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Inverse spectral problems

In this talk we are only interested in inverse spectral problems for plane
domains.

Inverse ∆-spectral problem: Determine a smooth bounded plane
domain Ω ⊂ R2 from the eigenvalues {λ2

j }j∈N of ∆ = −∂2
x − ∂2

y .{
∆ψj = λ2

j ψj in Ω

Bψj = 0

The boundary condition is Dirichlet if Bψ = ψ|∂Ω, Neumann if
Bψ = ∂nψ|∂Ω.

Inverse length spectral problem: Determine a smooth bounded
domain Ω from its length spectrum Lsp(Ω), meaning the lengths of
periodic billiard trajectories.
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Types of inverse spectral problems

Roughly speaking, we wish to understand the inverse image of the maps

Ω 7→ Spec(∆B
Ω) or Ω 7→ Lsp(Ω),

on a class of domains D (isometry equivalence classes), such as smooth
or analytic domains. We will mainly focus on the map Spec.

Inverse spectral problem: Fix Ω ∈ D. Determine the structure of

Iso(Ω) := Spec−1
(

Spec(∆B
Ω)
)
.

Questions: Is Iso(Ω) equal to {Ω}? Is it finite? Is it discrete? Is Ω
isolated in Iso(Ω)? Is there a continuous curve in Iso(Ω) passing through
Ω, or a C 1 curve, or an analytic curve? Is Iso(Ω) compact in D in a
certain topology?
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Prior results; uniqueness among all smooth domains

Kac’s question: If two plane domains are isospectral, then are they
isometric? Gordon, Webb, and Wolpert answered Kac’s question in the
negative.

All the known counterexamples to date consist of non-covex polygons.

Kac 1966: Disks are spectrally unique among all smooth domains.
He used the heat trace invariants to prove that the area and
perimeter of a domain are determined by its spectrum, so by the
isoperimetric inequality, disks are spectrally determined.

Watanabe 2000: There are certain nearly circular domains that are
spectrally unique among all smooth domains.

H. and Zelditch 2019: Nearly circular ellipses are spectrally unique
among all smooth domains.

Hamid Hezari (UC Irvine) Inverse Problems Seminar 4 / 22



Prior results continued; local uniqueness

A weaker inverse spectral problem is to find domains that are locally
spectrally unique, meaning that that they can be heard among nearby
domains in a certain topology.

Marvizi-Melrose 1982: Constructed a two-parameter family of
planar domains that are locally spectrally unique in the C∞

topology. The two parameter family consists of domains that are
defined by elliptic integrals, and that resemble ellipses.

Kaloshin and Sorrentino 2018: Ellipses are locally maked length
spectrally unique among all smooth domains. The marked length
spectrum means that we know the number of bounces (and the
winding number) of each length in the length spectrum.
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Prior result; spectral rigidity

The notion of spectral rigidity of a domain Ω in a class D is even weaker
than local spectral uniqueness. It means that any C 1 one-parameter
family of isospectral domains containing Ω and staying within D, must
be trivial.

Colin de Verdière 1984: Analytic domains with the symmetries of
the ellipse are length spectrally rigid within the class.

H.- Zelditch 2012: Ellipses are infinitesimally spectrally rigid among
smooth domains with the two axial symmetries of an ellipses.

Popov and Topalov 2019: Ellipses are Laplace spectrally rigid within
the class of analytic domains with the two axial symmetries of an
ellipse.

H. - Zelditch 2019: Using a length spectral rigidity theorem of de
Simoi, Kaloshin, and Wei 2017, we prove that nearly circular
domains with one axial symmetry are spectrally rigid among such
domains.
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Prior results; analytic domains and polygonal domains

Another setting is when one tries to show that the Laplace spectrum
map Spec is one-to-one in a relatively small class of domains D.

D is either

infinite dimensional, in which case usually a generic property is added to
simplify an otherwise difficult problem.

Zelditch 2009: Generic analytic domains with an axial symmetry are
spectrally distinguishable from each other. Also proved a result for
generic analytic domains with dihydral symmetries.

or it is finite dimensional where no genericity assumption is imposed.

Durso 1988: The shape of a triangle can be heard among other
triangles. Later, Grieser-Maronna (2013) gave a much simpler proof.

H., Lu, and Rowlett 2020: Trapezoidal domains are spectrally
unique among themselves.
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Centrally symmetric analytic domains

A plane domain Ω ⊂ R2 is called ‘centrally symmetric’ if it is invariant
under the isometric involution σ(x , y) = (−x ,−y).

