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Inverse problems in wave propagation

Inverse problems
Wave propagation

field

incident

unknown medium

scatterers

known

Inverse problems aim to reconstruct a medium characteristics from knowledge of the response of
the medium to a known incident field.
In the context of the wave equation we seek to reconstruct the reflectivity by recording the
medium’s response to one or more known excitations.

We consider sparse reflectivities : often true in applications when the object to be imaged occupies
a small part of the imaging scene
Study how uncertainty in the data affects the solution

C. Tsogka The Noise Collector October 1, 2020 3 / 29



Inverse problems in wave propagation

Inverse problems
Wave propagation

test

unknown medium

scatterers

Inverse problems aim to reconstruct a medium characteristics from knowledge of the response of
the medium to a known incident field.
In the context of the wave equation we seek to reconstruct the reflectivity by recording the
medium’s response to one or more known excitations.

We consider sparse reflectivities : often true in applications when the object to be imaged occupies
a small part of the imaging scene
Study how uncertainty in the data affects the solution

C. Tsogka The Noise Collector October 1, 2020 3 / 29



Inverse problems in wave propagation

Inverse problems
Wave propagation

scatterers

known

unknown medium

Inverse problems aim to reconstruct a medium characteristics from knowledge of the response of
the medium to a known incident field.
In the context of the wave equation we seek to reconstruct the reflectivity by recording the
medium’s response to one or more known excitations.

We consider sparse reflectivities : often true in applications when the object to be imaged occupies
a small part of the imaging scene
Study how uncertainty in the data affects the solution

C. Tsogka The Noise Collector October 1, 2020 3 / 29



Inverse problems in wave propagation

Inverse problems
Wave propagation

scatterers

known

unknown medium

Inverse problems aim to reconstruct a medium characteristics from knowledge of the response of
the medium to a known incident field.
In the context of the wave equation we seek to reconstruct the reflectivity by recording the
medium’s response to one or more known excitations.
We consider sparse reflectivities : often true in applications when the object to be imaged occupies
a small part of the imaging scene

Study how uncertainty in the data affects the solution

C. Tsogka The Noise Collector October 1, 2020 3 / 29



Inverse problems in wave propagation

Inverse problems
Wave propagation

scatterers

known

unknown medium

Inverse problems aim to reconstruct a medium characteristics from knowledge of the response of
the medium to a known incident field.
In the context of the wave equation we seek to reconstruct the reflectivity by recording the
medium’s response to one or more known excitations.
We consider sparse reflectivities : often true in applications when the object to be imaged occupies
a small part of the imaging scene
Study how uncertainty in the data affects the solution

C. Tsogka The Noise Collector October 1, 2020 3 / 29



Applications

Table of contents

1 Inverse problems in wave propagation

2 Applications

3 On `1 and (super)resolution

4 Uncertainty in the data

5 Conclusion

C. Tsogka The Noise Collector October 1, 2020 4 / 29



Applications

Applications

Radar

f(t)

ρ

D(s, t)

time ∆s

Here we want to retrieve the reflectivity on the ground. The measurements are obtained by sending
pulses and collecting the echoes. The sensing matrix models how waves propagate from the airplane to
the ground reflectors and back to the plane. The start-stop approximation is assumed.
Uncertainty in the data : measurement noise, measurement location
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Applications

Applications

Non-destructive testing

Uncertainty : unknown micro-structure of material ; concrete sample
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Applications

Applications

Medical Ultrasound

Uncertainty : measurement noise, low SNR
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Applications

The imaging problem
Passive case

We consider here the passive imaging problem, where we seek to reconstruct the positions yj and
complex-valued amplitudes ρj , j = 1, . . . ,M of sources.

yk

L

a

h

x1

λ

xr

G(x1,yk)

G(xr,yk)

There are N receivers at the array and K points in the image window IW.
We assume that N � K and that the unknown ρ has sparse support M = supp(ρ), M < N and
typically M � K.
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complex-valued amplitudes ρj , j = 1, . . . ,M of sources.

yk

L
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G(x1,yk)

G(xr,yk)

The imaging problem consists in solving a linear system of the form
Aρ = b

with b the data, ρ the unknown, and A the sensing matrix
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Applications

The imaging problem
The sensing matrix

We consider here the passive imaging problem, where we seek to reconstruct the positions yj and
complex-valued amplitudes ρj , j = 1, . . . ,M of sources.

yk

L

a

h

x1

λ

xr

G(x1,yk)

