Holonomy Inverse Problem

Mihajlo Cekić

University of Zurich

Joint work with Thibault Lefeuvre (Jussieu)

International Inverse Problems Seminar (online), September 23, 2021

University of Zurich^{™™}

Science Foundation

くぼう くほう くほう

Setup Main Theorem Inverse Spectral Problem

Summary

- Setup
- Main Theorem
- Inverse Spectral Problem

2 Ideas of the Proof

<ロ> (日) (日) (日) (日) (日)

Ξ.

Setup Main Theorem Inverse Spectral Problem

In this talk

• (M,g) is a compact Riemannian manifold without boundary; $\mathcal{E} \to M$ a vector bundle over M equipped with a connection $\nabla^{\mathcal{E}}$. We address the following inverse problem:

Question

To what extent does the holonomy of $\nabla^{\mathcal{E}}$ over closed geodesics determine the gauge-equivalence class of $\nabla^{\mathcal{E}}$?

We will show

If (M, g) has Anosov (chaotic) geodesic flow, \mathcal{E} is Hermitian, and $\nabla^{\mathcal{E}}$ is unitary, only the traces of holonomy suffice to determine $[\nabla^{\mathcal{E}}]$ locally, and in some cases globally!

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Definition

A flow $\varphi_t : \mathcal{M} \to \mathcal{M}$ generated by a vector field X is called Anosov if there is a continuous splitting $T\mathcal{M} = \mathbb{R}X \oplus E_u \oplus E_s$ into flow direction $\mathbb{R}X$, unstable/stable directions $E_{u/s}$ invariant under $d\varphi_t$, and there are constants $C, \nu > 0$ such that for all $x \in \mathcal{M}$, for some metric $|\cdot|$

$$|d\varphi_t(x)v| \leq egin{cases} Ce^{-
u t}|v|, & t\geq 0, v\in E_s(x),\ Ce^{-
u|t|}|v|, & t\leq 0, v\in E_u(x). \end{cases}$$

These flows model hyperbolic dynamics: sensitive (chaotic) upon a change in initial conditions. Restrictions on geometry/topology.

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Setup Main Theorem Inverse Spectral Problem

$$|d\varphi_t(x)v| \leq egin{cases} Ce^{-
u t}|v|, & t\geq 0, v\in E_s(x),\ Ce^{-
u|t|}|v|, & t\leq 0, v\in E_u(x). \end{cases}$$

◆□ → ◆□ → ◆臣 → ◆臣 → □臣 □

Introduction	Setup
Ideas of the Proof	

• Say that (M, g) is Anosov if its geodesic flow is Anosov. Here

$$\mathcal{M} = SM = \{(x, v) \in TM : |v|_g = 1\}$$

is the unit sphere bundle and $\varphi_t(x, v) = (\gamma_{x,v}(t), \dot{\gamma}_{x,v}(t))$, where $\gamma_{x,v}(t)$ is the geodesic generated by the initial condition (x, v).

- Examples:
 - If (M, g) has negative sectional curvature, then it is Anosov.
 - ∃ examples with portions of positive curvature (Eberlein, Donnay-Pugh).
- If (M,g) is Anosov, \exists bijection between free homotopy classes $c \in C$ and closed geodesics $\gamma_g(c)$ of length $L_g(c)$ in the class c.

Introduction Main Theorem

Recall: connections on vector bundles

- Connection ∇^E is a map ∇^E : C[∞](M, E) → C[∞](M, T^{*}M ⊗ E) that locally looks like d + A for a matrix A of 1-forms.
- If γ : [a, b] → M a curve, e ∈ E_a, s : [a, b] → E is the parallel transport of e along γ if ∇^E_γs = 0 (first order ODE) and s(a) = e, π ∘ s = γ. Denote P_γe := s(b) ∈ E_b.