γ

Figure: centrally symmetric domain.

γ

Figure: up-down symmetric domain.

Every simply-connected centrally symmetric bounded plane domain has
at least one σ-invariant ‘bouncing ball’ orbit γ for the billiard flow. We
denote L = L(γ).
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Poincaré map and its eigenvalues

Pγ : the linear Poincaré map of γ.

γ non-degenerate: det(I − Pγ) 6= 0.

γ elliptic: eigenvalues of Pγ are of modulus one and of the form
{e iα, e−iα}, 0 < α ≤ π.

γ hyperbolic: eigenvalues of Pγ are of the form {eα, e−α}, α > 0.
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The class DL

Locally near the vertices of γ, ∂Ω consists of two graphs:
{y = f (x)} ∪ {y = −f (−x)}.

DL is the class of simply-connected centrally symmetric real analytic
plane domains Ω satisfying:

There is a non-degenerate bouncing ball orbit γ of length Lγ = 2L
through the origin.

The lengths 2L, 4L of γ, γ2, have multiplicity one in the length
spectrum Lsp(Ω).

f (3)(0) 6= 0.

In the the elliptic case, the eigenvalues {e iα, e−iα} of the linear
Poincaré map Pγ satisfy that α /∈ {0, π3 , π}.
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Main theorem

Theorem

For either Dirichlet (or Neumann) boundary conditions B, the map

Ω 7−→ Spec(∆B
Ω)

is one-to-one on the class DL.

This result was stimulated by the recent article of Bialy-Mironov.

Bialy-Mironov 2020: A centrally symmetric C 2 convex plane domain
which is C 0 foliated in a certain neighborhood of the boundary must be
an ellipse. The neighborhood is between an invariant curve of 4-link
orbits and the boundary. There is no analyticity assumption.
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Poisson relation and wave trace asymptotics

Wave trace:

wΩ(t) := Tr cos

(
t
√

∆B
Ω

)
=
∞∑
j=1

cos(tλj).

Poisson relation (Petkov and Stoyanov):

SingSuppwΩ(t) ⊂ ±Lsp(Ω) ∪ {0}

Guillemin-Melrose 1979: Let γ be non-degenerate periodic orbit whose
length Lγ is simple in Lsp(Ω). Let ρ̂ ∈ C∞0 (Lγ − ε, Lγ + ε) with ρ̂ = 1 on
(Lγ − ε/2, Lγ + ε/2). Then∫ ∞

0
ρ̂(t)e iktwΩ

B (t) dt ∼ FB,γ(k)
∞∑
j=0

bγ,jk
−j , k →∞

FB,γ(k): Symplectic pre-factor.

bγ,j : Wave invariants associated to γ.
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The symplectic pre-factor

FB,γ(k) = C0 (−1)εB(γ) L]γe ikLγe
i π

4
mγ√

| det(I − Pγ)|
.

εB(γ) is the signed number of intersections of γ with ∂Ω (the sign
depends on the boundary conditions; +1/− 1 for each bounce for
Neumann/Dirichlet boundary conditions).

mγ is the Maslov index of γ. The term Maslov index is somewhat
ambiguous here, and several authors refer to mγ as the Gutzwiller
Maslov index since it is the exponent arising in the
Gutzwiller-Balian-Bloch trace formula.

L]γ is the primitive length.

C0 is a universal constant.
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α and f ′′(0) as spectral invariants

| det(I − Pγ)| =

{
2− 2 cos(α) (elliptic case),

2 cosh(α)− 2 (hyperbolic case).

When the domain is up-down or centrally symmetric one has
f ′′+(0) = −f ′′−(0), in which case (see the book of Kozlov-Treshchev):

(
1 + Lf ′′(0)

)2
=

{
cos2(α/2) (elliptic case),

cosh2(α/2) (hyperbolic case).

The roots are given by

f ′′(0) =

{
1
L (−1± cos(α/2)) (elliptic case),
1
L (−1± cosh(α/2)) (hyperbolic case).

Let a = −2(1 + Lf ′′(0)). Note: a < 0 for + and a > 0 for −.{
γ is elliptic if and only if |a| < 2

γ is hyperbolic if and only if |a| > 2
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Maslov index of iterations of a bouncing ball orbit

The Maslov index mγr associated to γr is given by

mγr = `r + sgn(HessL+,2r (0)),

where `r is an integer that depends only on 2r and is independent of γr .

