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Inverse problems in cosmology

The existence of gravitational waves was predicted by Einstein and con-
firmed by the LIGO project in 2015. The gravitational waves generated
in the early Universe, called primordial gravitational waves, are of great
interest in cosmology. The detection of these gravitational waves is quite
challenging:

“· · · will involve waves today whose wave lengths will extend

all the way up to our present cosmological horizon (the dis-

tance out to which we can currently observe in principle) and

that are likely to be well beyond the reach of any direct detec-

tors for the foreseeable future. ”

quoted from Krauss, Dodelson and Meyer in Science, 2010.



Inverse problems in cosmology

As demonstrated by Sachs and Wolfe 1967, primordial fluctuations cre-
ate Cosmic Microwave Background (CMB) anisotropies, and the redshift
measurement is connected to a cosmological X-ray transform of the grav-
itational fluctuations.

Figure: All-sky picture of the infant universe created from Wilkinson

Microwave Anisotropy Probe (WMAP) data. Picture courtesy to NASA.

The inverse problem we study is the determination of early gravitational
perturbations from the anisotropies of CMB measurements.



Cosmological X-ray tomography

The mathematical problem can be formulated as follows. Let (M , g0) be a
Friedman-Lemâıtre-Robertson-Walker (FLRW) cosmological model, where

M = (0,1)⇥ R3, g0(x) = �dt
2 + R

2(t)dy2

and x = (t, y), t 2 R+, y 2 R3, and R(t) > 0 is smooth. In this model,
the Universe starts from a Big Bang at t = 0 and inflates. The factor R
reflects the rate of expansion.

I when the Universe was very young and dominated by radiation, the
factor R(t) ⇡ t

1
2 .

I At later times, when matter became to dominate, R(t) ⇡ t
2/3.

I Based on more recent observations, the Universe is expanding with a
rate R(t) = e

⇤t with ⇤ a positive cosmological constant.



Cosmological X-ray tomography

Consider a perturbation (M , g) of (M , g0).

I let S0 = {t0} ⇥ R3 be the “surface of last scattering” which is the
moment that photons start to travel freely in space-time.

I let S = {t1}⇥ R3 be the surface where we observe the CMB.

I let �(⌧), ⌧ � 0 be a light-like geodesic on (M , g) with �(0) 2 S0.
We think of �(⌧) as the trajectory of photons emitted from S0.

S1: surface of observation

S0: surface of last scattering

early Universe

M = [t0, t1]⇥R3

Figure: The FLRW cosmology model.



Cosmological X-ray tomography

The initial energy of the photon observed by an observer at S0 moving in
tangent direction � = @t is E0 = g(�̇(0),�). The energy received by the
observer at S is E = g(�̇(⌧0),�), where ⌧0 is such that �(⌧0) 2 S . The
redshift is defined as

R =
E0 � E

E
.

The linearization of R leads to a tomography problem. Suppose that the
metric perturbation g is a one parameter family

g✏ = g0 + ✏g1 + ✏2g2 + · · · .



Cosmological X-ray tomography

Let R✏ be the redshift measurement for g✏ and consider the linearization
@✏R✏|✏=0. Then

@✏R✏|✏=0 =
1

2R(t0)
Xg0(R

2LR�(R
�2

g1)) (1)

where L• denotes the Lie derivative for a vector field •.

For a light-like geodesic �(⌧), ⌧ 2 R on (M , g0), we define the cosmo-
logical X-ray (or light-ray) transform of a symmetric two tensor f by

Xg0(f )(�) =

Z

R

3X

i,j=0

fij(�(⌧))�̇
i (⌧)�̇j(⌧)d⌧.



Cosmological X-ray tomography

(1) is essentially the Sachs-Wolfe e↵ects in the primordial perturbation
problem. For the derivation, see Sachs and Wolfe 1967, Lassas, Oksanen,
Stefanov and Uhlmann 2018.

Let’s consider the following problem for a moment.

Problem (tomography problem)

Determine g1 from the transform (1).

For example, g✏ could represent interesting astrophysical objects such as
cosmic strings, domain walls, see Damour and Vilenkin 2000.



Cosmological X-ray tomography

I Guillemin 1989 investigated the transform on the compactification
of R2+1 in the study of the Lorentzian version of the Zoll problem.
There are limitations on the ability for reconstruction, see Greenleaf
and Uhlmann 1990.

I For Minkowski space-time R3+1, the transform is microlocally invert-
ible in space-like directions, fails to be invertible in time-like directions,
and invertibility is unclear near the light-like directions. See LOSU
2018 and Wang 2018. The result in LOSU has been generalized to
Lorentzian manifolds by the same authors in 2020.

I The Minkowski light ray transform is injective for C1
0 .

I Stefanov 2017 : support theorems for analytic Lorentzian manifolds.

