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Inverse boundary value problems

Let (x0, x1, x2, ..., xn) ∈ R × Rn, x0 ∈ R be the time variable, x =
(x1, x2, ..., xn) ∈ Rn. Consider the Lorentzian metric in R× Rn

n∑
j ,k=0

gjk(x)dxjdxk (1)

with the signature (+1,−1, ...,−1). Let g(x) = det[gjk(x)]nj ,k=0 and
let [g jk(x)]nj ,k=0 be the inverse to the metric tensor [gjk(x)]nj ,k=0. We
assume that the metric does not depend on x0 ∈ R.
Let

Lu =
n∑

j ,k=0

1√
(−1)ng(x)

∂

∂xj

(√
(−1)ng(x)g jk(x)

∂

∂xk
u(x)

)
= 0

(2)
be the wave equation corresponding to the metric (1).



Define the Dirichlet-to-Neumann operator Λf as

Λf =
n∑

j ,k=0

g jk(x)
∂u

∂xj
νk(x)

( n∑
p,r=0

gpr (x)νp(x)νr (x)
)− 1

2
∣∣∣
R×∂Ω

,

(3)
u(x0, x) is the solution of (2), ν0 = 0, (ν1, ..., νn) is the unit outward
normal to ∂Ω.
Let Γ0 be a subdomain of ∂Ω. The inverse boundary value problem
on R× Γ0 consists of determining the metric (1) knowing the Λf on
R× Γ0 for all f with the compact support in R× Γ0.



A powerful boundary control method for solving hyperbolic inverse
problems for equation

∂2u

∂x2
0

+ ∆hu = 0,

where ∆h is the Laplace-Beltrani operator, was discovered by M.Belishev,
and further developed by Belyshev and Kurylev, Kurylev and Lassas,
Katchalov, Kurylev and Lassas, and others. In the author’s works
a localized variant of the boundary control method was developed.
The method was extended in [E, 2008] to include inverse boundary
value problems for the equation (2) with Lorentz metric. Also it
was extended to the case of the inverse problems for the equation
of the form (1) with time-dependent coefficients ([E, 2017]) under
two extra conditions. The Bardos-Lebeau-Rauch condition and the
condition of the analyticity of the metric in the time variable.
The method of [E, 2008] allows to recover the metric in a neighbor-
hood of any point of Ω where the spatial part of the wave operator
is elliptic. These results are the basis of the present paper.



Let y = ϕ(x) be a diffeomorphism of Ω on some bounded smooth
domain Ω0 ⊂ Rn and let a(x) ∈ C∞(Ω), a(x) = 0 on Γ0.
Consider the map

(y0, y) = Φ(x0, x) = (x0 + a(x), ϕ(x)) (4)

of Ω× R onto Ω0 × R such that ϕ(x) = x and a(x) = 0 on Γ0.
Note that change of variables y = ϕ(x), y0 = x0 + a(x) does not
change the DN operator Λ.



Ergoregions and black holes

The domain ∆ ⊂ Ω is called the ergoregion if

g00(x) ≤ 0 on ∆. (5)

We assume that g00(x) > 0 in the exterior of ∆. Let

∆(x) = det[g jk(x)]nj ,k=1. (6)

Then g00(x) = g−1(x)∆(x). Thus (5) is equivalent to the inequality

∆(x) ≤ 0. (7)

We assume that ∆(x) = 0 is a smooth surface in Rn, ∂∆(x)
∂x =(∂∆(x)

∂x1
, ..., ∂∆(x)

∂xn

)
6= 0 when ∆(x) = 0.



Now we shall define the black hole.
Let S(x) = 0 be a closed surface in Rn and Ωint be the interior of the
surface S(x) = 0. We call the region Ωint a black hole if no signal
(disturbance) inside S(x) = 0 can reach the exterior of S(x) = 0.
Let S(x) = 0 be a characteristic surface for the equation (2), i.e.

n∑
j ,k=0

g jk(x)Sxj (x)Sxk (x) = 0 when S(x) = 0. (8)

It was proven that S(x) = 0 in a boundary of a black hole if S(x) = 0
is a characteristic surface and

n∑
j=1

g j0(x)Sxj (x) < 0 when S(x) = 0. (9)

The boundary S(x) = 0 of the black hole is called the black hole
event horizon.



