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Two spectral problems related to scattering theory.

(A) Dissipative eigenvalues . Let K ⊂ Rd , d ≥ 2, be a bounded non-empty domain

and let Ω = Rd \ K̄ be connected. We suppose that the boundary Γ of K is C∞.
Consider the boundary problem

utt −∆u = 0 in R+
t × Ω,

∂νu − γ(x)ut = 0 on R+
t × Γ,

u(0, x) = f0, ut(0, x) = f1

(1)

with initial data f = (f1, f2) ∈ H1(Ω)× L2(Ω) = H. Here ν is the unit outward normal
to Γ pointing into Ω and γ(x) ≥ 0 is a C∞ function on Γ. The solution of (1) is given
by V (t)f = etG f , t ≥ 0, where V (t) is a semi-group in H whose generator has a
domain D(G ) which is the closure in the graph norm of functions
(f1, f2) ∈ C∞(0)(Rn)× C∞(0)(Rn) satisfying the boundary condition ∂ν f1 − γf2 = 0 on Γ.
Lax and Phillips proved that the spectrum of G in Re z < 0 is formed by isolated
eigenvalues with finite multiplicity.
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Notice that if Gf = λf with f = (f1, f2) 6= 0 and ∂ν f1 − γf2 = 0 on Γ, we get{
(∆− λ2)f1 = 0 in Ω,

∂ν f1 − λγf1 = 0 on Γ.
(2)

Moreover, u(t, x) = V (t)f = eλt f (x),Reλ < 0, is a solution of (1) with
exponentially decreasing global energy. Such solutions are called asymptotically
disappearing and they perturb the inverse scattering problems. We proved that if we
have a least one eigenvalue λ of G with Reλ < 0, then the wave operators W± are not
complete, that is Ran W− 6= Ran W+ and we cannot define the scattering operator S
by S = W−1

+ W−. We may define S by using another evolution operator. For Maxwell
system we study the same problems for the system

∂tE = curlB, ∂tB = −curlE in R+
t × Ω,

Etan − γ(x)(ν ∧ Btan) = 0 on R+
t × Γ,

E (0, x) = e0(x), B(0, x) = b0(x).

(3)
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(B) Interior transmission eigenvalues.

We will study another important spectral problem leading to non self-adjoint operator.
The inhomogeneous medium in K is characterised by a smooth function n(x) > 1 in
K̄ , called contrast. The inverse scattering problem of the reconstruction of K based on
the linear sampling method of Colton and Kress breaks down for frequencies k ∈ R
which are interior transmission eigenvalues (ITE). This means that we have non-trivial
solution (u, v) 6= 0 of the problem

∆u + k2u = 0 in K ,

∆v + k2n(x)v = 0 in K ,

u = v , ∂νu = ∂νv on Γ

(4)

Moreover, we may have complex (ITE) and all (ITE) are important for the
reconstruction of n(x).
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We consider a more general setting. A complex number λ ∈ C, λ 6= 0, is called
interior transmission eigenvalue (ITE) if the following problem has a non-trivial
solution (u, v) 6= 0: 

(
∇c1(x)∇+ λ2n1(x)

)
u = 0 in K ,(

∇c2(x)∇+ λ2n2(x)
)
v = 0 in K ,

u = v , c1∂νu = c2∂νv on Γ,

(5)

where ν denotes the exterior unit normal to Γ, cj(x), nj(x) ∈ C∞(K ), j = 1, 2 are
strictly positive real-valued functions. For the analysis of (ITE) one imposes the
condition

d(x) = c1(x)n1(x)− c2(x)n2(x) 6= 0, ∀x ∈ Γ. (6)

Partial cases: 1) isotropic case: c1(x) = c2(x), ∂νc1(x) = ∂νv2(x), ∀x ∈ Γ.
2) anisotropic case: c1(x) 6= c2(x), ∀x ∈ Γ. In the isotropic case the celebrated
complementing condition of Agmon, Douglas and Nirenberg is not satisfied.
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Problems

(I) Prove the discreteness of the spectrum in some subset U ⊂ C.

(II) For (ITE) find eigenvalues-free domains having the form

| Imλ| ≥ C (1 + |Reλ|)δ+ , |Reλ| ≥ 1, 0 ≤ δ+ < 1.

1 ≥ |Reλ| ≥ CN(1 + | Imλ|)−N , | Imλ| ≥ 1, ∀N ∈ N.

In some cases we have δ+ = 0. Find for (A) similar eigenvalues-free domains.

(III) Establish a Weyl asymptotic for (ITE) with remainder Oε(rd−κ+ε), arbitrary
0 < ε� 1 and 0 < κ ≤ 1 for the counting function

N(r) = #{λj -(ITE ) : |λj | ≤ r} = crd +Oε(rd−κ+ε), r →∞.

In this talk we treat the problems (II) and (III). The problem (I) is easier to deal with
and we can find an operator A such that A− z is Fredholm one in a suitable regions.
For transmission eigenvalues (II) and (III) are connected and κ = 1− δ+.

7/43



Semi-classical Dirichlet-to-Neumann map

Set λ =
√
z
h , so λ2 = z

h2 . Given f ∈ Hs(Γ), consider the problem{
(P(h)− z)u = 0 in K ,

u = f on Γ.
(7)

Here P(h) = − h2

n(x)∇c(x)∇, 0 < h� 1, is a semiclassical parameter and
z ∈ Z1 ∪ Z2 ∪ Z3, where

Z1 = {Re z = 1, 0 ≤ Im z ≤ 1}, Z1(δ) = Z1 ∩ {Im z ≥ hδ},
Z2 = {Re z = −1, 0 ≤ Im z ≤ 1}, Z3 = {|Re z | ≤ 1, Im z = 1}.