I Ilmavirta 2018 : Pestov identity method.

I Feizmohammadi, Ilmavirta and Oksanen 2020: injectivity for certain

static and stationary spacetimes.

I Krishnan, Senapati and Vashisth 2020: uniqueness result for tensors.



The inverse Sachs-Wolfe problem

For the primordial gravitational wave problem, we should take into account
that g✏ satisfies the Einstein equations with certain source fields and initial
perturbations at S0 from g0.

On the linearization level, this implies that the perturbation g1 satisfies
some wave equations. These are known in cosmology literatures such
as Mukhanov, Feldman and Brandenberger 1992, Dodelson 2003, Durrer
2008 ect.

For ease of elaboration, we consider the scalar type perturbation.



The inverse Sachs-Wolfe problem

Let’s assume that the actual cosmos is a metric perturbation g = g0 + �g
on M where �g is a small perturbation compared to g0.

We use the conformal time s such that ds = R
�1

dt. Then we get g0 =
R

2(s)(ds2 � �ijdx idx j) = R
2(s)gM where gM is the Minkowski metric

on M = (0,1). In the longitudinal gauge, also called the conformal
Newtonian gauge, we consider the metric g of the form

g = R
2(s)[(1 + 2�)ds2 � (1� 2 )dx2] (2)

Here, �, are scalar functions on M and this type of perturbation is called
scalar perturbations.



The inverse Sachs-Wolfe problem

Let T be the temperature observed at S in the isotropic background
g0. Let �T be the temperature fluctuation from the isotropic background.
Then one component of �T/T is the integrated Sachs-Wolfe (ISW)
e↵ects

(
�T

T
)ISW =

Z
s1�s0

0
(@s�(�(⌧)) + @s (�(⌧))d⌧ (3)

see e.g. Durrer 2008. This quantity depends on the light ray � which indi-
cates the anisotropy. The integrated Sachs-Wolfe e↵ect can be extracted
from the CMB and other astrophysical measurements, see for example
Manzotti, Dodelson 2014.



The inverse Sachs-Wolfe problem

Consider Universe dominated by perfect fluid sources. In the case of adia-
batic perturbations, one can derive that � =  and � satisfies the following
Bardeen’s equation

�00 + 3H(1 + c
2
s
)�0 + c

2
s
��+ [2H 0 + (1 + 3c2

s
)H2]� = 0, (4)

where H(s) = @sR(s)/R(s). In general, the right hand side of the equation
is a non-zero term related to the entropy perturbations. Prescribing Cauchy
data of � at S0, one can solve the Cauchy problem of (4) to get � in M.

Problem (inverse Sachs-Wolfe problem)

Determining � from (3) where � satisfies the Cauchy problem of (4).



The main results

Our main results are about the stable determination of solutions of
Cauchy problem from the light ray transform.

I Let M = [t0, t1]⇥ R3 and t0 = 0. Let gM = �dt
2 + dx

2 be the
Minkowski metric on M. Let XM be the light ray transform.

I Let c > 0 be a constant. Denote ⇤c = @2
t
+ c

2� where � is the
positive Laplacian on R3. Here, c is the wave speed. Consider the
Cauchy problem

⇤c f = 0 on M

f = f1, @t f = f2, on S0.
(5)



The main results

Let Ns def
= H

s+1
comp(S0)⇥ H

s

comp(S0).

Theorem (Vasy-Wang, 2019)

Suppose 0 < c  1 is constant. Assume that (f1, f2) 2 Ns , s � 0, and f1, f2
are supported in a compact set K of S0. Then XM f uniquely determines

f and f1, f2 which satisfy (5). Moreover, there exists C > 0 such that

k(f1, f2)kNs  CkXM f kHs+2(C )

and kf kHs+1(M)  CkXM f kHs+2(C )

where C is the set of light rays on M.



The main results

We also prove the results

I When the wave operator is of the form

P(x , t, @x , @t) = ⇤c + P1(x , t, @x , @t) + P0(x , t)

where P1 is a first order di↵erential operator with real valued smooth
coe�cients and P0 is smooth.

I For small metric perturbations g� = gM+h with h =
P3

i,j=0 hijdx
i
dx

j

where
(A1) h is a symmetric two tensor smooth on M;

(A2) for � > 0 small, the seminorm khijkC3 = sup(t,x)2M

P
|↵|3 |@

↵hij(t, x)| <
�, i , j = 0, 1, 2, 3.



Other interesting problems

I Source problem for the wave equation

⇤u = f , on M

u = 0 for t < t0

where f is compactly supported in M.

