The Jacobi weighted ray transform

Ali Feizmohammadi University College London

Based on joint work with Lauri Oksanen

Motivation

Let (M, g) be a smooth compact Lorentzian (or Riemannian) manifold with a smooth boundary. Let

$$\mathcal{A} = \{ u \in C^{\infty}(M) : \Delta_g u = 0 \text{ on } M^{\text{int}} \}.$$

We are interested in "density" properties for products of two or more elements of the set A. Precisely, we fix $m \ge 2$ and ask whether

$$\int_{M} q(x) \, u_1(x) u_2(x) \dots u_m(x) \, dV_g = 0 \quad \text{for all } u_1, \dots, u_m \in \mathcal{A}$$

for some $q \in C(M)$ implies that $q \equiv 0$ on M?

We will focus on the case m = 3.

The case m = 2 on Lorentzian manifolds

Question. Does $\int_M q \, u_1 u_2 \, dV_g = 0$ for all $u_1, u_2 \in \mathcal{A}$ imply that $q \equiv 0$?

$$\mathcal{A} = \{ u \in C^\infty(M) \, : \, \Delta_g u = 0 \quad ext{on } M^{ ext{int}} \}.$$

This question has applications in Calderón type inverse problems for linear equations. In the Lorentzian case, the density problem reduces to studying injectivity of the *light ray transform of q*:

$$\mathcal{L}_{\gamma}(q) = \int_{I} q(\gamma(s)) \, ds, \quad \gamma \, \text{ a null geodesic.}$$

Injectivity of \mathcal{L} is known in the following cases:

- M is a real-analytic manifold, g is real-analytic and (M, g) satisfies a convex foliation property [STEFANOV'18].
- (M, g) is a stationary Lorentzian manifold and sastisfies a certain convexity condition, [A.F-ILMAVIRTA-OKSANEN'20].

The case m = 2 on Euclidean domains

Question. Does $\int_{\Omega} q u_1 u_2 dx = 0$ for all $u_1, u_2 \in \mathcal{A}$ imply that $q \equiv 0$?

$$\mathcal{A} = \{ u \in C^{\infty}(\overline{\Omega}) : \Delta u = 0 \text{ on } \Omega \}.$$

For Euclidean domains, completeness is well understood:

 [CALDERÓN'80] proves completeness on A, using complex geometric optics, i.e

$$u = e^{i\zeta \cdot x}$$
, where $\zeta \cdot \zeta = 0$.

 [Dos Santos Ferreira-Kenig-Sjöstrand-Uhlmann'09] proves completeness on

$$\mathcal{B}=\{u\in \mathsf{C}^\infty(\Omega)\,:\,\Delta u=0\quad ext{and}\quad u|_{\mathsf{\Gamma}}=0\},$$

where $\Gamma \subset \partial \Omega$ is an arbitrary proper closed subset.

The case m = 2 on CTA manifolds

For general Riemannian manifolds, all of the results are stated for conformally transversally anistropic manifolds (CTA):

$$M \Subset \mathbb{R} \times M_0$$
 and $g(t,x) = c(t,x)(dt^2 \oplus g_0(x)).$

If c ≡ 1, (M₀, g₀) is real-analytic and satisfies an additional assumption, then completeness is known [KRUPCHYK-LIIMATAINEN-SALO'20].

In general the density problem reduces to question of injectivity of the geodesic ray transform on (M_0, g_0) [FERREIRA-KURYLEV-LASSAS-SALO'13]:

$$\mathcal{I}_{\gamma}(f) = \int_{I} f(\gamma(s)) \, ds,$$

where $\gamma : I \to M_0$ is an inextendible unit speed geodesic on M_0 . Injectivity of \mathcal{I} is known when

- ▶ (*M*₀, *g*₀) is "simple" [MUKHOMETOV'77]...
- (M₀, g₀) has a strictly convex boundary and has a foliation by strictly convex hypersurfaces. [UHLMANN-VASY'15],...