Figure 1: Contours Z1(δ),Z2,Z3

hδ

Z1(δ)
Z2

Z3
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Region Z1(1/2− ε) ∪ Z2 ∪ Z3

Let Dν = −i∂ν , and let γ0 denote the trace on Γ. It is important to construct a
semi-classical parametrix for the problem (7) for z ∈ Z1(1/2− ε) ∪ Z2 ∪ Z3 with
0 < ε� 1 and to study the semi-classical Dirichlet-to-Neumann map (DN)

N (z , h) : Hs
h(Γ) 3 f −→ γ0hDνu ∈ Hs−1

h (Γ)

for domains with arbitrary geometry. Here Hs
h(Γ) is the semi-classical Sobolev space

with norm ‖〈hD〉su‖L2(Γ). By the estimate of the resolvent (h2GD − z)−1 of the
Dirichlet Laplacian GD , it is easy to see that N (z , h) is a meromorphic function with
poles on R+

G. Vodev (2014) constructed a semi-classsical parametrix for (7) as a FIO with complex
phase ϕ(x , ξ′; z) in a small neighborhood of the boundary Γ. The eikonal equation and
the transport equations can be solved only modulo O(xNd ), ∀N � 1, xd = dist(x , Γ).
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Next we use some h−pseudo-differential operators.
Set x = (x ′, xd), ξ = (ξ′, ξd). We say that a(x ′, ξ′; h) ∈ Sk

δ (Γ) if the following
conditions are satisfied:

|∂′αx ∂
β
ξ′a(x , ξ′; h)| ≤ Cα,βh

−δ(|α|+|β|)〈ξ′〉k−|β|, ∀α,∀β,

where 〈ξ′〉 = (1 + |ξ′|2)1/2. For a ∈ Sk,m
δ (Γ), we consider the operator

(
Oph(a)f

)
(x) = (2πh)−d+1

∫ ∫
e i〈x

′−y ′,ξ′〉/ha(x ′, ξ′; h)f (y ′)dydξ′.

We have a calculus for the h−pseudodifferential operators with symbols in Sk
δ if

0 < δ < 1/2. In particular, if a ∈ S1
δ , b ∈ S−1

δ , one gets

‖Oph(a)Oph(b)− Oph(ab)‖L2(Γ) ≤ Ch1−2δ.
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Close to the boundary introduce geodesic normal coordinates (x ′, xd) in a
neighborhood of a point x0 ∈ Γ with xd = 0 on Γ(we take xd = dist(x , Γ)). Let

n0(x ′) = n(x ′,0)
c(x ′,0) > 0. The symbol of −h2∆ becomes

ξ2
d + r(x , ξ′) + hq(x , ξ) + h2q0(x)

and r(x ′, 0, ξ′) = r0(x ′, ξ′) is the principal symbol of the Laplace-Beltrami operator
−h2∆|Γ on Γ. For z ∈ Z1 ∪ Z2 ∪ Z3, let

ρ(x ′, ξ′, z) =
√
n0(x ′)z − r0(x ′, ξ′) ∈ C∞(T ∗(Γ)), Im ρ > 0

be the root of the equation

ρ2 + r0(x ′, ξ′)− n0(x ′)z = 0

.
It is easy to see that ρ ∈ S1

1/2−ε, if z ∈ Z1(1/2− ε), ρ ∈ S1
0 , if z ∈ Z2 ∪ Z3.

11/43



Proposition 1 (Vodev, (2014))

Given 0 < ε� 1, there exists 0 < h0(ε)� 1 such that for z ∈ Z1(1/2− ε) and
0 < h ≤ h0(ε) we have

‖N (z , h)− Oph(ρ+ hb)‖L2(Γ)→H1
s (Γ) ≤

Ch√
| Im z |

, (8)

where C > 0 is independent of h, z , ε and b ∈ S0
0 does not depend on z , h and the

function n0(x ′). Moreover, for z ∈ Z2 ∪ Z3 the above estimate holds with | Im z |
replaced by 1.

The analysis of N (z , h) in the region

Σ = {Re z = 1, C0h ≤ | Im z | ≤ C1h
1/2−ε},

is a more difficult problem. Set r#(x ′, ξ′) = n−1
0 (x ′)r0(x ′, ξ′) and introduce

H = {(x ′, ξ′) ∈ T ∗(Γ) : r#(x ′, ξ′) < 1}, G = {(x ′, ξ′) ∈ T ∗(Γ) : r#(x ′, ξ′) = 1},

E = {(x ′, ξ′) ∈ T ∗(Γ) : r#(x ′ ξ′) > 1}.
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Region C0h ≤ | Im z | ≤ C1h
1/2−ε

In general, for boundary with arbitrary geometry it is not possible to construct a
semi-classical parametrix for data supported in a neighbourhood ω of G. For general
obstacles Vodev (2017),(2019) constructed a parametrix in the zone
C1h

2/3−ε ≤ Im z ≤ C2h
1/2−ε and for z ∈ Σ for data supported outside ω. The strictly

convex case has been treated previously by Sjöstrand (2014) for
C1h

2/3 ≤ Im z ≤ C2h
2/3. Let χ0

δ ∈ C∞0 (T ∗(Γ)) be supported in
{(x ′, ξ′) : |r#(x ′, ξ′)− 1| ≤ 2δ2}, χ0

δ = 1 for {(x ′, ξ′) : |r#(x ′, ξ′)− 1| ≤ δ2}.

