The Jacobi weighted ray transform

Ali Feizmohammadi
University College London

Based on joint work with Lauri Oksanen

Motivation

Let (M, g) be a smooth compact Lorentzian (or Riemannian) manifold with a smooth boundary. Let

$$
\mathcal{A}=\left\{u \in C^{\infty}(M): \Delta_{g} u=0 \quad \text { on } \quad M^{\text {int }}\right\}
$$

We are interested in "density" properties for products of two or more elements of the set \mathcal{A}. Precisely, we fix $m \geq 2$ and ask whether

$$
\int_{M} q(x) u_{1}(x) u_{2}(x) \ldots u_{m}(x) d V_{g}=0 \quad \text { for all } u_{1}, \ldots, u_{m} \in \mathcal{A}
$$

for some $q \in C(M)$ implies that $q \equiv 0$ on M ?
We will focus on the case $m=3$.

The case $m=2$ on Lorentzian manifolds

Question. Does $\int_{M} q u_{1} u_{2} d V_{g}=0$ for all $u_{1}, u_{2} \in \mathcal{A}$ imply that $q \equiv 0$?

$$
\mathcal{A}=\left\{u \in C^{\infty}(M): \Delta_{g} u=0 \quad \text { on } M^{\text {int }}\right\}
$$

This question has applications in Calderón type inverse problems for linear equations. In the Lorentzian case, the density problem reduces to studying injectivity of the light ray transform of q :

$$
\mathcal{L}_{\gamma}(q)=\int_{I} q(\gamma(s)) d s, \quad \gamma \text { a null geodesic. }
$$

Injectivity of \mathcal{L} is known in the following cases:

- M is a real-analytic manifold, g is real-analytic and (M, g) satisfies a convex foliation property [Stefanov'18].
- (M, g) is a stationary Lorentzian manifold and sastisfies a certain convexity condition, [A.F-Ilmavirta-Oksanen'20].

The case $m=2$ on Euclidean domains

Question. Does $\int_{\Omega} q u_{1} u_{2} d x=0$ for all $u_{1}, u_{2} \in \mathcal{A}$ imply that $q \equiv 0$?

$$
\mathcal{A}=\left\{u \in C^{\infty}(\bar{\Omega}): \Delta u=0 \quad \text { on } \Omega\right\} .
$$

For Euclidean domains, completeness is well understood:

- [CALDERÓN'80] proves completeness on \mathcal{A}, using complex geometric optics, i.e

$$
u=e^{i \zeta \cdot x}, \quad \text { where } \quad \zeta \cdot \zeta=0
$$

- [Dos Santos Ferreira-Kenig-Sjöstrand-Uhlmann'09] proves completeness on

$$
\mathcal{B}=\left\{u \in C^{\infty}(\Omega): \Delta u=0 \quad \text { and }\left.\quad u\right|_{\Gamma}=0\right\}
$$

where $\Gamma \subset \partial \Omega$ is an arbitrary proper closed subset.

The case $m=2$ on CTA manifolds

For general Riemannian manifolds, all of the results are stated for conformally transversally anistropic manifolds (CTA):

$$
M \Subset \mathbb{R} \times M_{0} \quad \text { and } \quad g(t, x)=c(t, x)\left(d t^{2} \oplus g_{0}(x)\right)
$$

- If $c \equiv 1,\left(M_{0}, g_{0}\right)$ is real-analytic and satisfies an additional assumption, then completeness is known
[Krupchyk-Limatainen-Salo'20].
In general the density problem reduces to question of injectivity of the geodesic ray transform on $\left(M_{0}, g_{0}\right)$ [Ferreira-Kurylev-Lassas-Salo'13]:

$$
\mathcal{I}_{\gamma}(f)=\int_{I} f(\gamma(s)) d s
$$

where $\gamma: I \rightarrow M_{0}$ is an inextendible unit speed geodesic on M_{0}. Injectivity of \mathcal{I} is known when

- $\left(M_{0}, g_{0}\right)$ is "simple" [Muкнометоv'77]...
- $\left(M_{0}, g_{0}\right)$ has a strictly convex boundary and has a foliation by strictly convex hypersurfaces. [Uhlmann-VASY'15],...