I Metric perturbation, on-going work with A. Vasy. The model is
the Einstein-Euler system

Ricµ⌫(g)� ⇤gµ⌫ = GgT
scalar

µ⌫

r↵(�
s
g
↵�r��) = 0



Other interesting problems

I Kinetic equation: consider source problem for the linear Boltzmann
equation or non-stationary transport equation on Rn:

@tu(t, x , ✓) + ✓ ·rxu(t, x , ✓) + �(t, x , ✓)u(t, x , ✓)

=

Z

Sn�1

k(t, x , ✓, ✓0)u(t, x , ✓0)d✓0 + f (t, x),

where (t, x) 2 R+ ⇥ Rn, ✓ 2 Sn�1. Here, � is the absorption coef-
ficient, k is the scattering kernel and f is the source term. Consider
the inverse problem of determining the source term f from the mea-
surement of u at t = T > 0.



Proofs: the light ray transform (I)

The idea of the proofs is the following. For the Cauchy problem, we can
represent the solution as

u = E1f1 + E2f2

Then we have
XMu = XME1f1 + XME2f2

We will study the operator XMEi , i = 1, 2 and modify it to a pseudo-
di↵erential operator on R3.



Proofs: the light ray transform (I)

We parametrize the set of light rays C as follows: let x0 2 S0 and v 2 S2
the unit sphere in R3. Then a light ray from x0 in direction (1, v) is

�(⌧) = (t0, x0) + ⌧(1, v), ⌧ 2 [0, t1 � t0].

In particular, we can identify C = R3 ⇥ S2. The light ray transform for
scalar functions on (M, gM) is defined by

XM(f )(�) =

Z
t1�t0

0
f (�(⌧))d⌧, f 2 C

1
0 (M). (6)



Proofs: the light ray transform (I)

Consider the Cauchy problem

⇤cu = 0, on M
� = (t0, t1)⇥ R3

u = f1, @tu = f2, on S0 = {t0}⇥ R3.
(7)

The fundamental solution can be written down quite explicitly. For gen-
eral strictly hyperbolic equations, Duistermaat-Hörmander constructed a
parametrix for the Cauchy problem. One can find a parametrix when the
equation contains lower order terms.



Proofs: the light ray transform (I)

In this case,
u(t, x) = E+h1 + E�h2,

where that E± are represented by oscillatory integrals

E±(f )(t, x) = (2⇡)�3

Z

R3

Z

R3

e
i((x�y)·⇠±ct|⇠|)

f (y)dyd⇠.

and

ĥ1 =
1

2
(f̂1 +

1

ic |⇠| f̂2), ĥ2 =
1

2
(f̂1 �

1

ic |⇠| f̂2).



Proofs: the light ray transform (I)

For c = 1, the singularities of the solutions of (7) are all in light-like
directions. Consider the composition XM � E±.

Let ' be a smooth function on S2, and I
' be the integration operator on

C
1(R3 ⇥ S2) defined by

I
'
f (y) =

Z

S2
'(v)f (y , v)dv .

Then we consider the composition I
' � XM � E± as an operator from

C
1(S0) to C

1(S0).



Proofs: the light ray transform (I)

For technical reasons, we introduce a smooth cut-o↵ function. For ✏ > 0
small, let �✏(t) be a smooth cut-o↵ function on R such that �✏(t) = 1 for
2✏ < t < t1 � 2✏ and �✏(t) = 0 for t < ✏ and t > t1 � ✏. The key step is

Proposition

K±
.
= I

'
XM�✏E± 2  �1(S0) are pseudo-di↵erential operators of order

�1



Proofs: the light ray transform (I)

Consider the oscillatory integral integral representation of the Schwartz
kernel K+

K+(y , z) = (2⇡)�6

Z

S2

Z

R3

Z

R3

Z
t1

0

Z

R3

e
i((y�x)·⌘+tv ·⌘+(x�z)·⇠+t|⇠|)

'(v)�✏(t)d⇠dtdxd⌘dv

We integrate in x , ⌘ to get

K+(y , z) = (2⇡)�3

Z

S2

Z
t1

0

Z

R3

e
i(y ·⇠+tv ·⇠�z·⇠+t|⇠|)'(v)�✏(t)d⇠dtdv



Proofs: the light ray transform (I)

Consider the integral in v . For t non-zero, the v integral is non-degenerate
with stationary points at v = ±⇠/|⇠|. Applying stationary phase argument,
we get

K+(y , z) = (2⇡)�3

Z

R3

e
i(y�z)·⇠

k+(⇠)d⇠

where

k+(⇠) = +2⇡i |⇠|�1'(�⇠/|⇠|)
Z

t1

0
t
�1(1 + '�(t, ⇠))�✏(t)dt

�2⇡i |⇠|�1'(⇠/|⇠|)
Z

t1

0
e
2it|⇠|

t
�1(1 + '+(t, ⇠))�✏(t)dt

The argument works for characteristic functions but additional FIOs arise.



