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In this talk

(M, g) is a compact Riemannian manifold without boundary; E → M
a vector bundle over M equipped with a connection ∇E . We address
the following inverse problem:

Question
To what extent does the holonomy of ∇E over closed geodesics
determine the gauge-equivalence class of ∇E?

We will show
If (M, g) has Anosov (chaotic) geodesic flow, E is Hermitian, and ∇E is
unitary, only the traces of holonomy suffice to determine [∇E ] locally,
and in some cases globally!

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Definition
A flow φt : M → M generated by a vector field X is called Anosov if
there is a continuous splitting TM = RX ⊕ Eu ⊕ Es into flow direction
RX, unstable/stable directions Eu/s invariant under dφt, and there are
constants C, ν > 0 such that for all x ∈ M, for some metric | · |

|dφt(x)v| ≤
{

Ce−νt|v|, t ≥ 0, v ∈ Es(x),
Ce−ν|t||v|, t ≤ 0, v ∈ Eu(x).

These flows model hyperbolic dynamics: sensitive (chaotic) upon a
change in initial conditions. Restrictions on geometry/topology.

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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|dφt(x)v| ≤
{

Ce−νt|v|, t ≥ 0, v ∈ Es(x),
Ce−ν|t||v|, t ≤ 0, v ∈ Eu(x).
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Say that (M, g) is Anosov if its geodesic flow is Anosov. Here

M = SM = {(x, v) ∈ TM : |v|g = 1}

is the unit sphere bundle and φt(x, v) = (γx,v(t), γ̇x,v(t)), where
γx,v(t) is the geodesic generated by the initial condition (x, v).
Examples:

If (M, g) has negative sectional curvature, then it is Anosov.
∃ examples with portions of positive curvature (Eberlein,
Donnay-Pugh).

If (M, g) is Anosov, ∃ bijection between free homotopy classes c ∈ C
and closed geodesics γg(c) of length Lg(c) in the class c.

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Recall: connections on vector bundles
Connection ∇E is a map ∇E : C∞(M, E) → C∞(M,T∗M ⊗ E) that
locally looks like d + A for a matrix A of 1-forms.
If γ : [a, b] → M a curve, e ∈ Ea, s : [a, b] → E is the parallel
transport of e along γ if ∇E

γ̇ s = 0 (first order ODE) and s(a) = e,
π ◦ s = γ. Denote Pγe := s(b) ∈ Eb.

∇E is unitary if compatible with the inner product on E ; it follows
Pγ : Ea → Eb is unitary.
Denote the affine set of all connections on E by AE . Gauge group
G(E) is the set of all unitary isomorphisms of E and it acts on AE by
pullback p∗∇E := p−1∇E(p•). The quotient by G(E) is the moduli
space, denoted by AE := AE/G(E). Two connections ∇E

1 and ∇E
2

are gauge-equivalent if there is a p ∈ G(E) such that p∗∇E
2 = ∇E

1 .
Denote by A := {([E ], [∇E ])} the moduli space of connections on all
bundles over M.

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Primitive trace map

Denote by C♯ = {c♯1, c
♯
2, . . . } ⊂ C the set of primitive free homotopy

classes, and by Hol∇E (c♯) ∈ U(xc♯) the parallel transport along
γg(c♯) starting at some xc♯ .
Hol∇E (c♯) depends up to conjugation on the choice of both the
point xc♯ and the equivalence class of the connection, but its trace
does not.

Definition
We define the primitive trace map as:

T ♯ : A 3 ([E ], [∇E ]) 7→
(
Tr

(
Hol∇E (c♯1)

)
,Tr

(
Hol∇E (c♯2)

)
, ...

)
∈ ℓ∞(C♯).

Question (Holonomy Inverse Problem)
When is the primitive trace map T ♯injective?

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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To study locally the problem, we will make the following assumptions:
(A) ∇E is opaque. By definition, this means that there are no non-trivial

sub-bundles F ⊂ E preserved by parallel transport along geodesics.
(B) Generalized X-ray transform Π1 on twisted 1-forms with values in

End(E) is s-injective (solenoidally injective).

Theorem (C-Lefeuvre ’21)
Let (M, g) be an Anosov manifold of dimension ≥ 3 and E → M a
Hermitian vector bundle. Then, the primitive trace map T ♯ is:
(a) locally injective near points in A satisfying (A) and (B),
(b) globally injective when restricted to direct sums of line bundles or to

connections with small enough curvature.

Remark. It was shown in our previous works that both conditions (A)
and (B) are satisfied for an open and dense set of connections in the
moduli space A in the CN-topology.

