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The Davey-Stewartson Equations

The Davey-Stewartson family of equations were initially introduced in the
study of water waves (they model the evolution of weakly nonlinear surface
water waves in 2+1 dimensions, travelling principally in one direction).

They also arise in the context of ferromagnetism, plasma physics, and
nonlinear optics, and have been shown to have a certain universal
character: a large class of nonlinear dispersive equations reduce to the
Davey Stewartson system in the limit of weak nonlinearity.

LWP for the L2 critical case and GWP for small initial data have been
proved for various subclasses of this family using dispersive PDE methods:
Ghidaglia and Saut (1990), Linares and Ponce (1993), Hayashi and Saut
(1995) . High precision numerics: Klein, McLaughlin and Stoilov (2019).

In this talk we consider one special member of this family: defocusing DSII.
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The Defocusing DSII Equations
Defocusing DSII:

i∂tq + 2(∂̄2 + ∂2)q + q(g + g) = 0

∂̄g + ∂(|q|2) = 0

q(0, z) = q0(z).

(1)

This model is completely integrable and can be solved by the
Inverse-Scattering method.

Notation:

z = x1 + ix2; ∂̄ =
1

2
(
∂

∂x1
+ i

∂

∂x2
).

Perry (2014) - GWP for general q0 ∈ H1,1 using Inverse-Scattering
method

This talk: GWP for q0 in L2 (mass critical case), via a Plancherel
Theorem for the Scattering Transform.
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The Scattering Transform
Lax pair for defocusing DSII: Lt = [L,A], where

L :

{
∂̄m1 = qm2

(∂ + ik)m2 = qm1
(2)

and

A = ... (3)

Solve (2) with m1(z , k)→ 1,m2(z , k)→ 0 as |z | → ∞. Define the
Scattering Transform:

s(k) := Sq(k) = − i

π

∫
R2

ek(z)q(z)m1(z , k)dz . (4)

where ek(z) = e i(zk+zk) and dz = dx1dx2. Then

∂

∂t
s(t, k) = 2i(k2 + k

2
)s(t, k). (5)
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Using the Scattering Transform
Similar ∂̄ equations in the k variable, so the Inverse-Scattering Transform
turns out to be:

Is(z) = − i

π

∫
R2

ez(k)s(k)m1(z , k)dk. (6)

Can we solve the Cauchy problem for defocusing DSII with initial data in
L2 by the following procedure ?

s0(k) = Sq0(k)

s(t, k) = e2i(k2+k
2
)ts0(k)

q(t, z) = I
(
s(t, k)

)
(z).

(7)

q0(z)
nonlin //

S
��

q(t, z)

s0(k)
linear // s(t, k).

I

OO
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Nonlinear Plancherel Identity
This approach to DSII was first introduced by Ablowitz and Fokas (1982,
1984). Beals and Coifman (1995,1988) proved that for q in Schwartz class
s is in Schwartz class and the whole procedure is rigorous. Moreover they
showed: ∫

R2

|s(k)|2dk =

∫
R2

|q(z)|2dz .

Open Problem: true for all q in L2 ?

L.Y.Sung (1994) - q in L2 ∩ Lp for some p ∈ [1, 2) with q̂ in L1 ∩ L∞

R. Brown (2001) - q in L2 with small norm

A. Tamasan (2004) if q ∈W ε,p, p > 2, then s ∈ Lr for all
r > 2/(ε+ 1)

P. Perry (2014) - q in weighted Sobolev space H1,1

K. Astala, D. Faraco and K. Rogers (2015) - q in weighted Sobolev
space Hε,ε, ε > 0

R. Brown, K. Ott and P. Perry (2016) - q ∈ Hα,β iff s ∈ Hβ,α,
α, β > 0.
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Plancherel Theorem

Theorem (N.-Regev-Tataru)

The nonlinear scattering transform S : q 7→ s is a C 1 diffeomorphism
S : L2 → L2, satisfying:

1 The Plancherel identity: ‖Sq‖L2 = ‖q‖L2

2 The pointwise bound: |Sq(k)| ≤ C (‖q‖L2)Mq̂(k) for a.e. k

3 Locally uniform bi-Lipschitz continuity:

1

C
‖Sq1 − Sq2‖L2 ≤ ‖q1 − q2‖L2 ≤ C‖Sq1 − Sq2‖L2

with C = C (‖q1‖L2)C (‖q2‖L2).