The case $m \ge 4$

Consider the Cauchy data set

 $\mathscr{C}(V) = \{(u, \partial_{\nu} u)|_{\partial M} : u \in C^{\infty}(M) \text{ and } \Delta_{g} u + V(x, u) = 0 \text{ on } M^{\mathrm{int}}\},$

where

$$V(x,z) = \sum_{k=2}^{\infty} V_k(x) z^k$$
, with $V_k \in C^{\infty}(M)$.

Question. Does $\mathscr{C}(V)$ uniquely determine V?

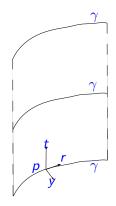
Using multiple-fold linearization [KURYLEV-LASSAS-UHLMANN'14] this question can be reduced to density properties for products of solutions to $\Delta_g u = 0$. Previous results include:

- Lorenztian case: [KURYLEV-LASSAS-UHLMANN'18], [LASSAS-UHLMANN-WANG'16], [A.F-OKSANEN'19], [HINTZ-UHLMANN-ZHAI'20]...
- Riemannian case on CTA manifolds: [Lassas-LIIMATAINEN-LIN-SALO'19],[A.F-OKSANEN'19]...

Gaussian quasi-modes in CTA manifolds

$$M \Subset \mathbb{R} imes M_0$$
 and $g(t,x) = c(t,x)(dt^2 \oplus g_0(x)).$

For simplicity we assume that $c \equiv 1$. Let $\gamma : I \to M_0$ be a unit speed geodesic and consider the Fermi coordinates (r, y) near $\gamma(r) = (r, 0)$. Gaussian quasimode solutions "concentrate" on the planes $\mathbb{R} \times \gamma$ [Dos SANTOS FERREIRA-KURYLEV-LASSAS-SALO'13].



Gaussian quasi-modes in CTA manifolds

There are two families of Gaussian quasimode solutions to $\Delta_g u = 0$ of the form

$$U_{\lambda} = e^{\lambda t} \left(e^{i\lambda r + rac{i}{2}\lambda H(r)y \cdot y + ...} ((\det Y(r))^{-rac{1}{2}} + ...)\chi(y) + R_{\lambda}
ight),$$

and

$$\tilde{U}_{\lambda} = e^{-\bar{\lambda}t} \left(e^{-i\bar{\lambda}r - \frac{i}{2}\bar{\lambda}\bar{H}(r)y \cdot y + \dots} ((\det \bar{Y}(r))^{-\frac{1}{2}} + \dots)\chi(y) + \tilde{R}_{\lambda} \right),$$

where $\lambda = \tau + i\sigma$, $H = \dot{Y}Y^{-1}$ and Y is a (1,1)-tensor that solves the Jacobi equation (e.g [DAHL'08], [KATCHALOV-KURYLEV-LASSAS])

 $\ddot{Y} - KY = 0$ K is the (1,1) - Ricci curvature tensor

in the (n-2)-dimensional orthogonal complement $\dot{\gamma}^{\perp}$ of $\dot{\gamma}$, together with the additional constraint

 $\dot{Y}(r_0)Y^{-1}(r_0)$ is symmetric, $\Im(\dot{Y}(r_0)Y^{-1}(r_0)) > 0$ for some r_0 .

A simple fact from linear algebra

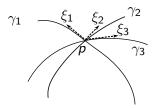
Given a point $p \in M_0$ and unit speed geodesics γ_1 , γ_2 , γ_3 passing through p, the Gaussian quasimode $U_{\lambda_i}^{(j)}$ and $\tilde{U}_{\lambda_i}^{(j)}$ take the form

$$U^{(j)}_{\lambda_j}pprox e^{ au_jt+i au_j\xi_j\cdot x}$$
a $_{\lambda_j}$ and $ilde U^{(j)}_{\lambda_j}pprox e^{- au_jt+i au_j\xi_j\cdot x} ilde a_{\lambda_j}$

near $\mathbb{R} \times p$ where $\tau_j = \Re \lambda_j$ and the vectors $\xi_j \in T_p M_0$ satisfy

$$g_0(\xi_j,\xi_j) = 1$$
 for $j = 1, 2, 3$.