Theorem 1 (Vodev, (2017))

Let 0 < ε < 1/2 be arbitrary. Then for every 0 < δ � 1 there are constants
Cδ > 1, 0 < cε,δ � 1 such that we have

‖N (z , h)− Oph(ρ(1− χ0
δ) + hb)‖L2(Γ)→H1

h (Γ) ≤ Cδ (9)

for Re z = 1, Cδh ≤ | Im z | ≤ h1/2−ε, 0 < h ≤ cε,δ, where C > 0 is a constant
independent of h, δ, ε and b ∈ S0

0 (Γ) is independent of h, δ and the function n0(x ′).

By energy method Vodev showed that ‖N (z , h)Oph(χ0
δ)‖L2(Γ)→H1

h (Γ) = O(δ).
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Exterior Dirichlet-to-Neumann map

For the analysis of the dissipative eigenvalues we need to apply the
exterior DIrichlet-to-Neumann map Next(z , h) defined as

Next(z , h) : Hs
h(Γ) 3 f −→ γ0hDνu ∈ Hs−1

h (Γ),

where u is the outgoing solution of the problem

(h2∆ + n0(x ′)z)u = 0 in Ω = Rd \ K̄ , u|Γ = f .

The operator Next(z , h) is a meromorphic function related to the cut-off outgoing
resolvent χ(h2GD − z)−1χ with poles in the half-plane {Im z < 0}. The result similar
to Prop.1 was proved by -P. (2016). For strictly convex obstacles K and
Re z ∼ 1, | Im z | ≤ c0h

2/3 Sjöstrand (2014) obtained results similar to Th. 1. Finally,
the case h1/2−ε ≤ Im z ≤ c0h

2/3 for strictly convex obstacles has been covered by -P.
by a semi-classical parametrix construction inspired by that of Vodev. Thus the result
of Th. 1 holds for Next(z , h), −c0h

2/3 ≤ Im z ≤ h1/2−ε and strictly convex obstacles.
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Eigenvalues-free regions

First we treat the problem with dissipative boundary conditions ∂νu − γ(x)ut = 0. If
γ(x) ≡ 1 for x ∈ Γ in the case when K is a ball there are no eigenvalues. Thus it is
convenient to consider two cases: (i) 1− γ(x) > 0,∀x ∈ Γ, (ii) 1− γ(x) < 0,∀x ∈ Γ.

Theorem 2 (-P. (2016))

In the case (i) for every ε, 0 < ε� 1, the eigenvalues of G lie in the region

Λε = {λ ∈ C : |Reλ| ≤ Cε(| Imλ|
1
2

+ε + 1), Reλ < 0}.

In the case (ii) for every ε, 0 < ε� 1, and every N ∈ N the eigenvalues of G lie in the
region Λε ∪RN , where

RN = {| Imλ| ≤ CN(1 + |Reλ|)−N , Reλ < −R < 0}.

For strictly convex obstacles K we improve the above result in the case (ii).

Theorem 3 (-P. (2016))

Assume K strictly convex. In the case (ii) for every N ∈ N the eigenvalues of G lie in
the region RN ∪ {|λ| < R,Reλ < 0}.
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Figure 2: Eigenvalues for 0 < γ(x) < 1
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Figure 3: Eigenvalues for γ(x) > 1

Weaker results have been obtained by A. Majda (1976). For the Maxwell system with
dissipative boundary conditions the results of Th. 2 have been established by F.
Colombini, -P. and J. Rauch (2017).
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Passing to the (ITE), one has the following

Theorem 4 (Vodev, (2014), (2017))

Assume d(x) = (c1n1 − c2n2)(x) 6= 0, x ∈ Γ. Assume either the condition
(a) : c2(x) = c1(x), ∂νc1(x) = ∂νc2(x), n1(x) 6= n2(x), ∀x ∈ Γ or

(b) : (c1(x)− c2(x))d(x) < 0, ∀x ∈ Γ.

Then there are there are no (ITE) in the region {λ ∈ C : |Reλ| ≥ 1, | Imλ| ≥ C}. In
the case (a) there are no eigenvalues in {λ ∈ C : |Reλ| ≤ 1, | Imλ| ≥ C̃}. In the case
(b) for every N ∈ N there are no eigenvalues in

{1 ≥ |Reλ| ≥ CN(1 + | Imλ|)−N , | Imλ| ≥ C̃}. (10)

Assume the conditions

(c) : (c1(x)− c2(x))d(x) > 0, (c ′) :
n1(x)

c1(x)
6= n2(x)

c2(x)
, ∀x ∈ Γ.

Then there are there are no (ITE) in the region

{| Imλ| ≥ C log(|Reλ|+ 2)}. (11)
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• If only ((c1(x)− c2(x))d(x) > 0 is satisfied, Vodev established an eigenvalue-free
region

{| Imλ| ≥ C (1 + |Reλ|)3/5}.