4 Inversion Theorem: S−1 = S.

5 Symplectomorphism property:

ω2(
δS
δq

∣∣∣
q
q1,

δS
δq

∣∣∣
q
q2) = ω1(q1, q2).
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A bit about the Proof
Making the substitution

m± = m1 ± e−km
2,

we need to solve {
∂
∂zm± = ±e−kqm±
m± → 1 as |z | → ∞.

In integral form,

m± − 1 = (∂̄ ∓ e−kq·)−1∂̄−1(e−kq).

1 For q ∈ L2, we need new bounds on ∂̄−1(e−kq) which allow us to
capture the large k decay without assuming any smoothness on q.

2 We need bounds on (∂̄ ∓ e−kq·)−1 which depend only on the L2 norm
of q.
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New Estimate on Fractional Integrals

Lemma

For q ∈ L2(C),

‖∂̄−1(e−kq)‖L4 . ‖q‖
1
2

L2

(
Mq̂(k)

) 1
2
.

M is the Hardy-Littlewood Maximal function

Mf (x) = sup
r>0

1

|B(x , r)|

∫
B(x ,r)

|f (y)|dy .

which yields a bounded operator on Lp for 1 < p ≤ ∞.

Theorem (N.-Regev-Tataru)

For 0 < α < n, f ∈ Lp(Rn), 1 < p ≤ 2

∣∣(−∆)−
α
2 f (x)

∣∣ ≤ cn,α
(
Mf̂ (0)

)α
n
(
Mf (x)

)1−α
n
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Sketch of Proof - Fractional Integrals

Proof.

Using Littlewood-Paley decomposition,

(−∆)−
α
2 f (x) =

1

(2π)n

j0∑
j=−∞

∫
Rn

ψj(ξ)
e ix ·ξ

|ξ|α
f̂ (ξ)dξ +

∞∑
j0+1

...

with ψj(ξ) = ψ(ξ/2j) supported in 2j−1 < |ξ| < 2j+1. For j ≤ j0 use∫
|ξ|<r
|f̂ (ξ)|dξ ≤ cnr

nMf̂ (0)

... ∣∣(−∆)−
α
2 f (x)

∣∣ . 2j0(n−α)Mf̂ (0) + 2−j0αMf (x)

optimize over j0.
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Key Theorem - bounds in terms of ‖q‖L2

Theorem (N.-Regev-Tataru)

Let q ∈ L2. Then for each f ∈ Ḣ−
1
2 there exists a unique solution u ∈ Ḣ

1
2

of

Lqu := ∂̄u + qu = f (8)

with
‖u‖

Ḣ
1
2
≤ C (‖q‖L2)‖f ‖

Ḣ− 1
2
. (9)

In particular, for f ∈ L
4
3 the same holds, with ‖u‖L4 ≤ C (‖q‖L2)‖f ‖

L
4
3

.

The proof is based on a concentration compactness/profile decomposition
argument. Novelty: the Kenig and Merle induction on energy is applied
exclusively on the elliptic static problem.
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Construction of the Jost Solutions for q ∈ L2

As a result of the new estimates on fractional integrals and the Key
Theorem, we can now establish

Theorem (Jost Solutions)

Suppose q ∈ L2, then for almost every k there exist unique Jost solutions
m±(z , k) with m±(·, k)− 1 ∈ L4 and moreover

‖m(·, k)± − 1‖L4 ≤ C (‖q‖L2)
(
Mq̂(k)

) 1
2

‖m± − 1‖L4
zL

4
k
≤ C (‖q‖L2).

‖∂̄m1(·, k)‖
L

4
3
≤ C (‖q‖L2)

(
Mq̂(k)

) 1
2 .
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Scattering Transform as a ΨDO

Recall

Sq(k) = q̂(k)− i

π

∫
R2

ek(z)q(z)(m1(z , k)− 1)dz .