G(xr,yk)

In this case the sensing matrix is A =

 ↑ ↑ ↑
a1 a2 aK
↓ ↓ ↓

 with ak = g(yk)/‖g(yk)‖2 and

g(yk) = (G(x1,yk), G(x2,yk), . . . , G(xN ,yk))
T
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Applications

The imaging problem
Active case

We consider here the passive imaging problem, where we seek to reconstruct the positions yj and
complex-valued amplitudes ρj , j = 1, . . . ,M of sources.

yk

L

a

h

x1

λ

xr

G(x1,yk)

G(xr,yk)

The source imaging problem is considered here for simplicity. The active array imaging problem can
be cast under the same linear algebra framework (i.e., solving Aρ = b) even when multiple
scattering is not negligible.
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On `1 and (super)resolution

Compressive sensing

Our problem consist in finding the solution ρ ∈ CK of

Aρ = bδ,

from highly incomplete (1� N < K) measurement data bδ ∈ CN

bδ = b+ δb,

corrupted by the noise vector δb.

There exist infinitely many solutions to our problem, and thus, it is a priori not possible to find the
correct one without some additional information.

The sparsity of ρ changes the imaging problem substantially because we can formulate it as an
optimization problem which seeks the sparsest vector in CK that equates model and data.
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On `1 and (super)resolution

Compressive sensing

ρ`1 : min ||ρ||1, subject to Aρ = b

Theorem 1 : In the noiseless case the `1 approach gives the exact solution ! under the assumption
(mutual coherence) :

max
k 6=k′
|〈ak,ak′〉| ≤ 1/(2M), ∀k, k′ = 1, . . . ,K.

Here ak : normalized columns of A, i.e., ‖ak‖2 = 1, ∀k

Theorem 2 : The same result can be obtained assuming the sensing matrix A obeys the M-restricted
isometry property which basically states that all sets of M-columns of A behave approximately as an
orthonormal system.

In both cases the assumptions translate to conditions on the discretization of IW since in imaging
ak = g(yk)/‖g(yk)‖2 with g(yk, ωl) = (G(x1,yk), G(x2,yk), . . . , G(xN ,yk))

T

1. Donoho & Elad ‘03
2. Candès & Tao ‘05
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On `1 and (super)resolution

Remarks

A pair of columns ai and aj are coherent, if the corresponding grid-points are close to each other.
Therefore the incoherence conditions can be satisfied only for coarse image discretizations that
imply poor resolution.

To achieve high resolution we propose to modify the classical theory so as to allow for some
coherence in A.
Let ρ ∈ CK be an M -sparse solution of Aρ = b. Define the index of its support T . For any j ∈ T
define the corresponding vicinity of aj as

Sj =

{
k s.t. |〈ak,aj〉| >

1

3M

}
.

For any vector ξ ∈ CK define its coherent misfit to ρ as

Co(ρ, ξ) =
∑
j∈T

∣∣∣∣∣∣ρj −
∑
k∈Sj

〈aj ,ak〉ξk

∣∣∣∣∣∣ ,
and its incoherent remainder

In(ρ, ξ) =
∑
k 6∈Υ

|ξk|,Υ = ∪j∈TSj .
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On `1 and (super)resolution

Our abstract result

Theorem

Let ρ be an M -sparse solution of Aρ = b, and suppose vicinities Sj do not overlap. Let ρδ be the
minimal `1-norm solution of the noisy problem

min ‖ρδ‖`1 , subject to Aρδ = bδ,

with ‖b− bδ‖`2 6 δ.
Then

Co(ρ,ρδ) 6 3γδ,

and
In(ρ,ρδ) 6 5γδ.

If the noise level δ = 0, and the number of vectors in Υ = ∪j∈TSj is smaller than the rank of A, we
have exact recovery : ρδ = ρ.
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On `1 and (super)resolution

Comments/Remarks

This theorem says that when the vicinities associated to different sources do not overlap, `1
minimization determines their location with high precision.

Allowing for the columns of A to be coherent inside the vicinities is crucial as it permits for a fine
discretization to be used which in turn implies high resolution imaging.
When there is noise in the data the location of the sources is not retrieved exactly but both the
coherent and the incoherent misfit are small.
The incoherent misfit concerns the support of ρδ far from the true sources location, i.e., outside
the vicinities. This type of noise in the reconstruction image is usually referred to as grass.
The coherent misfit concerns the approximation of ρ by degrees of freedom inside the vicinities.
The coherent misfit being small means that ρ can be well approximated by a linear combination of
the values of ρδ inside the vicinities of the true support.
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On `1 and (super)resolution

`1 and super-resolution

Exact recovery in the noiseless case
M
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Vicinities overlap

Other works where super-resolution has been studied for highly coherent model matrices A that
arise in imaging

A. Fannjiang and W. Liao, Coherence pattern-guided compressive sensing with unresolved grids, SIAM
J. Imaging Sci. 5 (2012), pp. 179–202.