• Previous parabolic eigenvalues-free region in the case c1 ≡ c2 ≡ n2 ≡ 1 and
n1(x) > 1 in K has been obtained by M. Hitrik, K. Krypchyk, P. Ola and L. Päivärinta
(2011).
• Colton and Leung (2012) examined the case of the ball {x ∈ R3 : |x | ≤ 1} when
c1 ≡ c2 ≡ n2 ≡ 1 and n1(r) depends only on |x | = r . Then if n = const 6= 1 and

√
n

is rational, there exists an infinite sequence of (ITE) λk = αk + β, k ∈ N with
α > 0, Imβ 6= 0 . Thus the result in (a) is optimal.
• Colton, Leung and Meng (2016) proved in the case above with n1(r) 6= const that if

n1(1) = 1,
∫ 1

0

√
n1(t)dt 6= 1, and either n′1(1) or n1(1) are not zero, then for any

C > 0 the (ITE) are not located in a strip {| Im z | ≤ C}. Consequently, the parabolic
regions above cannot be improved to an eigenvalue-free strip.
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Illustration of the idea of the proof

First consider the case c1 = c2, ∂νc1 = ∂νc2, x ∈ Γ. Let z ∈ Z1(1− 1/2)∪ Z2 ∪ Z3 and
let (u, v) be an eigenfunction. Set f = u|Γ = v |Γ. Let ρj , j = 1, 2, be the roots of the
equations ρ2 = −r0(x ′, ξ′) + nj(x

′, 0)z with Im ρj > 0. By using the Prop. 1, the
analysis of the location of (ITE) is reduced to prove that the estimate

‖Oph(ρ1 − ρ2)f ‖H1
h (Γ) ≤

Ch√
| Im z |

‖f ‖L2(Γ)

yields f = 0. Next for z ∈ Z1(1/2− ε) the symbols ρj satisfy the estimates

|∂αx ′∂
β
ξ′ρj | ≤ Cα,β| Im z |1/2−|α|−|β|, |α|+ |β| ≥ 1,

provided |ξ′| ≤ C0, while for |ξ′| ≥ C0 we have |∂αx ′∂
β
ξ′ρj | ≤ Cα,β〈ξ′〉1−|β|. Thus

ρ ∈ S1
1/2−ε, since | Im z | ≥ h1/2−ε. On the other hand, for z ∈ Z2 ∪Z3 we have ρj ∈ S1

0 .
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Moreover,

ρ1 − ρ2 =
ρ2

1 − ρ2
2

ρ1 + ρ2
=

z(n1(x ′)− n2(x))

ρ1 + ρ2

and since n1(x ′)− n2(x) 6= 0, ∀x ∈ Γ, the operator Oph(ρ1 − ρ2) is elliptic and
(ρ1 − ρ2)−1 ∈ S1

1/2−ε. Thus

‖(Oph(ρ1 − ρ2))−1Oph(ρ1 − ρ2)f ‖L2(Γ) ≤ ‖Oph(ρ1 − ρ2)f ‖H1
h (Γ)

≤ Ch√
| Im h|

‖f ‖L2(Γ)

and ∥∥((Oph(ρ1 − ρ2))−1Oph(ρ1 − ρ2)− Id
)
f
∥∥
L2(Γ)

≤ Ch1−2δ‖f ‖L2(Γ).

For small 0 < h ≤ h0(ε) we deduce f = 0. Then h2λ2 = z = 1 + i Im z implies easily
that we have no (ITE) in the region

{λ ∈ C : | Imλ| ≥ C (1 + |Reλ|)1/2+ε}.
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The analysis of the case c1(x) 6= c2(x) is more complicated. Recall that
d(x) = (c1n1 − c2n2)(x) 6= 0 on Γ. We must study the symbol

ζ = c1ρ1 − c2ρ2 =
d [z − (c2

1−c2
2 )

d r0]

c1ρ1 + c2ρ2
.

For z ∈ Z2 we have Re z = −1, 0 ≤ Im z ≤ 1. Then, for Im z = 0 we have ζ = 0 if

−1− c1 + c2

d2
[(c1 − c2)d ]r0 = 0.

This could happen at some points if (c1 − c2)d < 0, that is in the case (b). This leads
to the existence of infinitely many eigenvalues located very close to the imaginary axis.
The same phenomenon appear for the dissipative eigenvalues in Th. 2, Th. 3 above,
when γ(x) > 1 and infinitely many eigenvalues are concentrate around R−. Both
phenomena are completely similar to Rayleigh surface waves for the linear elasticity
system.
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The analysis of the eigenvalues of G follows a similar argument. In the case (i) we
have 0 < ε0 ≤ γ(x) ≤ 1− ε0, ε0 > 0, ∀x ∈ Γ. If u 6= 0 is an eigenfunction of G with

eigenvalue λ ∈ {Re z < 0}, then f = γ0u 6= 0. Set λ = i
√
z

h . The boundary condition
for the eigenfunction becomes

Next(z , h)f − γ
√
zf = 0.

According to Prop. 1 for Next(z , h), for 1 ≥ Im z ≥ h1/2−ε we have

‖Oph(ρ)f − γ
√
zf ‖L2(Γ) ≤ C

h√
| Im z |

‖f ‖L2(Γ), (12)

where for z ∈ Z2 ∪ Z3 the estimate holds with | Im z | replaced by 1. Consider the
symbol

c(x ′, ξ′; z) = ρ(x ′, ξ′; z)− γ
√
z =

(1− γ2)z − r0
ρ(x ′, ξ′, z) + γ

√
z
.