Replace q by the Fourier transform of some function in L2. Then the
above becomes a pseudo-differential operator with symbol m1 − 1. We’d
like to prove it is a bounded operator on L2.
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Theorem (N.-Regev-Tataru)

Let 0 ≤ α < n. Suppose a(x , ξ) satisfies∫
Rn

∫
Rn

∣∣a(x , ξ)
∣∣ 2n
n−α dxdξ <∞ and ‖(−∆ξ)

α
2 a(x , ξ)‖

L
2n

n+α
ξ

∈ L
2n

n−α
x .

Then the pseudo-differential operator

a(x ,D)f (x) :=
1

(2π)n

∫
Rn

e ix ·ξa(x , ξ)f̂ (ξ)dξ (10)

is bounded on L2. Moreover, we have the pointwise bound

|a(x ,D)f (x)| ≤ cα,n(Mf (x))α/n‖(−∆ξ)
α
2 a(x , ·)‖

L
2n

n+α
‖f ‖1−α

n

L2 (11)

for a.e. x.

This completes the sketch of the proof of the Plancherel Theorem.
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GWP for Defocusing DSII on L2

Theorem (N.-Regev-Tataru)

Given q0 ∈ L2, there exists a unique solution to the Cauchy Problem for
defocusing DSII such that:

1 Regularity:
q(t, z) ∈ C (R, L2

z(C)) ∩ L4
t,z(R× C).

2 Uniform bounds: ‖q(t, ·)‖L2 = ‖q0‖L2 for all t ∈ R and∫
R

∫
R2

|q(t, z)|4dzdt ≤ C (‖q0‖L2).

3 Stability: if q1(t, ·) and q2(t, ·) are two solutions corresponding to
initial data q1(0, ·) and q2(0, ·) with ‖qj(0, ·)‖L2 ≤ R then

‖q1(t, ·)− q2(t, ·)‖L2 ≤ C (R)‖q1(0, ·)− q2(0, ·)‖L2 for all t ∈ R.
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Pointwise control and proof that q(t, z) ∈ L4
t,z(R× C)

s(t, k) = e2i(k2+k
2
)ts0(k)

|q(t, z)| = |S−1
(
s(t, ·)

)
(z)|

≤ C (‖q0‖L2)M š(t, z)

where

š(t, z) =

∫
ez(k)e2i(k2+k

2
)ts0(k)dk := U(t)(š0)(z)

is linear flow starting from š0 for which we have the Strichartz estimate

‖š‖L4
t,z

. ‖š0‖L2 = ‖s0‖L2 = ‖q0‖L2 .
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Time-domain Scattering

The Scattering Transform also yields the large time behaviour of the
solutions to the DSII equation. Recall the definition of the wave operators,
in the sense of nonlinear scattering theory.

Definition

Let q0 ∈ L2(R2) and let q(t, z) be the solution to the Cauchy problem for
defocusing DSII. Define W+q0 = q+ if there exists a unique q+ ∈ L2(R2)
such that

lim
t→∞

‖q(t, ·)− U(t)q+‖L2(R2) = 0.

Similarly W−q0 = q− if

lim
t→−∞

‖q(t, ·)− U(t)q−‖L2(R2) = 0.
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Wave operators and asymptotic completeness for
defocusing DSII

Theorem

a) The Wave operators W± for the defocusing DSII equation are well
defined on every q0 ∈ L2(R2) and

W±q0 = ˇSq0.

b) The Wave operators W± are surjective, in fact norm-preserving
diffeomorphisms of L2.

Perry (2014) established the same large time asymptotic behaviour in the
L∞ norm, for initial data in H1,1 ∩ L1.

An interesting consequence: the temporal scattering operator W+(W−)−1

for defocusing DSII (i.e. the operator which sends q− to q+) is equal to
the identity. The nonlinearity is invisible to observers at infinity.
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The Calderón Inverse Conductivity Problem in Dimension 2
Let Ω be a simply connected domain in R2 ' C ∇ · (σ∇u) = 0 in Ω

u
∣∣∣
∂Ω

= g .
(12)

The Dirichlet-to-Neumann map is defined as

Λσf := σ
∂u

∂ν

∣∣∣
∂Ω
.

