\mathbf{x}}^{2}\right),
$$

with ellipticity \leftrightarrow an illumination condition. This leads to imaging by filtered backprojection; can determine singularities of $V(\mathbf{x})$ from sings of $W(s, \omega)$.

- So: for model flightpaths γ, want to find $\Sigma:=\left\{\operatorname{det}\left(d \pi_{R}\right)=0\right\} \subset \mathcal{C}$ and, if $\Sigma \neq \emptyset$, study structure of π_{R}, π_{L} at Σ, and globally.

Doppler SAR: The DSAR transform

- At any point $\lambda_{0} \in \mathcal{C}$, if $\operatorname{det}\left(d \pi_{R}\right) \neq 0$, then $\operatorname{det}\left(d \pi_{L}\right) \neq 0$ as well, and \mathcal{C} is a local canonical graph.
- Adding the condition that π_{L} is 1-1 (\leftrightarrow Bolker condition in tomography, travel time injectivity condition in linearized seismology) gives

$$
(\mathcal{F})^{*} \mathcal{F} \in \Psi^{-1}\left(\mathbb{R}_{\mathbf{x}}^{2}\right)
$$

with ellipticity \leftrightarrow an illumination condition. This leads to imaging by filtered backprojection; can determine singularities of $V(\mathbf{x})$ from sings of $W(s, \omega)$.

- So: for model flightpaths γ, want to find $\Sigma:=\left\{\operatorname{det}\left(d \pi_{R}\right)=0\right\} \subset \mathcal{C}$ and, if $\Sigma \neq \emptyset$, study structure of π_{R}, π_{L} at Σ, and globally.

Main results: linear flight path

Theorem

If the flight path γ is a straight, horizontal line, then the canonical relation \mathcal{C} is a fold/ blowdown. I.e., where \mathcal{C} is not a local canonical graph, π_{L} has a Whitney fold singularity and π_{R} is a blowdown.

There is a left-right artifact about the projection, Γ of the flight path γ onto the ground. By beam forming to the left or right, the artifact can be eliminated, in which case the processed data W determines any scene V to the left or right of Γ, up to a possible C^{∞} smooth error.

- This is the same structure of \mathcal{C} as arises in conventional monostatic SAR for a linear flightpath.

Main results: linear flight path

- The Schwartz kernel of $(\mathcal{F})^{*} \mathcal{F}$ is then known to be a paired Lagrangian distribution, with $W F$ relation not only on the diagonal, but on another canonical graph, resulting in a strong artifact unless one beam forms (Felea (2007)):
$W F\left((\mathcal{F})^{*} \mathcal{F}\right) \subseteq \Delta_{T^{*} \mathbb{R}^{2}} \cup G r(\chi)$, where χ is the canonical involution induced by the reflection $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1},-x_{2}\right)$ about Γ
- $G r(\chi)$ intersects Δ cleanly in codimension 2, and

which has the same order -1 on both the Δ and $\operatorname{Gr}(\chi)$
- This results in a strong, nonremovable artifact if the transmitter is isotropic, but artifacts are avoidable via beam forming.

Main results: linear flight path

- The Schwartz kernel of $(\mathcal{F})^{*} \mathcal{F}$ is then known to be a paired Lagrangian distribution, with $W F$ relation not only on the diagonal, but on another canonical graph, resulting in a strong artifact unless one beam forms (Felea (2007)):
- $W F\left((\mathcal{F})^{*} \mathcal{F}\right) \subseteq \Delta_{T^{*} \mathbb{R}^{2}} \cup G r(\chi)$, where χ is the canonical involution induced by the reflection $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1},-x_{2}\right)$ about Γ.
- $G r(\chi)$ intersects Δ cleanly in codimension 2 , and which has the same order -1 on both the Δ and $\operatorname{Gr}(\chi)$
- This results in a strong, nonremovable artifact if the transmitter is isotropic, but artifacts are avoidable via beam forming.

Main results: linear flight path

- The Schwartz kernel of $(\mathcal{F})^{*} \mathcal{F}$ is then known to be a paired Lagrangian distribution, with $W F$ relation not only on the diagonal, but on another canonical graph, resulting in a strong artifact unless one beam forms (Felea (2007)):
- $W F\left((\mathcal{F})^{*} \mathcal{F}\right) \subseteq \Delta_{T^{*} \mathbb{R}^{2}} \cup G r(\chi)$, where χ is the canonical involution induced by the reflection $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1},-x_{2}\right)$ about Γ.
- $G r(\chi)$ intersects Δ cleanly in codimension 2, and

$$
(\mathcal{F})^{*} \mathcal{F} \in I^{-1,0}(\Delta, G r(\chi))
$$

which has the same order -1 on both the Δ and $G r(\chi)$.