The leading parts of the phases must cancel out for the product of the three Gaussian quasi modes. This implies that $\xi_2, \xi_3 \in \text{Span}(\xi_1)$.



m = 3: reduction to an integral transform

We consider the integral

$$0 = \int_M q \ U_\lambda^2 \ ilde{U}_{2\lambda} \ dV_g$$

that has the following principal part:

$$\int_M q e^{4i\sigma t - 4\sigma r - 2\tau \Im H y \cdot y + \dots} \left(|\det Y|^{-1} (\det Y)^{-\frac{1}{2}} + \dots \right) \chi^3(y) \, dt \, dr \, dy.$$

Recall that $|\det \Im H|^{\frac{1}{2}} = c |\det Y|^{-1}$ for some c > 0. Applying the method of stationary phase gives

$$\int_{\mathbb{R}} \hat{q}(-4\sigma,r,0) e^{-4\sigma r} (\det Y(r))^{-\frac{1}{2}} dr,$$

where q is extended by zero outside of M and \hat{q} denotes the Fourier transform of q with respect to t. This leads to the inversion of an integral transform along γ in M_0 .

Jacobi transform on Riemannian manifolds (M,g)

We denote by \mathbb{Y}_{γ} , the set of complex Jacobi (1,1)-tensors along a geodesic γ on M that are normal to $\dot{\gamma}$ and additionally satisfy the condition

 $(\mathsf{C})\dot{Y}(r_0)Y^{-1}(r_0) \text{ is symmetric and } \Im(\dot{Y}(r_0)Y^{-1}(r_0)) > 0 \text{ for some } r_0.$

The Jacobi transform is then defined as follows:

$$\mathcal{J}_{\gamma} f(Y) = \int_{\gamma} f(r) (\det Y(r))^{-\frac{1}{2}} dr$$

where $f \in C(\mathbb{R})$ is supported on $\gamma^{-1}(M)$.

Theorem [A.F- OKSANEN] Assume that dim M = 2, 3. Let $\gamma : I \to M$ be an inextendible geodesic on M with no conjugate points. Then \mathcal{J}_{γ} is injective, that is to say,

$$\int_{\gamma} f(r) (\det Y(r))^{-\frac{1}{2}} dr = 0 \quad \forall Y \in \mathbb{Y}_{\gamma} \implies f \equiv 0.$$

Inversion in Euclidean geometry

In Euclidean space $(\mathbb{R}^n, \mathbb{E}^n)$ Jacobi fields are affine along a geodesic segment $\gamma = (r, 0)$ with $r \in I$. Indeed,

$$\ddot{Y}(r)=0$$
 for $r\in I.$

We can assume without loss of generality that $0 \notin I$. Next, given $\epsilon > 0$ we choose the following Jacobi matrix Y_{ϵ} of size $(n-1) \times (n-1)$:

$$Y_{\epsilon}(r) = \begin{pmatrix} r - i\epsilon & 0 & \cdots & 0 \\ 0 & r - i\epsilon & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r - i\epsilon \end{pmatrix}$$

Note that Y_{ϵ} satisfies condition (C) for all $\epsilon > 0$. Since $\mathcal{J}_{\gamma} f(Y_{\epsilon}) = 0$ for all $\epsilon > 0$, we obtain that

$$\int_I f(r)(r-i\epsilon)^{-\frac{n-1}{2}} dr = 0, \quad \text{for all } \epsilon > 0.$$

Inversion in Euclidean geometry continued

Expanding in Taylor series of ϵ , we deduce that

$$\int_{I} f(r) r^{-\frac{n-1}{2}} r^{-k} dr = 0, \text{ for all } k = 0, 1, 2, \dots$$

As the set $\{r^{-k}\}_{k=0}^{\infty}$ is dense in C(I), we conclude that

 $f \equiv 0.$

Inversion of the Jacobi transform in Euclidean spaces is a key ingredient of the following result:

Theorem [CÂRSTEA-A.F]Let $\Omega \subset \mathbb{R}^n$ be a domain with smooth boundary. The set

 $\operatorname{Span}\{\nabla u_1 \otimes \nabla u_2 \otimes \ldots \otimes \nabla u_m : u_1, \ldots, u_m \text{ harmonic in } \overline{\Omega}\}$

with $m \geq 3$ is dense in $C(\overline{\Omega}; \mathbb{C}^{\otimes k})$.