A.P. Calderón (1980): does Λσ uniquely determine σ?

N. (1996) - Unique reconstruction for σ ∈W 2,p(Ω) for some p > 1

R. Brown. G. Uhlman (1997) - σ ∈W 1,p(Ω), for some p > 2.

K. Knudsen, A.Tamasan (2005) - reconstruction for σ ∈ C 1+ε(Ω)

K. Astala, L. Päivärinta (2006) - σ ∈ L∞

K. Astala, M. Lassas, L. Päivärinta (2016) - Larger class of
conductivities which includes some unbounded ones.

C.Carstea J.-N. Wang ∇ log σ ∈ L2(Ω) with small norm (2018)
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From the Conductivity Equation to Pseudoanalytic
Functions

 ∇ · (σ∇u) = 0 in Ω ⊂ R2 ' C
u
∣∣∣
∂Ω

= g .
(13)

We’ll assume σ > 0 is such that ∇ log σ ∈ L2(Ω) and, for simplicity,
σ = 1 on ∂Ω.Then we prove that (13) is uniquely solvable for every
g ∈ H1(∂Ω) and the Dirichlet-to-Neumann map is well-defined as a
bounded operator Λσ : H1(∂Ω)→ L2(∂Ω).

Let v = σ
1
2∂u then for u real valued, ∂̄v = qv where q = −1

2∂ log σ ∈ L2,
and on the boundary we have:

∂u

∂ν
= 2<(νv) and

∂u

∂τ
= −2=(νv), (14)

where ν = ν1 + iν2.
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Hilbert Transform for Pseudoanalytic Functions

We are thus led to consider the following problem:{
∂̄v − qv̄ = 0 in Ω

=(νv) = g0 on ∂Ω,
(15)

for g0 ∈ L2(∂Ω) with integral zero, and to define an associated Hilbert
Transform type operator on ∂Ω as:

Hq(g0) := <(νv). (16)

(Astala and Päivärinta (2006) defined a similar Hilbert transform for the
Beltrami equation). We have (see previous slide):

Λσ = −Hq
∂

∂τ
. (17)
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An Inverse Problem for Pseudoanalytic Functions

Theorem (N.-Regev-Tataru)

Assume q ∈ L2(Ω) is as before. Then we can reconstruct q from
knowledge of Hq.

Connection to the Scattering Transform: (extend q to equal 0 outside Ω)

Sq(k) =
1

2πi

∫
R2

ek(z)q(z)
(
m+(·, k) + m−(·, k)

)
=

1

2πi

∫
Ω
∂
(
m+(·, k)−m−(·, k)

)
=

1

4πi

∫
∂Ω
ν
(
m+(·, k)−m−(·, k)

)
We prove that Hq determines the traces of m±(·, k) on ∂Ω.
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An Exterior Problem

Define the functions:

ψ±(z , k) = e izkm±(z , k). (18)

The following lemma shows that we can obtain the trace ψ+(·, k)
∣∣∣
∂Ω

from

Hq.

Lemma

Let Ω, q be as in the Inversion Theorem. Then the function ψ+(z , k)
restricted to z ∈ C\Ω is the unique solution of the exterior problem

(i) ∂̄ψ+ = 0 in C\Ω

(ii) ψ+(z , k)e−izk − 1 ∈ L4(C\Ω) ∩W
1, 4

3
loc

(iii) <(νψ+

∣∣∣
∂Ω

) = Hq(=(νψ+

∣∣∣
∂Ω

)).

(19)
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The Calderón Inverse Conductivity Problem in Dimension 2

Theorem (N.-Regev-Tataru)

Suppose σ > 0 is such that ∇ log σ ∈ L2(Ω) and σ = 1 on ∂Ω, then we
can reconstruct σ from knowledge of Λσ.

Outline of the proof: with q = −1
2∂ log σ we have

Λσ → Hq → m±(·, k) on ∂Ω→ Sq(k)
Plancherel−−−−−−→ q → σ.
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Thank you !
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