Proofs: the light ray transform (I)

We write
XM�✏f = XM�✏E+h1 + XM�✏E�h2.

Let ' be a smooth function on S2. Applying I
' we get

I
'
XM�✏f = I

'
XM�✏E+h1 + I

'
XM�✏E�h2 = K

',+
h1 + K

',�
h2

where we added ' to the notation of K± to emphasize the dependency.
Finally, we choose di↵erent ' and find operators A1,A2 such that

A1XM�✏f = h1 + R1h1 + R
0
1h2, A2XM�✏f = h2 + R2h1 + R

0
2h2



Proofs: the light ray transform (II)

For the second approach, we look at the normal operator

E
⇤
L
⇤
LE , where E = E±

and L is the light ray transform on Rn+1.

There are issues about the composition as it stands, and we need to fine
tune the operator so it becomes a pseudo-di↵erential operator on S0.
Moreover, we will show that the principal symbol is non-vanishing so the
operator can be microlocally inverted.



Proofs: the light ray transform (II)

Our idea is to modify the normal operator N = L
⇤
L.

I We let �[t0,t1] be the characteristic function for [t0, t1] on R.
I Let � 2 C

1
0 (R) such that supp � ⇢ (t1,T ).

Note that �[t0,t1]� = 0. Then we consider the composition E
⇤�L⇤L�[t0,t1]E .

The necessity of the cut-o↵ function � is demonstrated in the next result.
Let N = (0,T )⇥ Rn.

Lemma

The composition �L⇤L�[t0,t1]E± 2 I
�n/2+1/4(N ,S0;C±

wv
) are elliptic

Fourier integral operators.



Proofs: the light ray transform (II)

To understand the mechanism behind the composition, we use the Lagra-
gian distribution point of view.

For the normal operator N = L
⇤
L, it is known see Stefanov and Uhlmann

book in progress that the Schwartz kernel of N is

KN(t, x , t
0, x 0) =

Z

Rn+1

e
i(t�t

0)⌧+i(x�x
0)·⇠

k(⌧, ⇠)d⌧d⇠

with

k(⌧, ⇠) = Cn

(|⇠|2 � ⌧ 2)
n�3
2

+

|⇠|n�2
, Cn = 2⇡|Sn�2|.

So N is a pseudo-di↵erential operator with a singular symbol. We can show
it is a paired Lagrangian distribution introduced in Melrose and Uhlmann
1979, Guillemin and Uhlmann 1981.



Proofs: the light ray transform (II)

Consider two Lagrangians

⇤0 = {(t, x , ⌧, ⇠; t 0, x 0, ⌧ 0, ⇠0) 2 T
⇤Rn+1\0⇥ T

⇤Rn+1\0 :

t = t
0, x = x

0, ⌧ = �⌧ 0, ⇠ = �⇠0}
(8)

which is the punctured conormal bundle of the diagonal in Rn+1 ⇥ Rn+1

and
⇤1 = {(t, x , ⌧, ⇠; t 0, x 0, ⌧ 0, ⇠0) 2 T

⇤Rn+1\0⇥ T
⇤Rn+1\0 :

x = x
0 + (t � t

0)⇠/|⇠|, ⌧ = ±|⇠|, ⌧ 0 = �⌧, ⇠0 = �⇠},
(9)

which is the flow out of ⇤0 under the Hamilton vector field Hf with
f (⌧, ⇠) = 1

2 (⌧
2 � |⇠|2).

Theorem (Wang 2018)

For the Minkowski light ray transform L, the Schwartz kernel of the

normal operator N = L
⇤
L belongs to I

�n/2,n/2�1(Rn+1 ⇥ Rn+1;⇤0,⇤1),
in which ⇤0,⇤1 are two cleanly intersection Lagrangians defined in (8),
(9). The principal symbols of N on ⇤0\⌃,⇤1\⌃ are non-vanishing.



Proofs: the light ray transform (II)

We look at E⇤�N�[t0,t1]E , with E = E
±
k
, k = 1, 2.

1. As � ·�[t0,t1] = 0, we know that �N�[t0,t1] 2 I
�n/2(Rn+1,Rn+1;⇤1) at

least when the characteristic function �[t0,t1] were smooth. Note that
the role of � is to keep the kernel of N away from the diagonal ⇤0!

2. We will show that ⇤1 intersect ⇤± cleanly with excess one so the
composition �N�[t0,t1]E 2 I

⇤(N ,S ;Cwv ) as a result of Duistermaat-
Guillemin’s clean FIO calculus with the order ⇤ to be determined.
For this, we need to address some issue caused by the characteristic
function.

3. We can compose with E
⇤ by using clean FIO calculus again to con-

clude that E⇤�N�[t0,t1]E 2  ⇤(S ).



Thank you!