We show that c(x ′, ξ′; z) is elliptic and we follow a similar argument. Notice that if
γ(x) > 1,∀x ∈ Γ, for z ∈ Z2 we have points, where the symbol c vanishes.
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Location of the (ITE) for the inhomogenenous Maxwel system

Let E , Ê ,H, Ĥ be vector-values functions in K ⊂ R3 . We say that λ ∈ C \ {0} is a
(ITE) if (E , Ê ,H, Ĥ) 6= 0 satisfy the system{

curlE = iλµH, curlH = −iλγE , x ∈ K ,

curl Ê = iλµ̂Ĥ, curl Ĥ = −iλγ̂Ê , x ∈ K ,
(13)

with boundary conditions

ν ∧ E = ν ∧ Ê , ν ∧ H = ν ∧ Ĥ, x ∈ Γ. (14)

Here ν(x) is the exterior unit normal vector on Γ at x ∈ Γ, and γ(x), γ̂(x), µ(x), µ̂(x)
are positive smooth functions. We assume that

d(x) = γ(x)µ̂(x)− γ̂(x)µ(x) 6= 0 for x ∈ Γ.
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There are many works treating the discreetness of the (ITE) (Haddar (2004), Chesnel
(2012), Cakoni and al. (2015), Cakoni and H-M.Nguyen (2020)). In the last work one
proves also that ∀ε > 0 there are no (ITE) in the region

{λ ∈ C : | Imλ| ≥ ε|Reλ|, |Reλ| ≥ Cε > 0},

assuming d 6= 0 and the complementing condition of Agmon, Douglas, Nirenberg
µ 6= µ̂, γ 6= γ̂. We will discuss only the isotropic case.

Theorem 5 (-P. (2020))

Assume γ(x) 6= γ̂(x), µ(x) = µ̂(x), ∂νµ(x) = ∂ν µ̂(x), x ∈ Γ. Then there exists a
constant C > 0 such that there are no (ITE) in the region

{λ ∈ C : | Imλ| ≥ C (1 + |Reλ|)3/5}.

The proof is more complicated than that for the wave equation since we must deal
with a (5× 5) system for Etan|Γ = Êtan|Γ, Enor |Γ, Ênor |Γ and the boundary conditions
contain N (z , h) and other pseudodifferential operators.
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Weyl asymptotics for the (ITE)

To obtain a Weyl formula introduce the coefficients

τj =
ωd

(2π)d

∫
K

(nj(x)

cj(x)

)d/2
dx , j = 1, 2,

where ωd is the volume of the unit ball in Rd . In the anisotropic case
c1(x) = 1, n1(x) = 1, c2(x) 6= 1, c2(x)n2(x) 6= 1, ∀x ∈ K̄ , the asymptotics

N(r) = (τ1 + τ2)rd + o(rd), r → +∞. (15)

has been obtained by Lakshatanov and Vainberg (2012) under some additional
assumptions which guarantee that the boundary problem is parameter-elliptic. The
isotropic case c1 = c2, ∂νc1 = ∂νc2, x ∈ Γ is more difficult since the corresponding
operator A has domain

D(A) = {(u, v) ∈ L2(K )× L2(K ) : ∆u ∈ L2(K ), ∆v ∈ L2(K ),

u − v = 0, ∂ν(u − v) = 0 on Γ}.

and the problem is not parameter elliptic.
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In this case M. Fairman (2014) and L. Robbiano (2013) obtained (15) by establishing
the asymptotics ∑

j

1

|λj |p + t
= αt

d
2p
−1 + o(t

d
2p
−1), t → +∞, (16)

where p ∈ N is sufficiently large. The formula (15)-(16) have been obtained also in a
recent work of H-M. Nguyen and Q-H. Hguyen (2020) for the (ITE) related to the
system {

div (A1(x)∇u)− λn1(x)u = 0, in K ,

div (A2(x)∇v)− λn2(x)v = 0, in K ,
(17)

where A1(x),A2(x) are symmetric positive defined matrices. By using (16), an
application of the Tauberian theorem of Hardy-Littlewood yields (15). By this
argument one obtains a very week estimate for the remainder. To get better results, it
is important to take into account the eigenvalues-free regions and to apply different
techniques.
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Theorem 6 (-P., Vodev (2017))

Assume d(x) 6= 0, x ∈ Γ. Assume either the condition
c1(x) = c2(x), ∂νc1(x) = ∂νc2(x), ∀x ∈ Γ or the condition c1(x) 6= c2(x), ∀x ∈ Γ.
Then for every 0 < ε� 1 we have the asymptotics

N(r) = (τ1 + τ2)rd +Oε(rd−κ+ε), r → +∞, (18)

where κ = 1 if n1(x)
c1(x) 6=

n2(x)
c2(x) , ∀x ∈ Γ. If the latter condition is not satisfied, the

asymptotics (18) holds with κ = 2/5.

• In fact we prove a more general result with κ = 1− δ+ assuming that we have a
region {|Reλ| ≥ 1, | Imλ| ≥ C (1 + |Reλ|)δ+}, 0 ≤ δ+ < 1 without eigenvalues and
we have a bounded inverse ‖T−1(λ)‖ ≤ C |λ|−M in this region for the operator T (λ)
introduced below.
• The optimal result should be to have a remainder O(rd−1) but this is an
open problem. This result is known only for the interval
K = {x ∈ R : |x | ≤ 1}(Silvester, Ha and P. Stefanov (2013)).
• Our proof is inspired by the work of F. Cardoso, G. Popov and G. Vodev (2011)
treating the asymptotics of the resonances for exterior transmission problem.
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Idea of the proof of Theorem 6

We pass to a semi-classical setting. Set Z = {z ∈ C, 1
2 ≤ |Re z | ≤ 3, | Im z | ≤ 1} and

consider for z ∈ Z and 0 < h� 1 the operator

hT (z/h2) := c1N1(z , h)− c2N2(z , h),

where the DN-maps Nj(z , h) were defined in the previous section.