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Remarks I

Local injectivity: ∃N ∈ N, such that T ♯ is locally injective in the
CN-quotient topology on AE ; i.e. for any [∇E ] ∈ AE , there exists
ε > 0 such that: for any ∇E

1,2 ∈ AE for which there are p1,2 ∈ G(E)
with ‖p∗

i ∇E
i −∇E‖CN < ε, then T ♯(∇E

1 ) = T ♯(∇E
2 ) implies

[∇E
1 ] = [∇E

2 ].
When dimM is odd, we also show that T ♯([E ], [∇E ]) determines [E ].
Example: if M is a surface, then

1. If d is the trivial flat connection, T ♯([M × C], [d]) = (1, 1, . . . );
2. If K = T∗M0,1 is the canonical line bundle equipped with the Chern

connection ∇LC, then T ♯([K], [∇LC]) = (1, 1, . . . ).
Paternain [’09, ’10, ’12, ’13] classified transparent connections on
surfaces and showed their abundance on bundles with rank E = 2;
see also Guillarmou-Paternain-Salo-Uhlmann [’16].
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Remarks II
Manifolds with boundary: studied with the convex foliation condition
by P-S-U-Zhou [’18] and on simple surfaces P-S-U [’12].
Anosov embedding Theorem by Chen-Erchenko-Gogolev [’20]
says that simple manifolds may be embedded into Anosov manifolds.
Analogous marked length spectrum problem: study injectivity of
L♯ : M<0 3 g 7→ (Lg(c♯1), Lg(c♯2), . . . ) ∈ ℓ∞(C♯). Our approach
similar in spirit to Guillarmou-Lefeuvre [’19].

Marked Length Spectrum Holonomy Inverse Problem

Object metric g connection ∇E

Group Action diffeomorphisms Diff0(M) gauge group G(E)

Data L♯ : c 7→ Lg(c) T ♯ : c 7→ Tr(Hol∇E (c))

Linearisation DLg(c)(β) =
∫
γg(c) β(γ̇, γ̇) “X-ray on End(E)-1-forms”

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Length spectrum: the set of lengths of closed geodesics counted
with multiplicities. We say the length spectrum is simple if all closed
geodesics have distinct lengths (known to be a generic condition).
Connection Laplacian is the operator ∆E := (∇E)∗∇E . It is 2nd
order elliptic, self-adjoint, non-negative, acting on C∞(M, E), with
discrete spectrum spec(∆E) = {0 ≤ λ0(∇E) ≤ λ1(∇E) ≤ . . . }
counted with multiplicities.
spec(∆E) depends only on [∇E ] and hence we may define the
spectrum map:

S : AE 3 [∇E ] 7→ spec(∆E).

Trace formula of Duistermaat-Guillemin applied to ∆E reads
(assuming simple length spectrum, and Pγ is the Poincaré map):

lim
t→Lg(c)

(t − Lg(c))
∑
j≥0

e−it
√

λj =
Lg(c) Tr (Hol∇E (c))

2π| det(id−Pγg(c))|1/2 . (1.1)
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Consequence of (1.1) and the Main Theorem is:

Corollary (C-Lefeuvre ’21)
With the assumptions of the Main Theorem, the spectrum map S is:
(a) locally injective near any generic point a ∈ A,
(b) globally injective when restricted to direct sums of line bundles or to

connections with small enough curvature.

Kuwabara [’90]: counterexamples to injectivity of S for line bundles
on covers of surfaces (simple length spectrum condition violated).
Famous question of Kac [’66]: “Can one hear the shape of a
drum?”. Shape ↔ magnetic field.
Classical result of Guillemin-Kazhdan [’80]: q ∈ C∞(M)

determined from spec(−∆g + q) (see also Croke-Sharafutdinov
[’98], P-S-U [’14]).
Our result is the first such for ∆E or more generally for an inverse
spectral problem with an infinite gauge group.

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Dynamical result
Parry’s free monoid
Moduli space of connections and Pollicott-Ruelle resonances
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Main new ingredients:
New Livšic-type theorem in hyperbolic dynamical systems with tight
relation to representation theory, reducing the question to a
transport problem on M = SM;
Interplay between the geometry of the moduli space of connections
and the theory of Pollicott-Ruelle resonances (microlocal analysis).

Analogy: flat connections up to gauge correspond to representations
of π1 up to conjugacy; we will see that unitary connections up to
dynamical (cocycle) equivalence correspond to representations of the
Parry’s free monoid.
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φt : M → M is a transitive Anosov flow and E → M a Hermitian
vector bundle. Each ∇E ∈ AE gives rise to a unitary cocycle
C(x, t) : Ex → Eφtx by parallel transport (i.e. it satisfies
C(φtx, t′)C(x, t) = C(x, t + t′)).
Our new Livšic-type result in hyperbolic dynamical systems:

Theorem (C-Lefeuvre ’21)
Let E1,2 → M be vector bundles equipped with unitary connections ∇E

1,2,
which induce unitary cocycles C1,2 via parallel transport. Assume that for
each primitive closed orbit γ 3 x of period T we have

Tr(C1(x,T)) = Tr(C2(x,T)).