The case $m \geq 4$

Consider the Cauchy data set
$\mathscr{C}(V)=\left\{\left.\left(u, \partial_{\nu} u\right)\right|_{\partial M}: u \in C^{\infty}(M)\right.$ and $\Delta_{g} u+V(x, u)=0 \quad$ on $\left.M^{\text {int }}\right\}$,
where

$$
V(x, z)=\sum_{k=2}^{\infty} V_{k}(x) z^{k}, \quad \text { with } \quad V_{k} \in C^{\infty}(M)
$$

Question. Does $\mathscr{C}(V)$ uniquely determine V ?
Using multiple-fold linearization [Kurylev-Lassas-Uhlmann'14] this question can be reduced to density properties for products of solutions to $\Delta_{g} u=0$. Previous results include:

- Lorenztian case: [Kurylev-Lassas-Uhlmann'18],[Lassas-Uhlmann-Wang'16],[A.F-Oksanen'19],[Hintz-Uhlmann-Zhai'20]...
- Riemannian case on CTA manifolds:
[Lassas-Limatainen-Lin-Salo'19],[A.F-OkSanen'19]...

Gaussian quasi-modes in CTA manifolds

Let

$$
M \Subset \mathbb{R} \times M_{0} \quad \text { and } \quad g(t, x)=c(t, x)\left(d t^{2} \oplus g_{0}(x)\right)
$$

For simplicity we assume that $c \equiv 1$. Let $\gamma: I \rightarrow M_{0}$ be a unit speed geodesic and consider the Fermi coordinates (r, y) near $\gamma(r)=(r, 0)$. Gaussian quasimode solutions "concentrate" on the planes $\mathbb{R} \times \gamma$ [Dos Santos Ferreira-Kurylev-Lassas-Salo'13].

Gaussian quasi-modes in CTA manifolds

There are two families of Gaussian quasimode solutions to $\Delta_{g} u=0$ of the form

$$
U_{\lambda}=e^{\lambda t}\left(e^{i \lambda r+\frac{i}{2} \lambda H(r) y \cdot y+\ldots}\left((\operatorname{det} Y(r))^{-\frac{1}{2}}+\ldots\right) \chi(y)+R_{\lambda}\right),
$$

and

$$
\tilde{U}_{\lambda}=e^{-\bar{\lambda} t}\left(e^{-i \bar{\lambda} r-\frac{i}{2} \bar{\lambda} \bar{H}(r) y \cdot y+\ldots}\left((\operatorname{det} \bar{Y}(r))^{-\frac{1}{2}}+\ldots\right) \chi(y)+\tilde{R}_{\lambda}\right)
$$

where $\lambda=\tau+i \sigma, H=\dot{Y} Y^{-1}$ and Y is a (1,1)-tensor that solves the Jacobi equation (e.g [Dahl'08], [Katchalov-Kurylev-Lassas])

$$
\ddot{Y}-K Y=0 \quad \mathrm{~K} \text { is the }(1,1)-\text { Ricci curvature tensor }
$$

in the $(n-2)$-dimensional orthogonal complement $\dot{\gamma}^{\perp}$ of $\dot{\gamma}$, together with the additional constraint
$\dot{Y}\left(r_{0}\right) Y^{-1}\left(r_{0}\right)$ is symmetric, $\quad \Im\left(\dot{Y}\left(r_{0}\right) Y^{-1}\left(r_{0}\right)\right)>0 \quad$ for some r_{0}.

A simple fact from linear algebra

Given a point $p \in M_{0}$ and unit speed geodesics $\gamma_{1}, \gamma_{2}, \gamma_{3}$ passing through p, the Gaussian quasimode $U_{\lambda_{j}}^{(j)}$ and $\tilde{U}_{\lambda_{j}}^{(j)}$ take the form

$$
U_{\lambda_{j}}^{(j)} \approx e^{\tau_{j} t+i \tau_{j} \xi_{j} \cdot x} a_{\lambda_{j}} \quad \text { and } \quad \tilde{U}_{\lambda_{j}}^{(j)} \approx e^{-\tau_{j} t+i \tau_{j} \xi_{j} \cdot x} \tilde{\mathrm{a}}_{\lambda_{j}}
$$

near $\mathbb{R} \times p$ where $\tau_{j}=\Re \lambda_{j}$ and the vectors $\xi_{j} \in T_{p} M_{0}$ satisfy

$$
g_{0}\left(\xi_{j}, \xi_{j}\right)=1 \quad \text { for } j=1,2,3
$$

The leading parts of the phases must cancel out for the product of the three Gaussian quasi modes. This implies that $\xi_{2}, \xi_{3} \in \operatorname{Span}\left(\xi_{1}\right)$.