Analogue metrics

When the metric (1) is not a solution of the Einstein equation, i.e.
the metric (1) is not related to the general theory of relativity, the
black hole Ωint is called an analogue black hole. In physical applica-
tions the analogue black holes appear when one studies the propa-
gation of waves in a moving medium.
An example of the analogue metric is the following acoustic metric :
Consider a fluid flow in a vortex with the velocity field

v = (v1, v2) =
A

r
r̂ +

B

r
θ̂, (10)

where r = |x |, r̂ =
(
x1
|x | ,

x2
|x |
)
, θ̂ =

(
− x2
|x | ,

x1
|x |
)
, A and B are con-

stants, A < 0. When B 6= 0 (10) is a rotating flow.
The inverse metric tensor [g jk ]2j ,k=1 has the form

g00 =
1
ρc
, g0j = g j0 =

1
ρc

v j , 1 ≤ j ≤ 2, (11)

g jk =
1
ρc

(−c2δij + vJvk), 1 ≤ j , k ≤ 2.



Here c is the sound speed, ρ is the density. We shall assume, for the
simplicity, that ρ = 1, c = 1. It was shown that {r ≤

√
A2 + B2}

is the ergoregion and {r < |A|} is the black hole.
We consider also another example of analogue metric, the Gordon
metric, that arise when one studies the propagation of light in a
moving dielectric medium:
Let w = (w1(x),w2(x),w3(x)) be the velocity of the flow. The
Gordon metric has the form

3∑
j ,k=0

gjk(x)dxjdxk , (12)

where gjk(x) = ηjk +
(
n−2(x) − 1

)
vjvk , n(x) is the index of the

refraction,

v0 =
(
1− |w |

2

c2

)− 1
2 , vj(x) =

(
1− |w |

2

c2

)− 1
2
wj(x)

c
, 1 ≤ j ≤ 3, (13)

ηjk is the Lorentz metric.



Recovery of the ergosphere from the boundary
measurements

Let Γ′ be any small subset of ∂Ω and P0 ∈ Γ′.
It was proven in [E, 2008], Theorem 3.1, (see also [E, 2017], Theorem
6.2), that knowing boundary data on [0,+∞)× Γ′ one can recover,
modulo change of variables (4), the metric (1) in [0.+∞)×V (P0)
where V (P0) is a neighborhood of P0 in Ω. The key condition for the
the validity of Theorem 3.1 is that the spatial part of the equation
(2) is elliptic in V (P0). Thus V (P0) is outside the ergosphere.
Next taking P1 ∈ V (P0) one can recover (1) in [0,∞) × V (P1)
where V (P1) ⊂ Ω is a neighborhood of P1. Repeating this argu-
ment infinitely many times we can recover the metric outside the
ergosphere ∆(x) = 0 when ∆(x) is the same as in (6). Taking the
limit we can recover the metric on ∆(x) = 0 too. Thus we have the
following theorem:

Theorem
Knowing the DN operator (3) on R × Γ0 we can determinate the
ergosphere ∆(x) = 0, and the metric (1) on ∆(x) = 0.



There are three cases:
a) e(x) is orthogonal to the surface ∆(x) = 0 for all x , i.e. ∆(x) = 0
is characteristic at any x ∈ ∆.
b) e(x) is not orthogonal to the surface ∆(x) = 0 for any x , i.e. is
not characteristic for any x ∈ ∆.
c) e(x) is orthogonal to ∆(x) = 0 only on some nonempty subset of
∆(x) = 0.
In the case a) we have that e(x) is collinear to the gradient ∂∆(x)

∂x ,∆(x) =
0, for all x . Therefore

n∑
k=1

g jk(x)∆xk (x) = 0, 1 ≤ j ≤ n, ∆(x) = 0. (14)

Multiplying (14) by ∆xj and summing in j we get
n∑

j ,k=1

g jk(x)∆xj ∆xk = 0 when ∆(x) = 0. (15)

Then ∆(x) = 0 is the boundary of a black hole if
n∑

j=1

g0j(x)
∂∆

∂xj
< 0 when ∆(x) = 0. (16)



Zero energy null-geodesics in the case of two
space dimension

The case of not Schwartzschield type metrics is more difficult. We
shall study only the case of two dimensions. The underlying idea in
analyzing the black holes in two space dimensions is the following:
Consider the Hamiltonian

H(x1, x2, ξ0, ξ1, ξ2) =
2∑

j ,k=0

g jk(x)ξjξk . (17)

Let

dxk
ds

=
∂H(x , ξ)