L. Borcea and I. Kocyigit, Resolution analysis of imaging with `1 optimization, SIAM J. Imaging Sci. 8
(2015), pp. 3015–3050.

L. Borcea and I. Kocyigit, A multiple measurement vector approach to synthetic aperture radar
imaging, SIAM J. Imaging Sci. 11 (2018), pp. 770–801.

These works include results regarding the robustness of super-resolution in the presence of noise.
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Robustness to noise (under smallness assumption) : the solution is decomposed in two parts, the
coherent part, ρc, which is supported in the vicinities Sj and is close to the true ρ and the
incoherent part, ρi, usually referred to as grass. The grass is supported away from the vicinities Sj
and is shown to be small.

Other works where super-resolution has been studied for highly coherent model matrices A that
arise in imaging

A. Fannjiang and W. Liao, Coherence pattern-guided compressive sensing with unresolved grids, SIAM
J. Imaging Sci. 5 (2012), pp. 179–202.

L. Borcea and I. Kocyigit, Resolution analysis of imaging with `1 optimization, SIAM J. Imaging Sci. 8
(2015), pp. 3015–3050.

L. Borcea and I. Kocyigit, A multiple measurement vector approach to synthetic aperture radar
imaging, SIAM J. Imaging Sci. 11 (2018), pp. 770–801.

These works include results regarding the robustness of super-resolution in the presence of noise.
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Uncertainty in the data

What about uncertainty in the data (noise)

Our theory implies that a key to control the noise is the constant γ,

γ = sup
b

‖ρ‖`1
‖b‖`2

where ρ is the minimal `1 − solution of Aρ = b.

For the imaging problem we have γ = O(
√
N) which is not satisfactory.
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Uncertainty in the data

What about uncertainty in the data (noise)

The most commonly used approach to deal with noise is to solve the `2-relaxed form of the optimization
problem

ρλ = arg min
ρ

(
λ‖ρ‖`1 +

1

2
‖Aρ− b‖2`2

)
, (1)

known as Lasso in the statistics literature [R. Tibshirani ’96, Chen & D.Donoho ’94, F.Santosa &
W.Symes ’86].

There are sufficient conditions, depending on the SNR and the value of λ (tuning parameter which
should be adequately chosen), for the support of ρλ to be contained within the true support.
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Uncertainty in the data

Tuning λ in Lasso
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LASSO results with λ = 1, λ = 0.5 (optimal) and λ = 0.1.
100% noise. N = 625, K = 3721

. Develop a method for exact support recovery in the presence of noise. No tuning parameters. No a
priory knowledge on the level of noise required.
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Uncertainty in the data

The Noise Collector

We propose to solve instead

(ρτ ,ητ ) = arg minρ,η (τ‖ρ‖l1 + ‖η‖l1) ,
subject to Aρ+ Cη = b+ δb,

where C is the Noise Collector matrix C ∈ CN×Σ, Σ� K and τ is an O(1) weight that is independent
of the dimension of the problem and the level of noise.

This minimization problem can be understood as a relaxation of

ρ∗ = arg min
ρ
‖ρ‖`1 , subject to Aρ = b+ δb,

It works by absorbing all the noise, and possibly some signal, in Cητ .

η does not correspond to a physical quantity. It is introduced to provide a fictitious source distribution
(an appropriate linear combination of the columns of C) that produces a good approximation to δb.
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Uncertainty in the data

Construction of the Noise Collector

(i) Columns of C should be sufficiently orthogonal to the columns of A, so it does not absorb signals
with meaningful information.

(ii) Columns of C should be uniformly distributed on the unit sphere SN−1 so that we could
approximate well a typical noise vector.

(iii) The number of columns of C should grow slower than exponential with N , otherwise the method is
impractical.

One way to guarantee all three properties is the deterministic approach that consists in filling up C
imposing

|〈ai, cj〉| <
α√
N
∀i, j , and |〈ci, cj〉| <

α√
N
∀i 6= j,

with α > 1. Then it can be shown that the number Σ of columns in C grows at most polynomially :
Nα 6 Σ 6 Nα2

.