$m=3:$ reduction to an integral transform

We consider the integral

$$
0=\int_{M} q U_{\lambda}^{2} \tilde{U}_{2 \lambda} d V_{g}
$$

that has the following principal part:

$$
\int_{M} q e^{4 i \sigma t-4 \sigma r-2 \tau \Im H y \cdot y+\ldots}\left(|\operatorname{det} Y|^{-1}(\operatorname{det} Y)^{-\frac{1}{2}}+\ldots\right) \chi^{3}(y) d t d r d y .
$$

Recall that $|\operatorname{det} \Im H|^{\frac{1}{2}}=c|\operatorname{det} Y|^{-1}$ for some $c>0$. Applying the method of stationary phase gives

$$
\int_{\mathbb{R}} \hat{q}(-4 \sigma, r, 0) e^{-4 \sigma r}(\operatorname{det} Y(r))^{-\frac{1}{2}} d r,
$$

where q is extended by zero outside of M and \hat{q} denotes the Fourier transform of q with respect to t. This leads to the inversion of an integral transform along γ in M_{0}.

Jacobi transform on Riemannian manifolds (M, g)

We denote by \mathbb{Y}_{γ}, the set of complex Jacobi (1,1)-tensors along a geodesic γ on M that are normal to $\dot{\gamma}$ and additionally satisfy the condition
(C) $\dot{Y}\left(r_{0}\right) Y^{-1}\left(r_{0}\right)$ is symmetric and $\Im\left(\dot{Y}\left(r_{0}\right) Y^{-1}\left(r_{0}\right)\right)>0$ for some r_{0}.

The Jacobi transform is then defined as follows:

$$
\mathcal{J}_{\gamma} f(Y)=\int_{\gamma} f(r)(\operatorname{det} Y(r))^{-\frac{1}{2}} d r
$$

where $f \in C(\mathbb{R})$ is supported on $\gamma^{-1}(M)$.
Theorem [A.F- Oksanen] Assume that $\operatorname{dim} M=2,3$. Let $\gamma: I \rightarrow M$ be an inextendible geodesic on M with no conjugate points. Then \mathcal{J}_{γ} is injective, that is to say,

$$
\int_{\gamma} f(r)(\operatorname{det} Y(r))^{-\frac{1}{2}} d r=0 \quad \forall Y \in \mathbb{Y}_{\gamma} \Longrightarrow f \equiv 0
$$

Inversion in Euclidean geometry

In Euclidean space $\left(\mathbb{R}^{n}, \mathbb{E}^{n}\right)$ Jacobi fields are affine along a geodesic segment $\gamma=(r, 0)$ with $r \in I$. Indeed,

$$
\ddot{Y}(r)=0 \quad \text { for } r \in I
$$

We can assume without loss of generality that $0 \notin I$. Next, given $\epsilon>0$ we choose the following Jacobi matrix Y_{ϵ} of size $(n-1) \times(n-1)$:

$$
Y_{\epsilon}(r)=\left(\begin{array}{cccc}
r-i \epsilon & 0 & \cdots & 0 \\
0 & r-i \epsilon & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & r-i \epsilon
\end{array}\right)
$$

Note that Y_{ϵ} satisfies condition (C) for all $\epsilon>0$. Since $\mathcal{J}_{\gamma} f\left(Y_{\epsilon}\right)=0$ for all $\epsilon>0$, we obtain that

$$
\int_{I} f(r)(r-i \epsilon)^{-\frac{n-1}{2}} d r=0, \quad \text { for all } \epsilon>0
$$

Inversion in Euclidean geometry continued

Expanding in Taylor series of ϵ, we deduce that

$$
\int_{I} f(r) r^{-\frac{n-1}{2}} r^{-k} d r=0, \quad \text { for all } k=0,1,2, \ldots
$$

As the set $\left\{r^{-k}\right\}_{k=0}^{\infty}$ is dense in $C(I)$, we conclude that

$$
f \equiv 0
$$

Inversion of the Jacobi transform in Euclidean spaces is a key ingredient of the following result:

Theorem [CÂRSTEA-A.F]Let $\Omega \subset \mathbb{R}^{n}$ be a domain with smooth boundary. The set

$$
\operatorname{Span}\left\{\nabla u_{1} \otimes \nabla u_{2} \otimes \ldots \otimes \nabla u_{m}: u_{1}, \ldots, u_{m} \text { harmonic in } \bar{\Omega}\right\}
$$

with $m \geq 3$ is dense in $C\left(\bar{\Omega} ; \mathbb{C}^{\otimes k}\right)$.