∂ξk
,

dξk
ds

= − ∂H
∂xk

, 0 ≤ k ≤ 3, (18)

xk(0) = yk , ξk(0) = ηk

be the equation of null-biocharacteristics. Thus

H
(
x1(s), x2(s), ξ0(s), ξ1(s), ξ2(s)

)
= 0 for all s. (19)



Since H is independent of x0 we have that dξ0
ds = 0, i.e. ξ0(s) =

η0 is a constant. We choose ξ0 = 0, and we shall call the null-
bicharacteristics with ξ0 = 0 the zero energy null-bicharacteristics.
The projection of zero energy null-bicharacterstcs on the (x1, x2)-
space is called the zero-energy null-geodesics. Therefore we have

2∑
j ,k=1

g jk(x(s))ξj(s)ξk(s) ≡ 0, ∀s. (20)

This equation is a quadratic equation in ξj(s), 1 ≤ j ≤ 2, and
therefore we have two families of solutions

ξ±j (s) = p±j (x(s)), x = (x1, x2), j = 1, 2. (21)



If substitute ξ±j in (18) and choose x0 as a parameter instead of s
we obtain two 2× 2 system of differential equations in (x1, x2):

dx±j
dx0

=
g j1(x±)p±1 (x±) + g j2(x±)p±2 (x±)

g01(x±)p±1 (x±) + g02(x±)p±2 (x±)
, j = 1, 2. (22)

Therefore the solution of 4× 4 system of null-bicharacteristics (18)
is reduced to the solution of two 2× 2 systems (22). This reduction
substantially simplifies the study of black holes.



Description of the black hole inside the
ergosphere in the case of two space dimensions

Let ∆(x) = 0, n = 2, be the ergosphere. Assume that the normal to
that ergosphere is not characteristic for any x ∈ {∆(x) = 0}

2∑
j ,k=1

g jk(x)νjνk 6= 0 for all x ∈ {∆(x) = 0}, (23)

where (ν1, ν2) is the unit normal to ∆ = {∆(x) = 0}. We assume
that the ergosphere ∆(x) = 0 is smooth, i.e. ∂∆

∂x =
(
∂∆
∂x1
, ∂∆
∂x2

)
6= 0

when ∆(x) = 0.
Introduce coordinates (ρ, θ) where ρ = 0 is the equation of ∆(x) =
0, ρ = −∆(x) near ρ = 0. For the convenience we extend θ ∈ [0, 2π]
to θ = R/2πZ. We have 0 ≤ ρ ≤ ρ0(θ) where ρ = ρ0(θ) is the
black hole event horizon, θ ∈ R/2πZ.



Since the set {∆(x) = det[g jk(x)]2j ,k=1 < 0} is inside the ergosphere,
there are two characteristics S±(x) such that

2∑
j ,k=1

g jk(x)S±xj S
±
xk

= 0, ∆(x) < 0,

or, in (ρ, θ) coordinates,

ĝρρ
(
Ŝ±ρ
)2

+ 2ĝρθŜ±ρ Ŝ
±
θ + ĝθθ

(
Ŝ±θ
)2

= 0, (24)

where
[
ĝρρ ĝρθ

ĝρθ ĝθθ

]
is the matrix

[
g11 g12

g21 g22

]
in (ρ, θ) coordinates.

We assume that Ŝ±(ρ, θ) satisfy the following boundary conditions

Ŝ±(0, θ) = θ for any θ ∈ R/2πZ. (25)

Solving the quadratic equation (24) we get

Ŝ±ρ (ρ, θ) =
−ĝρθ ±

√
−∆̃

ĝρρ
Ŝθ(ρ, θ), (26)

where ∆̃ = ĝρρĝθθ − (ĝρθ)2.



Consider the equations for the null-bicharacteristics (null geodesics).
When we use the time variable as a parameter we have two families
of null-geodesics:
the (+) null-geodesics (ρ+(x0), θ+(x0)), ρ+(0) = 0, θ+(0) = θ0, x0 ≥
0, and
the (−) null-geodesics (ρ−(x0), θ−(x0)), ρ−(0) = 0, θ−(0) = θ0, x0 ≤
0.
Note that condition (23) is equivalent that both (+) and (−) null-
geodesics are not tangent to ∆(x) = 0.
Assume that the ergoregion {∆(x) ≤ 0} contains a trapped region
Oε, i.e. a region that both (+) and (−) null-geodesics reach when
x0 → +∞ and stay there. One of the examples of trapped region is
a neighborhood of a singularity of the metric similar to the singularity
of the acoustic metric at x = 0.
When x0 → +∞ (ρ+(x0), θ+(x0)) reaches the trapped region Oε
and remains there for all large x0.