Let G
(j)
D , j = 1, 2, be the Dirichlet self-adjoint realization of the operator

Lj := −n−1
j ∇cj∇ in the space Hj = L2(K , nj(x)dx). Set H = H1 ⊕ H2. Let R(λ) be

the resolvent of the transmission boundary problem. We omit in the notation j = 1, 2.

Consider the operators

N (z , h)Oph(1− χ)f = Ñ (z , h)f − γ0Dν(h2GD − z)−1 c

n
Oph(p)f ,

F (z , h) = N (z , h)− Ñ (z , h) = N (z , h)Oph(χ)− γ0Dν(h2GD − z)−1 c

n
Oph(p),

where χ(x ′, ξ′) = Φ(δ0r0(x ′, ξ′)) with Φ(σ) = 1 for |σ| ≤ 1 and Φ(σ) = 0 for |σ| ≥ 2,
while 0 < δ0 � 1 is small enough. Here
Ñ (z , h) is the parametrix of the DN operator N (z , h)Oph(1− χ) in the domain where

r0(x ′, ξ′) > 1
δ0

and p is some symbol with behavior O(hN), N � 1.
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The operator F (z , h) is meromorphic with values in trace class operators and we
denote by µj(F (z , h)) its characteristic eigenvalues.

Lemma 1

If z does not belong to spec h2GD , then for every integer 0 ≤ m ≤ N/4 we have

µj(F (z , h)) ≤ C

δ(z , h)

(
hj1/(d−1)

)−2m
, ∀j ,

where δ(z , h) := min{1, dist {z , spec h2GD}} > 0 and C > 0 depends on m and N but
is independent of z , h, j .

Let
T (λ) := c1γ0DνK1(λ)− c2γ0DνK2(λ),

where Kj(λ)f = u, and u is the solution of the problem{(
Lj − λ

)
u = 0 in K ,

u = f on Γ.
.
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Theorem 7

Assume that T (λ)−1 is a meromorphic function with residue of finite rank. Let δ ⊂ C
be a simple closed positively oriented curve which avoids the eigenvalues of G

(j)
D ,

j = 1, 2, as well as the poles of T (λ)−1. Then we have the identity

trH (2πi)−1

∫
δ
R(λ)dλ =

2∑
j=1

trHj
(2πi)−1

∫
δ
(G

(j)
D − λ)−1dλ

−trL2(Γ) (2πi)−1

∫
δ
T (λ)−1 dT (λ)

dλ
dλ. (19)

Let us mention that if R(λ) is an operator-valued meromorphic function with residue
of finite rank, the multiplicity of a pole λk ∈ C of R(λ) is defined by

mult (λk) = rank (2πi)−1

∫
|λ−λk |=ε

R(λ)dλ, 0 < ε� 1.

On the left hand side of (20), the rank is equal to the trace and we obtain the sum of
the mutiplicities of the (ITE) lying in the domain ωδ ⊂ C bounded by δ. The terms

with (G
(j)
D − λ)−1 yield the sum of the multiplicities of eigenvalues of G

(j)
D in ωδ
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It is possible to construct invertible, bounded operator E (z , h) : Hs
h → Hs+1

h with
bounded inverse E (z , h)−1 : Hs

h → Hs−1
h , ∀s ∈ R so that

hT (z/h2) = E−1(z , h)(I +K(z , h)),

(hT (z/h2))−1 = (I +K(z , h))−1E (z , h)

with a trace class operator K(z , h). Moreover, the operators E (z , h),E−1(z , h) are
holomorphic with respect to z in Z , while K(z , h) is a
memoromorphic operator-valued function in this region.
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Set gh(z) := det(I +K(z , h)) and denote by
Mδ(h) the number of the poles {λk} of R(λ) such that h2λk are in ωδ. Similarly, we

denote by M
(j)
δ (h) the number of the eigenvalues νk of G

(j)
D such that h2νk ∈ ωδ. Then

using the analyticity of E−1(z , h) and the well-known formula

tr (I +K(x , h))−1∂K(z , h)

∂z
=

∂

∂z
log det(I +K(z , h)),

we get from (19) the following

Lemma 2

Let δ ⊂ Z be closed positively oriented curve which avoid the eigenvalues of

h2G
(j)
D , j = 1, 2 as well as the poles of T (z/h2)−1. Then we have

Mδ(h) = M
(1)
δ (h) + M

(2)
δ (h) +

1

2πi

∫
δ

d

dz
log gh(z)dz . (20)

Observe that z0 ∈ Z \ spec (h2G
(1)
D ) ∪ spec (h2G

(2)
D ) is a zero of gh(z) if and only if z0

is a pole of R(z/h2) and hence z0/h
2 is an (ITE).
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Lemma 3

Let 0 < κ ≤ 1 be as in Theorem 6. Then, given any 0 < ε� 1, the operator
I +K(z , h) is invertible on L2(Γ) for z ∈ Z , | Im z | ≥ hκ−ε and the inverse operator
satisfies in this region the estimate∥∥∥(I +K(z , h))−1