γ

y = f+(x)

y = f−(x)

•

•

•O

L±,2r (x1, . . . , x2r ) =
2r∑
p=1

‖
(
xp, fw±(p)(xp)

)
−
(
xp+1, fw±(p+1)(xp+1)

)
‖.

Here, w+(p) (resp. w−(p)) alternates sign starting with w+(1) = +
(resp. w−(1) = −). Also, x2r+1 = x1.
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Oscillatory integral representation of the wave trace;
quick glance

Suppose γr is non-degenerate and its length 2rL is simple.

Zelditch: Modulus
∑

j k
−j(J 2j−2f ), one has∫∞

0 ρ̂(t)e iktwΩ
B (t) dt =

∑
±
∫

[−ε,ε]2r e
ikL±,2r (x1,...,x2r )apr±,r (k, x1, . . . , x2r )dx

apr±,r (k , x1, . . . , x2r ) can be expressed in terms of L±,2r and the Hankel
amplitude.
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Eigenvalues of H2r := HessL+,2r(0)

We are only interested in r = 1 and r = 2. Recall that
a = −2(1 + Lf ′′(0)).

H2 =
−1

L

a 2

2 a

 H4 =
−1

L



a 1 0 1

1 a 1 0

0 1 a 1

1 0 1 a


The eigenvalues of H2: a + 2, a− 2.

The eigenvalues of H4: a + 2, a, a, a− 2.
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Signature of H2r

It follows that

sgnH2 =


0 (elliptic case),

2 (hyperbolic case and a > 2),

−2 (hyperbolic case and a < −2).

sgnH4 =


2 (elliptic case) and 0 < a < 2,

−2 (elliptic case) and −2 < a < 0,

4 (hyperbolic case and a > 2),

−4 (hyperbolic case and a < −2).

This shows that α and f ′′(0) are spectral invariants. In particular, a, and
thus H−1

2r , are also spectral invariants.
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Wave trace invariants as a corollary of a more general
theorem of Zelditch

Theorem

The wave trace invariant for γr are given by

bγr ,j−1 = 4LrAr (0)
(

2r C̃j (h11
2r )j f (2j)(0)

− 8rL
a+2Cj (h11

2r )j f (3)(0)f (2j−1)(0)

+8r Ĉj (h11
2r )j−2

∑2r
q=1(h1q

2r )3 f (3)(0)f (2j−1)(0)
)

+polynomial in terms of f (≤2j−2)(0).

The function A0(r) is a non-zero function of r and is independent of Ω
and j . C̃j , Cj , and Ĉj are non-zero positive combinatorial constants that
depend only on j . The constants hpq2r are the entries of H−1

2r .

Hamid Hezari (UC Irvine) Inverse Problems Seminar 19 / 22



It follows that,

b′γr ,j−1 := (h11
2r )2

(
C̃j f

(2j)(0)− 4L
a+2Cj f

(3)(0)f (2j−1)(0)
)

+
∑2r

q=1(h1q
2r )3

(
4Ĉj f (3)(0)f (2j−1)(0)

)
+polynomial in terms of f (≤2j−2)(0),

is a spectral invariant for each j . We claim that

G (r) :=

∑2r
q=1(h1q

2r )3

(h11
2r )2

,

is non-constant in r . We solve the equation G (1) = G (2):

a3−8
(a2−4)3

(a2−4)2

a2 = (a4−4a2)2

(a3−2a)2
a9−6a7−2a6+12a5

(a4−4a2)3 .

The roots are {0,−1, 2,−2}.
Recall that

|a| = 2|1 + Lf ′′(0)| =

{
2 cos(α/2) (elliptic case),

2 cosh(α/2) (hyperbolic case),
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Recovering f (3)(0), f (4)(0), f (5)(0), . . .

Allowing j = 2, we get that (f (3)(0))2 is a spectral invariant. WLOG we
assume f (3)(0) > 0.

It then follows that f (4)(0) is determined.

Arguing by induction from j → j + 1, we assume that the 2j − 2 jet
J 2j−2f (0) of f at 0 is known.

By the decoupling argument we determine f (3)(0)f (2j−1)(0), hence
f (2j−1)(0), as long as f (3)(0) 6= 0.

Then we can determine f (2j)(0).
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Existence of a bouncing ball orbit

Every smooth simply connected centrally symmetric domain Ω has at
least one bouncing ball orbit that goes through O. If in addition Ω is
star-shaped about the origin O, then Ω has at least two such bouncing
ball orbits.

γ •O •O

Consider the maximum and minimum points of D(P) = d(P,−P)2 on
∂Ω
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