We consider instead the random approach : the columns of C are drawn at random independently. Then
the above inequalities hold but decoherence constraint is weakened by a logarithmic factor

√
lnN .
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Uncertainty in the data

Probabilistic design of NC

Choose β > 1, and pick Σ = Nβ vectors ci at random and independently on SN−1.

Define the convex hulls

H1 =

{
x ∈ RN

∣∣∣∣∣x =

Σ∑
i=1

ξici,

Σ∑
i=1

|ξi| 6 1

}
, H2 =

{
x ∈ RN

∣∣∣∣∣x =

K∑
i=1

ξiai,

Σ∑
i=1

|ξi| 6 1

}
,

Then, for any κ > 0 there exist constants α =
√

(β − 1)/2, c0(κ, β) and N0 = N0(κ, β), such that
∀N > N0

(i) max(max
i6K

(|〈ai, δb〉|),max
i6Σ

(|〈ci, δb〉|)) < c0

√
lnN√
N

,

and

(ii) α

√
lnN√
N

δb ∈ H1,

with probability 1− 1/Nκ.

(i) states that H1 and H2 are contained in the `2-ball of radius c0
√

lnN/
√
N

except for a few spikes in statistically insignificant directions.

(ii) states that H1 contains an `2-ball of radius α
√

lnN/
√
N except for a few statistically insignificant

directions.
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Uncertainty in the data

False Discovery Rate is zero

We have the following results :

Theorem (No phantom signal theorem)

Suppose there is no signal : ρ = 0 and δb/‖δb‖l2 is uniformly distributed on the unit sphere. Fix β > 1,
and draw Σ = Nβ columns for C, independently, from the uniform distribution on SN−1. For any κ > 0
there are constants τ = τ(κ, β) and N0 = N0(κ, β) such that, ∀N > N0, ρτ = 0 with probability
1− 1/Nκ.

We see no phantom signals when the algorithm is fed with pure noise. The no phantom weight τ may
be chosen to be the smallest constant such that the no phantom signal theorem holds.

Theorem
Let ρ be an M -sparse solution of Aρ = b. Assume κ, β, the Noise Collector, and the noise are the same
as in Theorem above. If the columns of A are decoherent : |〈ai,aj〉| 6 1

3M , then supp(ρτ ) ⊆ supp(ρ)
for all N > N0 with probability 1− 1/Nκ.

This means that we have zero false discovery rate for any level of noise and with probability that tends
to one as the dimension of the data increases to infinity.
No false positives !
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Uncertainty in the data

Supports of ρ and ρτ agree

Theorem

Suppose r is the magnitude of smallest non-zero entry of ρ. If ‖δb‖l2 6 c2
‖b‖2l2
‖ρ‖l1

√
N√

lnN
,

c2 = c2(κ, β, r,M), then for all N > N0, supp(ρτ ) = supp(ρ), with probability 1− 1/Nκ.

Exact support recovery when the noise is not too large.

Theorem (Exact Recovery)

If there is no noise δb = 0. Then, ρτ = ρ for all M < 2
√
N

3c0τ
√

lnN
with probability 1− 1/Nκ.

Exact recovery in the noise free case.
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Uncertainty in the data

GelMa

To find the minimizer ρτ ,ητ ,

(ρτ ,ητ ) = arg minρ,η (τ‖ρ‖l1 + ‖η‖l1) ,
subject to Aρ+ Cη = b+ δb,

we consider a variational approach. We define the function

F (x, η, z) = λ (τ‖x‖`1 + ‖η‖`1) +
1

2
‖Ax+ Cη − b‖2`2 + 〈z, b−Ax− Cη〉

for an O(1) weight τ , and determine the solution as

max
z

min
x,η

F (x, η, z).

This variational principle finds the minimum exactly for all values of the regularization parameter λ.
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Uncertainty in the data

GelMa

To determine the exact extremum, we use the iterative soft thresholding algorithm GeLMA which is a
semi-implicit version of the primal-dual method of Chambolle & Pock.

M. Moscoso, A. Novikov, G. Papanicolaou and L. Ryzhik, A differential equations approach to
l1-minimization with applications to array imaging, Inverse Problems 28 (2012).