∥∥∥
L2→L2

≤ Cεh
−`

with constants C > 0, ` > 0. For these values of z we have

log
1

|gh(z)|
≤ Cεh

1−d−ε, 0 < ε� 1. (21)

Moreover, for these z the function gh(z) is holomorphic and we have∣∣∣ d
dz

log gh(z)
∣∣∣ ≤ Cεh

1−d−2ε

| Im z |
(22)

for z ∈W := {z ∈ C : 2/3 ≤ |Re z | ≤ 5/2, 2hκ−ε ≤ | Im z | ≤ 1/2}.
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Proposition 2

For every 0 < ε� 1 and A > 0, independent of h, we have the asymptotics

I (h) := ]
{
zk , zk/h

2 is (ITE) : 1− Ahκ−ε ≤ |Re zk | ≤ 2 + Ahκ−ε, |Im zk | ≤ hκ−ε
}

= (2d/2 − 1)(τ1 + τ2)h−d +Oε,A(h−d+κ−3ε). (23)

We will discuss only the case of (ITE) with Re zk > 0, since the case Re zk < 0 is
similar (and even simpler since the function gh(z) does not have poles in Re z < 0).
Consider the points

w±1 = 1− Ahκ−ε ± i

3
, w±2 = 2 + Ahκ−ε ± i

3
,

w̃±1 = 1− Ahκ−ε ± i3hκ−ε, w̃±2 = 2 + Ahκ−ε ± i3hκ−ε

and set

Θ1 =
{
z ∈ C : 1− 2(A + 1)hκ−ε ≤ Re z ≤ 1 + hκ−ε, |Im z | ≤ 4hκ−ε

}
,

Θ2 =
{
z ∈ C : 2− hκ−ε ≤ Re z ≤ 2 + 2(A + 1)hκ−ε, |Im z | ≤ 4hκ−ε

}
.
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Lemma 4

There exist positively oriented piecewise smooth curves γ̃1 ⊂ Θ1 and γ̃2 ⊂ Θ2, where
γ̃1 connects the point w̃−1 with w̃+

1 , while γ̃2 connects the point w̃+
2 with w̃−2 , such

that ∣∣∣∣∣Im
∫
γ̃j

d

dz
log gh(z)dz

∣∣∣∣∣ ≤ Cεh
−d+κ−2ε, j = 1, 2. (24)

Now we apply Lemma 2 with a contour δ = γ1 ∪ γ3 ∪ γ2 ∪ γ4, where γ3 ⊂W is the
segment [w+

1 ,w
+
2 ] on the line passing through the points w+

1 and w+
2 , and γ4 ⊂W is

the segment [w−2 ,w
−
1 ] on the line passing through the points w−2 and w−1 . Next,

γ1 = [w−1 , w̃
−
1 ] ∪ γ̃1 ∪ [w̃+

1 ,w
+
1 ], γ2 = [w+

2 , w̃
+
2 ] ∪ γ̃2 ∪ [w̃−2 ,w

−
2 ] (see Figure 4). Since

γj ⊂W , |γj | = O(1), j = 3, 4, by (22) we have∣∣∣∣∣
∫
γj

d

dz
log gh(z)dz

∣∣∣∣∣ ≤
∫
γj

∣∣∣∣ ddz log gh(z)

∣∣∣∣ |dz |
≤ Cεh

−d+1−2ε

∫
γj

|dz | ≤ Cεh
−d+1−2ε, j = 3, 4.
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Applying (22) once more for j = 1, 2 , we have∣∣∣∣∣
∫

[w±j ,w̃
±
j ]

d

dz
log gh(z)dz

∣∣∣∣∣ ≤ Cεh
−d+1−2ε

∫ 1/3

3hκ−ε

dσ

σ
≤ Cεh

−d+1−3ε.

1

1

+
w

2

+

w
1

~ +

w
1

~ −

w
2

~ +

w
2

~ −

γ1 γ2

γ3

γ4

w
1

−
w

2

−

γ2
∼

1
∼
γ

Θ2
Θ1

1/3

−1/3

0 2

w

Figure 4: Contour δ = γ1 ∪ γ2 ∪ γ3 ∪ δ4
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On the other hand, since the counting function of the eigenvalues of G
(j)
D satisfies the

Weyl law, we deduce

M(j)
γ0

(h) ≤ ]
{
νk ∈ specG

(j)
D : 1− 2Ahκ−ε ≤ h2νk ≤ 2 + 2Ahκ−ε

}
= (2d/2 − 1)τjh

−d +Oε,A(h−d+κ−ε)

and similarly

M(j)
γ0

(h) ≥ ]
{
νk ∈ specG

(j)
D : 1 + 2Ahκ−ε ≤ h2νk ≤ 2− 2Ahκ−ε

}
= (2d/2 − 1)τjh

−d −Oε,A(h−d+κ−ε),

hence
M(j)
γ0

(h) = (2d/2 − 1)τjh
−d +Oε,A(h−d+κ−ε), j = 1, 2. (25)

Taking together the above estimates and applying Lemma 4, we obtain

Mγ0(h) = (2d/2 − 1)(τ1 + τ2)h−d +Oε,A(h−d+κ−3ε). (26)

This implies easily the statement of Theorem 6.
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Illustration of the idea of the proof of Lemma 4

We treat the case j = 1. Let B±1 (θ) = {z ∈ C : |z − w̃±1 | ≤ θhκ−ε},
Θ1 ⊂ B+

1 (θ) ∪ B−1 (θ), 0 < θ ≤ θ0. Denote by M1 and by M2 the set of the zeros and
the poles of gh(z) for z ∈ B+

1 (2θ0) ∪ B−1 (2θ0), respectively. Introduce the holomorphic
function ζh(z) := gh(z)

∏
w∈M1

(z − w)−1
∏

w∈M2
(z − w), where the zeros and the

poles are repeated with their multiplicities. Write

d

dz
log gh(z) =

d

dz
log ζh(z) +

∑
w∈M1

(z − w)−1 −
∑

w∈M2

(z − w)−1.