The null-geodesics γ− = (ρ−(x0), θ−(x0)), x0 < 0, ends at ((0, θ0)
when x0 = 0 and (ρ−(x0), θ−(x0)) cannot reach Oε when x0 → −∞.
Thus (ρ−(x0), θ−(x0)) has no limit points in {∆(x) ≤ 0} \ Oε.
Therefore the limiting set of the trajectories {ρ−(x), θ−(x0), x0 < 0}
is inside ∆\Oε. By the Poincare-Bendixson theorem (cf. [13]) there
exists a limit cycle, i.e. closed periodic solution γ0 = {(ρ−0 (x0), θ−0 (x0))}
that is a black hole event horizon. The solution γ− approaches γ0
spiraling around γ0. All other (−) null-geodesics also approach γ0
spiraling.
Denote by Π the infinite strip

Π = {0 ≤ ρ < ρ0(θ), −∞ < θ < +∞}, (27)

where {ρ = ρ0(θ), θ ∈ R/2πZ} is the equation of the black hole
event horizon γ0. Therefore Π is traced by all (−) null-geodesics,
and γ0 is the boundary of Π: γ0 ⊂ ∂Π. Thus the following theorem
holds:



Theorem
Let (23) holds, i.e. the ergosphere ∆(x) = 0 is not characteristic for
all x ∈ {∆(x) = 0}. Suppose the ergoregion {∆(x) ≤ 0} contains
a trapped region Oε. Then there exists a black hole Π = {0 ≤ ρ ≤
ρ0(θ), −∞ < θ < +∞} and {ρ = ρ0(θ), θ ∈ R/2πZ} is the black
hole event horizon.



Recovery of the black hole knowing the boundary
data on the ergosphere

Consider the characteristic equations (24). Note that

∆̃(ρ, θ) = gρρgϕϕ − (gρϕ)2 ≡ −C1ρ, C1 > 0. (28)

Let ρ = ρ±(x0), θ = θ±(x), x0 ≥ 0, be the zero energy null-
geodesics. Then

S±(ρ±(x0), θ±(x0)) ≡ S±(ρ(0), θ(0)), ρ(0) = 0, θ(0) = θ0. (29)

We have that (ρ+(x0), θ+(x0)) crosses the black hole horizon γ0 =

{ρ = ρ0(θ), θ ∈ R) at some point x0 = x
(0)
0 and remains inside the

black hole. The null-geodesics (ρ−(x0), θ−(x0)) approach the black
hole event horizon γ0 when x0 → −∞. Thus γ0 is the limit set of
(ρ−(x0), θ−(x0)), x0 < 0.
Periodically extending θ ∈ [0, 2π] to θ ∈ (−∞,+∞) we have that
the (−) null-geodesics cover the strip Π = {0 ≤ ρ < ρ0(θ),−∞ <
θ < +∞} when 0 ≤ ρ(x0) < ρ0, θ(x0) = θ, −∞ < θ < +∞.



Let
σ = S+(ρ, θ), τ = S−(ρ, θ) (30)

when (ρ, θ) ∈ Π, Π = {0 ≤ ρ < ρ0(θ), θ ∈ R1}, ρ = ρ0(θ) is the
black hole event horizon.
Note that Lu = 0 has the form

∂2u

∂σ∂τ
= 0 (31)

in coordinates (σ, τ).
Make a new change of variables

y1 = σ+τ
2 = S+(ρ,θ)+S−(ρ,θ)

2 (32)
y2 = σ−τ

2 , y1
∣∣
ρ=0 = θ, y2

∣∣
ρ=0 = 0.

It follows from (31) that

∂2u

∂y2
1
− ∂

2u

∂y2
2

= 0 in R2
+ = {(y1, y2), y1 ≥ 0, y2 ∈ (−∞,+∞)}. (33)

We have that (y1, y2) = Φ(σ, τ) is the map of Π onto the half-
plane R2

+ = {(y1, y2), y1 ≥ 0, y2 ∈ (−∞,+∞)}. Note that Φ is a
homeomorphism of Π onto R2

+, Φ is the identity on ρ = 0.