Then ∃ p ∈ G(E2, E1) such that for all x ∈ M, t ∈ R:

C1(x, t) = p(φtx)C2(x, t)p(x)−1.

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Some remarks

In particular we have E1 ∼= E2 via the map p.
Result goes back to Livšic [’72]: if f ∈ C∞(M) integrates to zero
along every closed geodesic, then ∃u ∈ Cα(M) such that Xu = f
(Abelian cocycle). Inspired by Parry [’99] and Schmidt [’99] who
show a weaker result.
When M = SM, E1,2 are pullbacks of bundles from M, then by the
Theorem and differentiating in time, we get

∇Hom(E2,E1)
X p = 0.

Assuming p depends only on x-variable, we see that p∗∇E1 = ∇E2 .

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Let x⋆ ∈ M be a periodic point. We say p is homoclinic to x⋆ if
d(φt±t±0

p, φtx⋆) →t→±∞ 0 for some t±0 ∈ R; similarly an orbit γ is
homoclinic to x⋆ if it contains a point homoclinic to x⋆.
Let H be the set of all homoclinic orbits. Using the shadowing
property for Anosov flows, homoclinic orbits are dense.
We introduce the Parry’s free monoid as the monoid generated by
H, i.e. the formal set of words (empty word corresponds to 1G):

G := {γm1
1 ...γmk

k | k ∈ N,m1, ...,mk ∈ N0, γ1, ..., γk ∈ H} ,

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Fix γ ∈ H and set x±n := γ(A± ± nT⋆). Take a sequence kn → ∞ such
that C(x⋆,T⋆)

kn → idEx⋆ and set

ρn(γ) := Cx+kn→x⋆C(x+0 , knT⋆)C(x−0 ,Tγ)C(x−kn
, knT⋆)Cx⋆→x−kn

.

Define ρ(γ) := limn→∞ ρn(γ); get a representation ρ : G → U(Ex⋆).
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Sketch-proof of the dynamical Theorem
Lemma
If ∇E1 and ∇E2 are trace-equivalent, then the induced representations
ρ1,2 : G → U(Ex⋆) are isomorphic, i.e. there is a p⋆ ∈ U(E2x⋆ , E1x⋆):

∀γ ∈ G, ρ1(γ) = p⋆ρ2(γ)p−1
⋆ .

By algebra, it suffices to show ρ1, ρ2 have equal characters. Take
γ1,2 ∈ H, γ = γ1 · γ2 and show Tr(ρ1(γ)) = Tr(ρ2(γ)). We have

ρ1(γ) = ρ1,n(γ1)ρ1,n(γ2) + o(1).

By the shadowing property, take γ̃ 3 yn that O(e−θkn)-shadows the
concatenation S = [xk−

n
(1)xk+

n
(1)] ∪ [x−kn

(2)x+kn
(2)]. Thus:

ρ1,n(γ1)ρ1,n(γ2) = C1,yn→x⋆C1(yn,T′
n)C−1

1,yn→x⋆ +O(e−θkn).

Taking traces and letting n → ∞, we get the claim.
Mihajlo Cekić (UZH) Holonomy Inverse Problem
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The proof is completed by pushing p⋆ along elements of H by parallel
transport with respect to the connection ∇Hom(∇E2 ,∇E1 ) from both the
past and the future. Both pushforwards agree by construction; denote
them by p. We show p is Lipschitz continuous, so by a regularity result of
Bonthonneau-L [’21] =⇒ p is smooth.
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Let [∇E ] ∈ AE ; consider A ∈ C∞(M,Endsk(E)). Consider the
operator XA := (π∗∇Hom(∇E+A,∇E ))X. By opacity of ∇E , we know
that X = X0 has a simple resonance at zero (spanned by idE).
P-R resonances are poles of the meromorphic extension of
(X + z)−1 : C∞ → D′. By continuity, ∃ small contour γ such that
for A small enough, no resonance crosses γ. Set:

Π+
A :=

1
2πi

∫
γ

(z + XA)
−1dz, λA := Tr(−XAΠ

+
A ).

Denote by ϕ(A) the gauge-equivalent connection sending ∇E + A to
Coulomb gauge, (∇End(E))∗(ϕ(A)−∇E) = 0.
It turns our that the second variation controls the distance in the
moduli space (convexity):

0 ≤ ‖ϕ(A)−∇E‖2
H−1/2(M,T∗M⊗Endsk(E)) ≤ C|λA|.

Mihajlo Cekić (UZH) Holonomy Inverse Problem
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Mihajlo Cekić (UZH) Holonomy Inverse Problem


	Introduction
	Setup
	Main Theorem
	Inverse Spectral Problem

	Ideas of the Proof
	Dynamical result
	Parry's free monoid
	Moduli space of connections and Pollicott-Ruelle resonances