- This results in a strong, nonremovable artifact if the transmitter is isotropic, but artifacts are avoidable via beam forming.

Main results: linear flight path

- The Schwartz kernel of $(\mathcal{F})^{*} \mathcal{F}$ is then known to be a paired Lagrangian distribution, with $W F$ relation not only on the diagonal, but on another canonical graph, resulting in a strong artifact unless one beam forms (Felea (2007)):
- $W F\left((\mathcal{F})^{*} \mathcal{F}\right) \subseteq \Delta_{T^{*} \mathbb{R}^{2}} \cup G r(\chi)$, where χ is the canonical involution induced by the reflection $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1},-x_{2}\right)$ about Γ.
- $G r(\chi)$ intersects Δ cleanly in codimension 2, and

$$
(\mathcal{F})^{*} \mathcal{F} \in I^{-1,0}(\Delta, G r(\chi)),
$$

which has the same order -1 on both the Δ and $G r(\chi)$.

- This results in a strong, nonremovable artifact if the transmitter is isotropic, but artifacts are avoidable via beam forming.

Main results: circular flight path

Theorem

If the flight path is circular, the DSAR map \mathcal{F} is associated to a canonical relation \mathcal{C} with a fold/cusp degeneracy. I.e., π_{L} is a Whitney fold and π_{R} has singularities of up to and including simple cusp type. For a scene V with suitable, explicitly describable support, or by suitable beam forming, the associated artifact can be eliminated, and then the processed data W determines V up to a possible smooth C^{∞} error.

- This is worse than what happens in monostatic SAR for a circular flight path, which is a fold/fold (Nolan-Cheney (2004), Felea (2007)).
- A similar geometry comes up in monostatic SAR for γ with a simple inflection point. There is a strong, nonremovable artifact but the non-diagonal nart of the WF relation is an onen umbrella, which is not even a smooth canonical relation (Felea-Nolan (2015), cf. Felea-Greenleaf (2010)).

Main results: circular flight path

Theorem

If the flight path is circular, the DSAR map \mathcal{F} is associated to a canonical relation \mathcal{C} with a fold/cusp degeneracy. I.e., π_{L} is a Whitney fold and π_{R} has singularities of up to and including simple cusp type. For a scene V with suitable, explicitly describable support, or by suitable beam forming, the associated artifact can be eliminated, and then the processed data W determines V up to a possible smooth C^{∞} error.

- This is worse than what happens in monostatic SAR for a circular flight path, which is a fold/fold (Nolan-Cheney (2004), Felea (2007)).
- A similar geometry comes up in monostatic SAR for γ with a simple inflection point. There is a strong, nonremovable artifact but the non-diagonal part of the WF relation is an open umbrella, which is not even a smooth canonical relation (Felea-Nolan (2015), cf. Felea-Greenleaf (2010)).

Main results: circular flight path

- If $\gamma(t)=(\rho \cos (t), \rho \sin (t), \rho h)$, then we show that the surface region

$$
\left\{\mathbf{x} \in \mathbb{R}^{2}:|\mathbf{x}|<\rho\left(1+h^{2}\right) / 2\right\}
$$

is artifact free.

- The DSAR artifacts are disjoint from the monostatic SAR artifacts for the same circular flight path, raising the possibility of combining DSAR and conventional SAR data for artifact free imaging.

Main results: circular flight path

- If $\gamma(t)=(\rho \cos (t), \rho \sin (t), \rho h)$, then we show that the surface region

$$
\left\{\mathbf{x} \in \mathbb{R}^{2}:|\mathbf{x}|<\rho\left(1+h^{2}\right) / 2\right\}
$$

is artifact free.

- The DSAR artifacts are disjoint from the monostatic SAR artifacts for the same circular flight path, raising the possibility of combining DSAR and conventional SAR data for artifact free imaging.