The closure Π = {0 ≤ ρ ≤ ρ0(θ), θ ∈ R1} has the form Π = Π∪ γ0.
Thus the black hole event horizon γ0 belongs to the closure of Π.
Suppose we have another metric g1 in Ω such that Λ1f

∣∣
R×Γ0

=

Λf
∣∣
R×Γ0

for all f ∈ R× Γ0 where Λ1,Λ are two DN operators for g1
and g , respectively. Then, as in §4, g = g1 modulo of the change of
variables (4) outside of the ergosphere.
Therefore, without loss of generality, we can assume the ergosphere
∆ = 0 for metrics g , g1 is the same and the metrics g , g1 are equal
on ∆ = 0.
Let ϕ± be the solutions of characteristic equation of the form (24)
with [ĝρθ]2j ,k=1 replaced by [gρθ1 ]2j ,k=1.
We assume, as in (29), that

ϕ±(ρ±1 (x0), θ±1 (x0)) = ϕ±(ρ1(0), θ1(0)), ρ1(0) = 0, θ1(0) = θ̂1.
(34)



Make change of variables as in (30)

σ′ = ϕ+(ρ, θ), τ ′ = ϕ−(ρ, θ), (35)

where

(ρ′, θ′) ∈ Π′, Π′ = {0 ≤ ρ′ < ρ′0(θ′), θ′ ∈ R1}, (36)

ρ = ρ′0(θ′), θ′ ∈ R is the black hole event horizon for the metric g1.
Note that L′u′ = 0 has the form ∂2u′

∂σ′∂τ ′ = 0 in (σ′, τ ′) coordinates,
where L′ is the operator of the form (2) with g replaced by g1.
As in (32), make a change of variables

y ′1 =
σ′ + τ ′

2
=
ϕ+(ρ, θ) + ϕ−(ρ, θ)

2
, (37)

y ′2 =
σ′ − τ ′

2
=
ϕ+ − ϕ−

2
,

y ′1
∣∣
ρ=0 = θ, y ′2

∣∣
ρ=0 = 0.

Note that L′u′ = 0 has the form
(
∂2

∂y ′21
− ∂2

∂y ′22

)
u = 0, (y ′1, y

′
2) ∈ R2

+.



Let Φ1 be the map (37), Φ1 is a homeomorphism of Π′ onto R2
+.

Take y1 = y ′1, y2 = y ′2 and consider the composition Φ0 = Φ−1Φ1.
Note that Φ0 = Φ−1Φ1 is a homeomorphism of Π′ onto Π. Note
also that γ′0 = ∂Π′ is the black hole event horizon for the metric g1.
Since the closure Φ0 maps Π

′ onto Π we have that γ′0 is mapped
onto γ0. Thus the event horizon γ0 can be recovered up to a change
of variables. Therefore the following theorem holds:

Theorem
Suppose we have two wave equations Lu = 0, L′u′ = 0 such that
corresponding DN operators are equal on R×Γ0. Suppose the ergo-
sphere ∆(x) = 0 of Lu = 0 is not characteristic for any ∆(x) = 0.
Let Oε ⊂ ∆ be the trapped region. Then the ergosphere ∆′(x) = 0
of L′u′ = 0 is also non-characteristic for all ∆′(x ′) = 0 and has a
trapped region O ′ε. Moreover, if Π is the black hole of Lu = 0 and
Π
′ is the black hole of L′u′ = 0, then Π and Π

′ are homeomorphic.



Remark 7.1

Since the kernel of [g jk ]2j ,k=1 is one-dimensional for all x belonging to
the ergosphere ∆, there exists a vector e(x) ∈ ker [g jk ]2j ,k=1 smoothly
depending on x ∈ ∆ (cf. §4). Above we considered two cases when
e(x) is normal to ∆(x) = 0 for all x ∈ ∆ (case a) ) and when e(x)
is not normal to ∆ for all x ∈ ∆ (case b) ). The last condition
is equivalent to the conditions that the null-geodesics on ∆ are not
tangent to ∆.
There is also a case c) when e(x) is normal to ∆ = 0 only on some
subset of ∆ = 0. Black holes in the case c) were studied in [11].
In the case c) black holes also exist and the boundary of the black hole
consists of segments of “plus" or “minus" zero energy null-geodesics.
In some cases the boundary of black hole may have corners when
“plus" null-geodesics and “minus" null-geodesics intersect.
We will not consider the inverse problems for the black holes in
the case c).
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