Inversion of the Jacobi transform when dim M = 2

We suppose that $\mathcal{J}_{\gamma}f = 0$ and want to show that f = 0. Let \hat{M} be an extension of M and choose $\gamma(a)$ to be a point outside M such that no point on γ is conjugate to $\gamma(a)$. Now, consider the normal Jacobi fields, $Y_k(r)$ with k = 1, 2 satisfying $\ddot{Y}_k - KY_k = 0$

$$Y_1(a) = 0, \quad \dot{Y}_1(a) = 1 \text{ and } Y_2(a) = 1, \quad \dot{Y}_2(a) = 0.$$

Let

$$Y_{\epsilon} = Y_1 - i\epsilon Y_2$$

for $\epsilon > 0$ and observe that the condition (C) holds. By the non-conjugacy assumption imposed on γ , $Y_1(r) > 0$ on suppf and

$$0 = \int_{\mathbb{R}} f(r) Y(r)^{-\frac{1}{2}} dr = \int_{\mathbb{R}} \tilde{f}(r) (1 - \epsilon X(r))^{-\frac{1}{2}} dr$$

where $\tilde{f} = fY_1^{-\frac{1}{2}}$ and $X = Y_2Y_1^{-1}$.

Inversion of the Jacobi transform continued

By expanding in Taylor series in ϵ , we deduce that

$$\int_{\mathbb{R}} \tilde{f}(r) X(r)^k dr = 0 \quad \text{for } k = 0, 1, 2, \dots$$

Supposing that we can change the variable s = X(r), we deduce that

$$\int_{\mathbb{R}} h(s) s^k \, ds = 0 \quad \text{for } k = 0, 1, 2, \dots$$

where $h(s) = \tilde{f}(r(s))\dot{X}(r(s))$. This implies that h = 0 and subsequently that f = 0.

To justify the change of variables, observe that since $X(r) = Y_2(r)Y_1^{-1}(r)$:

$$\dot{X}(r) = W(r)Y_1^{-2}(r), \quad W(r) = \dot{Y}_2(r)Y_1(r) - Y_2(r)\dot{Y}_1(r)$$

where the Wronskian W satisfies W(r) = W(a) = -1.

Inversion of the Jacobi transform for dim M = 3We suppose that

$$\mathcal{J}_{\gamma}f = \int_{I} f(r)(\det Y)^{-rac{1}{2}} dr = 0 \quad \forall Y \in \mathbb{Y}_{\gamma}$$

and want to show that if $p \in \gamma$, then $f(\gamma^{-1}(p)) = 0$. We start by writing $p = \gamma(0)$ and define for $\epsilon > 0$:

$$Y_{\epsilon}(r) = X(r) - i\epsilon Z(r), \quad \forall r \in I,$$

where X(r) and Z(r) are real-valued (1,1)-Jacobi matrices on $\dot{\gamma}^{\perp}(r)$ subject to

$$X(0) = 0, \quad \dot{X}(0) = Id.$$
 and $Z(0) = Id, \quad \dot{Z}(0) = 0.$

Since X is of rank two and since no points on γ are conjugate to p it follows that

$$\det X(r) > 0 \quad \forall r \in I \setminus \{0\}.$$

Inversion of the Jacobi transform for dim M = 3 continued

Note that

$$\int_{I} f(r) \Im (\det(X - i\epsilon Z))^{-\frac{1}{2}} dr = 0 \forall \epsilon > 0.$$

Since det X > 0 away from r = 0 it follows that

$$|\Im(\det(X-i\epsilon Z))^{-rac{1}{2}}|\leq C\epsilon$$
 away from $r=0.$

On the other hand near the point r = 0, we have that

$$\Im(\det(X - i\epsilon Z))^{-\frac{1}{2}} \approx \epsilon (t^2 + \epsilon^2)^{-1}$$

and since $\int_I \epsilon (r^2 + \epsilon^2)^{-1} \, dr o \pi$ as $\epsilon o 0$, we can conclude that

f(0) = 0.

Thank You.