Main results: correction to start-stop approximation

- Recall range $R(t)=|\mathbf{x}-\gamma(t)|$ and $T_{t o t}=$ total travel time for wave, transmitter-scatterer-receiver. $T_{\text {tot }}$ is determined implicitly by

$$
c_{0} T_{t o t}=R(t)+R\left(t+T_{t o t}\right) .
$$

- The start-stop approximation is used to assume $R\left(t+T_{t o t}\right)=R(t)$

- We refine this, expanding

$$
c_{0} T_{t o t}=R(t)+R\left(t+T_{t o t}\right) \approx 2 R(t)+\dot{R}(t) \cdot T_{t o t}
$$

Main results: correction to start-stop approximation

- Recall range $R(t)=|\mathbf{x}-\gamma(t)|$ and $T_{\text {tot }}=$ total travel time for wave, transmitter-scatterer-receiver. $T_{t o t}$ is determined implicitly by

$$
c_{0} T_{t o t}=R(t)+R\left(t+T_{t o t}\right) .
$$

- The start-stop approximation is used to assume

$$
R\left(t+T_{t o t}\right)=R(t) \Longrightarrow T_{t o t} \approx \frac{2}{c_{0}} R(t)
$$

- We refine this, expanding

$$
c_{0} T_{\text {tot }}=R(t)+R\left(t+T_{\text {tot }}\right) \approx 2 R(t)+\dot{R}(t) \cdot T_{t o t}
$$

Main results: correction to start-stop approximation

- Recall range $R(t)=|\mathbf{x}-\gamma(t)|$ and $T_{t o t}=$ total travel time for wave, transmitter-scatterer-receiver. $T_{\text {tot }}$ is determined implicitly by

$$
c_{0} T_{t o t}=R(t)+R\left(t+T_{t o t}\right) .
$$

- The start-stop approximation is used to assume

$$
R\left(t+T_{t o t}\right)=R(t) \Longrightarrow T_{t o t} \approx \frac{2}{c_{0}} R(t)
$$

- We refine this, expanding

$$
c_{0} T_{t o t}=R(t)+R\left(t+T_{t o t}\right) \approx 2 R(t)+\dot{R}(t) \cdot T_{t o t}
$$

Main results: correction to start-stop approximation

- Solving for $T_{\text {tot }}$ and ignoring terms $\mathcal{O}\left(c_{0}^{-3}\right)$, we obtain the first order refinement of the start-stop approximation, namely that the total travel time is

$$
T_{t o t} \approx 2 c_{0}^{-1} R(t)+2 c_{0}^{-2} R(t) \dot{R}(t)
$$

- Under this refined approximation, the scattered wave arrives at time

- Using this, the refinement of the windowed W_{0} is

Main results: correction to start-stop approximation

- Solving for $T_{t o t}$ and ignoring terms $\mathcal{O}\left(c_{0}^{-3}\right)$, we obtain the first order refinement of the start-stop approximation, namely that the total travel time is

$$
T_{t o t} \approx 2 c_{0}^{-1} R(t)+2 c_{0}^{-2} R(t) \dot{R}(t)
$$

- Under this refined approximation, the scattered wave arrives at time

$$
t_{s c}=t+2 c_{0}^{-1} R(t)+2 c_{0}^{-2} R(t) \dot{R}(t)
$$

- Using this, the refinement of the windowed W_{0} is

Main results: correction to start-stop approximation

- Solving for $T_{\text {tot }}$ and ignoring terms $\mathcal{O}\left(c_{0}^{-3}\right)$, we obtain the first order refinement of the start-stop approximation, namely that the total travel time is

$$
T_{t o t} \approx 2 c_{0}^{-1} R(t)+2 c_{0}^{-2} R(t) \dot{R}(t)
$$

- Under this refined approximation, the scattered wave arrives at time

$$
t_{s c}=t+2 c_{0}^{-1} R(t)+2 c_{0}^{-2} R(t) \dot{R}(t)
$$

- Using this, the refinement of the windowed W_{0} is

$$
\begin{aligned}
& W_{1}(s, \omega)= \int \\
& e^{i \omega(t-s)} \ell\left(\omega_{0}(t-s)\right) \times \\
& \int \frac{e^{-i \omega_{0}\left(t-2\left[c_{0}^{-1} R(t)+c_{0}^{-2} R(t) \dot{R}(t)\right]\right)}}{(4 \pi R(t))\left(4 \pi R\left(t_{s c}\right)\right)} V(\mathbf{x}) d \mathbf{x} d t
\end{aligned}
$$

Main results: correction to start-stop approximation

- Into this we substitute the linear terms of the Taylor expansions

$$
R(t)=R(s)+\dot{R}(s)(t-s)+\cdots, \quad \dot{R}(t)=\dot{R}(s)+\ddot{R}(s)(t-s)+\cdots,
$$

- Calculate modulo $(t-s)^{2}$, this yields

where

and $a \in S_{1,0}^{0}$.