Inversion of the Jacobi transform when $\operatorname{dim} M=2$

We suppose that $\mathcal{J}_{\gamma} f=0$ and want to show that $f=0$. Let \hat{M} be an extension of M and choose $\gamma(a)$ to be a point outside M such that no point on γ is conjugate to $\gamma(a)$. Now, consider the normal Jacobi fields, $Y_{k}(r)$ with $k=1,2$ satisfying $\ddot{Y}_{k}-K Y_{k}=0$

$$
Y_{1}(a)=0, \quad \dot{Y}_{1}(a)=1 \quad \text { and } \quad Y_{2}(a)=1, \quad \dot{Y}_{2}(a)=0 .
$$

Let

$$
Y_{\epsilon}=Y_{1}-i \epsilon Y_{2}
$$

for $\epsilon>0$ and observe that the condition (C) holds. By the non-conjugacy assumption imposed on $\gamma, Y_{1}(r)>0$ on suppf and

$$
0=\int_{\mathbb{R}} f(r) Y(r)^{-\frac{1}{2}} d r=\int_{\mathbb{R}} \tilde{f}(r)(1-\epsilon X(r))^{-\frac{1}{2}} d r
$$

where $\tilde{f}=f Y_{1}^{-\frac{1}{2}}$ and $X=Y_{2} Y_{1}^{-1}$.

Inversion of the Jacobi transform continued

By expanding in Taylor series in ϵ, we deduce that

$$
\int_{\mathbb{R}} \tilde{f}(r) X(r)^{k} d r=0 \quad \text { for } k=0,1,2, \ldots
$$

Supposing that we can change the variable $s=X(r)$, we deduce that

$$
\int_{\mathbb{R}} h(s) s^{k} d s=0 \quad \text { for } k=0,1,2, \ldots
$$

where $h(s)=\tilde{f}(r(s)) \dot{X}(r(s))$. This implies that $h=0$ and subsequently that $f=0$.
To justify the change of variables, observe that since $X(r)=Y_{2}(r) Y_{1}^{-1}(r)$:

$$
\dot{X}(r)=W(r) Y_{1}^{-2}(r), \quad W(r)=\dot{Y}_{2}(r) Y_{1}(r)-Y_{2}(r) \dot{Y}_{1}(r)
$$

where the Wronskian W satisfies $W(r)=W(a)=-1$.

Inversion of the Jacobi transform for $\operatorname{dim} M=3$

We suppose that

$$
\mathcal{J}_{\gamma} f=\int_{I} f(r)(\operatorname{det} Y)^{-\frac{1}{2}} d r=0 \quad \forall Y \in \mathbb{Y}_{\gamma}
$$

and want to show that if $p \in \gamma$, then $f\left(\gamma^{-1}(p)\right)=0$. We start by writing $p=\gamma(0)$ and define for $\epsilon>0$:

$$
Y_{\epsilon}(r)=X(r)-i \epsilon Z(r), \quad \forall r \in I,
$$

where $X(r)$ and $Z(r)$ are real-valued (1,1)-Jacobi matrices on $\dot{\gamma}^{\perp}(r)$ subject to

$$
X(0)=0, \quad \dot{X}(0)=I d . \quad \text { and } \quad Z(0)=I d, \quad \dot{Z}(0)=0 .
$$

Since X is of rank two and since no points on γ are conjugate to p it follows that

$$
\operatorname{det} X(r)>0 \quad \forall r \in I \backslash\{0\} .
$$

Inversion of the Jacobi transform for $\operatorname{dim} M=3$ continued

Note that

$$
\int_{I} f(r) \Im(\operatorname{det}(X-i \epsilon Z))^{-\frac{1}{2}} d r=0 \forall \epsilon>0
$$

Since $\operatorname{det} X>0$ away from $r=0$ it follows that

$$
\left|\Im(\operatorname{det}(X-i \epsilon Z))^{-\frac{1}{2}}\right| \leq C \epsilon \quad \text { away from } r=0
$$

On the other hand near the point $r=0$, we have that

$$
\Im(\operatorname{det}(X-i \epsilon Z))^{-\frac{1}{2}} \approx \epsilon\left(t^{2}+\epsilon^{2}\right)^{-1} .
$$

and since $\int_{I} \epsilon\left(r^{2}+\epsilon^{2}\right)^{-1} d r \rightarrow \pi$ as $\epsilon \rightarrow 0$, we can conclude that

$$
f(0)=0 .
$$

Thank You.