We prove an estimate log |ζh(z)| ≤ Cεh
−d+1−2ε, ∀z ∈ B+

1 (2θ0) ∪ B−1 (2θ0). For the

functions f±(x) = log ζh(z)

ζh(w̃±1 )
we have Re f±(z) = log |ζh(z)| − log |ζh(w̃±1 )|. Since

f±(w̃±1 ) = 0, we can apply Caratheodory theorem to obtain a bound of |f±(z)| in a
smaller disks B±1 ( 3

2θ0).
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This implies
∣∣∣ ddz log ζh(z)

∣∣∣ ≤ Cεh
−d−κ+1−ε in B±1 (θ0) and

∣∣∣∫
γ̃1

d

dz
log ζh(z)dz

∣∣∣ =
∣∣∣∫ w̃+

1

w̃−1

d

dz
log ζh(z)dz

∣∣∣ ≤ Cεh
−d+1−2ε,

since [w̃−1 , w̃
+
1 ] has length 6hκ−ε. Let M =M1 ∪M2. By using the Jensen formula

for the zeros of Fh(z) = gh(z)
∏

w∈M2
(z − w), we estimate

#{w : w ∈M1} ≤ Cεh
−d+κ−2ε.

A similar estimates holds for #{w : w ∈M2}. Next for M � d introduce

U =
⋃

w∈M
{z ∈ C : |z − w | ≤ hM} =

⋃
ν

Uν , Uν ∩ Uµ = ∅, ν 6= µ.

If Uν ∩ ∂B±1 (2θ0) 6= ∅, we modify the arc of Uν ∩ ∂B±1 (2θ0) by arc of ∂Uν , so

dist (w , ∂Uν) ≥ hM ,∀w ∈M.
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For w /∈ [α, β], by using suitable change of variables with w = ±σ0, σ0 > 0 , we get

∣∣ Im

∫ β

α
(z − w)−1dz

∣∣ =

∫ β

α

σ0dt

σ2
0 + t2

≤
∫ ∞
−∞

dt

1 + t2
= π.

On the other hand,
∫
ω(z −w)−1dz and

∫ β
α (z −w)−1dz are different by 2kπi , k = 0, 1

and we obtain
∣∣ Im

∫
ω(z − w)−1dz

∣∣ ≤ 3π, ∀w ∈M.

w

w

w

Figure 5: arcs of ∂Uν

Passing to a limit, we obtain the same for w ∈ [α, β]. By using the estimate for the
number of point w ∈M, we deduce Lemma 4.
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Weyl asymptotics for dissipative eigenvalues close to R−

Consider the Maxwell system in K = B3 = {x ∈ R3 : |x | ≤ 1} with dissipative
boundary conditions on |x | = 1. For γ ≡ 1 on Γ there are no eigenvalues.

Proposition 3 (Colombini, -P., Rauch (2016))

Assume that γ ∈ R+ \ {1} is a constant and let γ0 = max{γ, 1
γ }. Then G has an

infinite number of real eigenvalues. All real eigenvalues λ satisfy the estimate

λ ≤ − 1

max{(γ0 − 1),
√
γ0 − 1}

= −c0. (27)

Theorem 8 (-P., Colombini (2018))

Assume the conditions of Prop. 3. Then the counting function
N(r) = #{λj ∈ R− : |λj | ≤ r} for the ball B3 has the asymptotic

N(r) = (γ2
0 − 1)r2 +Oγ(r), r ≥ r(γ) > c0
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For the wave equation and strictly convex obstacles in the case γ(x) > 1, ∀x ∈ Γ, by
Th. 3 we know that for ∀N ∈ N all eigenvalues of the generator G of the semi-group
V (t) = etG are in a small neighbourhood of the negative real axis

{λ ∈ C : | Imλ| ≤ CN(1 + |Reλ|)−N ,Reλ < −R} ∪ {|λ| ≤ R,Reλ < 0}.

For γ(x) ≡ γ0 > 1 in a work in progress -P. proved in this case that the counting
function N(r) of the eigenvalues has the asymptotics

N(r) =
ωd−1r

d−1

(2π)d−1

∫
Γ
(γ2

0 − 1)
d−1

2 dx +Oγ(rd−2), r ≥ c(γ0) > 0,

ωd−1 being the volume of {x ∈ Rd−1 : |x | ≤ 1}. We expect that this result is true
when γ(x) > 1 is not constant. The proof is based on a trace formula

trH
1

2πi

∫
δ
(λ− G )−1dλ = trL2(Γ)

1

2πi

∫
δ
C−1(λ)

∂C

∂λ
(λ)dλ, δ ⊂ {Reλ < 0},

where C (λ) = N (λ)− λγ = N (λ)
(
Id − λN−1(λ)γ

)
, Reλ < 0 and N (λ)f is the

(exterior) Dirichlet-to-Neumann map related to (∆− λ2)u = 0, u|Γ = f .
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