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to
imaging, Journal of Mathematical Imaging and Vision 40 (2011), pp 120–145.
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Uncertainty in the data

GelMa

Pick a value for the regularization parameter λ, e.g. λ = 1. Choose step sizes ∆t1 < 2/‖[A | C]‖2 and
∆t2 < λ/‖A‖ . Set ρ0 = 0, η0 = 0, z0 = 0, and iterate for k > 0 :

r = b−Aρk − C ηk ,
ρk+1 = S τ λ∆t1 (ρk + ∆t1A∗(zk + r)) ,

ηk+1 = Sλ∆t1 (ηk + ∆t1 C∗(zk + r)) ,

zk+1 = zk + ∆t2 r ,

where Sλ(yi) = sign(yi) max{0, |yi| − λ}.

Note : Choosing two step sizes instead of the smaller one ∆t1 improves the convergence speed.

C. Tsogka The Noise Collector October 1, 2020 21 / 29



Uncertainty in the data

Cost of the Noise Collector

The Noise Collector matrix C is constructed theoretically by drawing Σ = Nβ normally distributed
N -dimensional vectors, normalized to unit length.

In practice we construct C by drawing Nβ−1 normally distributed N -dimensional vectors. These are
the generating vectors of the Noise Collector. From each one of them a circulant N ×N matrix Ci,
i = 1, . . . , Nβ−1, is constructed. Typically β ≈ 1.5.
The full Noise Collector matrix can be constructed by concatenation,

C = [C1 |C2 |. . . |CNβ−1 ]

The full Noise Collector matrix is never formed, only the Nβ−1 generating vectors are stored.
Exploiting the circulant structure of the matrices Ci, we perform the matrix vector multiplications
Cηk and C∗(zk + r) using the FFT.
This makes the complexity associated to the Noise Collector O(Nβ log(N)).
The cost of performing the matrix vector multiplication Aρk is NK and, thus, the additional cost
due to the Noise Collector is negligible as, typically, K � Nβ−1.
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Uncertainty in the data

Results

no NC with NC, but no weight : τ = 1
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Top row : the images. Bottom row : solution vector with red stars and the true solution vector with
green circles.
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Uncertainty in the data

Results

with NC and no phantom weight τ `2 on the support
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Uncertainty in the data

Results

no NC with NC `2 on the support
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Top row : the images. Bottom row : solution vector with red stars and the true solution vector with
green circles.

β = 1.5, SNR =
‖b‖l2
‖δb‖l2

= 1, N = 625, K = 1681, τ = 2.
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Uncertainty in the data

The Noise Collector at work

NC and IW IW only
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Uncertainty in the data

Failure to recover
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Algorithm performance for exact support recovery. Success corresponds to the value 1 (yellow) and
failure to 0 (blue). The small phase transition zone (green) contains intermediate values. Ordinate and

abscissa are the sparsity M and ‖δb‖2
‖b‖2

. The black line is 1√
lnN

√
N√
M
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Conclusion

Concluding remarks

Provided a theoretical framework to examine under what conditions the `1-minimization problem
admits a solution that is close to the exact one when coherence in the columns of A is allowed
inside the vicinities.

To increase the robustness of `1-minimization when imaging with noisy data we propose to solve

(ρτ ,ητ ) = arg minρ,η (τ‖ρ‖l1 + ‖η‖l1) ,
subject to Aρ+ Cη = b+ δb,

instead of
ρ∗ = arg min

ρ
‖ρ‖`1 , subject to Aρ = b+ δb,

Here the N ×Nβ matrix C is the Noise Collector matrix and τ is an O(1) weight for any level of
noise.

The additional cost of the Noise Collector is negligible compared to the cost of solving the original
problem.
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Conclusion

Concluding remarks

The most important features of the Noise Collector are that :

1 no calibration is necessary with respect to the level of noise,

2 exact support recovery is obtained for relatively large levels of noise

‖δb‖`2 6 c1
‖b‖2`2

√
N

‖ρ‖`1
√

lnN
,

3 we have zero false discovery rates for all levels of noise, with high probability.

More on the Noise Collector and its theoretical analysis in

M. Moscoso, A. Novikov, G. Papanicolaou, CT, Imaging with highly incomplete and corrupted data,
Inverse Problems, 36(3), p. 035010, 2020. https://doi.org/10.1088/1361-6420/ab5a21

M. Moscoso, A. Novikov, G. Papanicolaou, CT, The Noise Collector for sparse recovery in high
dimensions, Proceedings of the National Academy of Sciences, 117 (21), p. 11226-11232, 2020.
https://doi.org/10.1073/pnas.1913995117
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