Main results: correction to start-stop approximation

- Into this we substitute the linear terms of the Taylor expansions

$$
R(t)=R(s)+\dot{R}(s)(t-s)+\cdots, \quad \dot{R}(t)=\dot{R}(s)+\ddot{R}(s)(t-s)+\cdots,
$$

- Calculate modulo $(t-s)^{2}$, this yields

$$
W_{1}(s, \omega)=\int e^{i \phi(s, \omega, \mathbf{x} ; \tau)} a(\mathbf{x}, s ; \tau) V(\mathbf{x}) d \tau d \mathbf{x}
$$

where

$$
\begin{aligned}
& \qquad \phi=\tau\left(\omega-\omega_{0}+2 \omega_{0}\left[c_{0}^{-1} \dot{R}(s)+c_{0}^{-2}\left(R(s) \ddot{R}(s)+\dot{R}(s)^{2}\right)\right]\right) \\
& \text { and } a \in S_{1,0}^{0} \text {. }
\end{aligned}
$$

Main results: correction to start-stop approximation

- Calculations show that the canonical relation $\mathcal{C}_{\text {mod }}$ parametrized by the new phase function ϕ is still of fold/blowdown type, with the same implications for artifacts and beam forming as were obtained under the start-stop approximation.
- Folds are structurally stable, so it is not surprising that a refined model results in a canonical relation whose projection π_{L} is still a Whitney fold
- However, blowdowns are not structurally stable, and so it is reassuring that the conclusions obtained under the start-stop approximation remain valid under this better approximation.

Main results: correction to start-stop approximation

- Calculations show that the canonical relation $\mathcal{C}_{\text {mod }}$ parametrized by the new phase function ϕ is still of fold/blowdown type, with the same implications for artifacts and beam forming as were obtained under the start-stop approximation.
- Folds are structurally stable, so it is not surprising that a refined model results in a canonical relation whose projection π_{L} is still a Whitney fold.
- However, blowdowns are not structurally stable, and so it is reassuring that the conclusions obtained under the start-stop approximation remain valid under this better approximation.

Main results: correction to start-stop approximation

- Calculations show that the canonical relation $\mathcal{C}_{\text {mod }}$ parametrized by the new phase function ϕ is still of fold/blowdown type, with the same implications for artifacts and beam forming as were obtained under the start-stop approximation.
- Folds are structurally stable, so it is not surprising that a refined model results in a canonical relation whose projection π_{L} is still a Whitney fold.
- However, blowdowns are not structurally stable, and so it is reassuring that the conclusions obtained under the start-stop approximation remain valid under this better approximation.

Future directions

Some open questions:

- For linear flight path, can we completely remove start-stop approximation, working with the exact, implicitly defined $T_{t o t}$? For a circular path, even the first order correction described above remains to be done.
- Can we obtain the fold/cusp structure, and a reasonable description of an artifact-free zone, for a general flightpath with nonzero curvature?
- Can we make the model more physically realistic? What are the effects of multiple scattering? Can we quantify the degradation from a transmitted wave not being pure single-frequency? Etc.

Thank you!

Future directions

Some open questions:

- For linear flight path, can we completely remove start-stop approximation, working with the exact, implicitly defined $T_{t o t}$? For a circular path, even the first order correction described above remains to be done.
- Can we obtain the fold/cusp structure, and a reasonable description of an artifact-free zone, for a general flightpath with nonzero curvature?
- Can we make the model more physically realistic? What are the effects of multiple scattering? Can we quantify the degradation from a transmitted wave not being pure single-frequency? Etc.

Thank you!

Future directions

Some open questions:

- For linear flight path, can we completely remove start-stop approximation, working with the exact, implicitly defined $T_{t o t}$? For a circular path, even the first order correction described above remains to be done.
- Can we obtain the fold/cusp structure, and a reasonable description of an artifact-free zone, for a general flightpath with nonzero curvature?
- Can we make the model more physically realistic? What are the effects of multiple scattering? Can we quantify the degradation from a transmitted wave not being pure single-frequency? Etc.

Thank you!

Future directions

Some open questions:

- For linear flight path, can we completely remove start-stop approximation, working with the exact, implicitly defined $T_{t o t}$? For a circular path, even the first order correction described above remains to be done.
- Can we obtain the fold/cusp structure, and a reasonable description of an artifact-free zone, for a general flightpath with nonzero curvature?
- Can we make the model more physically realistic? What are the effects of multiple scattering? Can we quantify the degradation from a transmitted wave not being pure single-frequency? Etc.

Thank you!