ヘロト 人間 とくほ とくほ とうせい

Recall: connections on vector bundles

- Connection ∇^E is a map ∇^E : C[∞](M, E) → C[∞](M, T^{*}M ⊗ E) that locally looks like d + A for a matrix A of 1-forms.
- If γ : [a, b] → M a curve, e ∈ E_a, s : [a, b] → E is the parallel transport of e along γ if ∇^E_γs = 0 (first order ODE) and s(a) = e, π ∘ s = γ. Denote P_γe := s(b) ∈ E_b.
- $\nabla^{\mathcal{E}}$ is unitary if compatible with the inner product on \mathcal{E} ; it follows $\mathcal{P}_{\gamma}: \mathcal{E}_{a} \to \mathcal{E}_{b}$ is unitary.
- Denote the affine set of all connections on \mathcal{E} by $\mathcal{A}_{\mathcal{E}}$. Gauge group $\mathcal{G}(\mathcal{E})$ is the set of all unitary isomorphisms of \mathcal{E} and it acts on $\mathcal{A}_{\mathcal{E}}$ by pullback $p^* \nabla^{\mathcal{E}} := p^{-1} \nabla^{\mathcal{E}}(p^{\bullet})$. The quotient by $\mathcal{G}(\mathcal{E})$ is the moduli space, denoted by $\mathbb{A}_{\mathcal{E}} := \mathcal{A}_{\mathcal{E}}/\mathcal{G}(\mathcal{E})$. Two connections $\nabla_1^{\mathcal{E}}$ and $\nabla_2^{\mathcal{E}}$ are gauge-equivalent if there is a $p \in \mathcal{G}(\mathcal{E})$ such that $p^* \nabla_2^{\mathcal{E}} = \nabla_1^{\mathcal{E}}$.
- Denote by A := {([E], [∇^E])} the moduli space of connections on all bundles over M.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● ● ●

Setup Main Theorem Inverse Spectral Problem

Primitive trace map

- Denote by $C^{\sharp} = \{c_1^{\sharp}, c_2^{\sharp}, \dots\} \subset C$ the set of *primitive* free homotopy classes, and by $\operatorname{Hol}_{\nabla^{\mathcal{E}}}(c^{\sharp}) \in \operatorname{U}(x_{c^{\sharp}})$ the parallel transport along $\gamma_g(c^{\sharp})$ starting at some $x_{c^{\sharp}}$.
- Hol_∇ε(c[‡]) depends up to conjugation on the choice of both the point x_{c[#]} and the equivalence class of the connection, but its trace does not.

Definition

We define the primitive trace map as:

$$\mathcal{T}^{\sharp}: \mathbb{A} \ni ([\mathcal{E}], [\nabla^{\mathcal{E}}]) \mapsto \left(\mathsf{Tr}\left(\mathrm{Hol}_{\nabla^{\mathcal{E}}}(c_{1}^{\sharp}) \right), \mathsf{Tr}\left(\mathrm{Hol}_{\nabla^{\mathcal{E}}}(c_{2}^{\sharp}) \right), ... \right) \in \ell^{\infty}(\mathcal{C}^{\sharp}).$$

Question (Holonomy Inverse Problem)

When is the primitive trace map \mathcal{T}^{\sharp} injective?

ヘロン 人間 とくほと くほど

э

Introduction Ideas of the Proof Introduction Ideas of the Proof

To study locally the problem, we will make the following assumptions:

- (A) $\nabla^{\mathcal{E}}$ is **opaque**. By definition, this means that there are no non-trivial sub-bundles $\mathcal{F} \subset \mathcal{E}$ preserved by parallel transport along geodesics.
- (B) Generalized X-ray transform Π₁ on twisted 1-forms with values in End(*ε*) is s-injective (solenoidally injective).

Theorem (C-Lefeuvre '21)

Let (M, g) be an Anosov manifold of dimension ≥ 3 and $\mathcal{E} \to M$ a Hermitian vector bundle. Then, the primitive trace map \mathcal{T}^{\sharp} is:

- (a) locally injective near points in \mathbb{A} satisfying (A) and (B),
- (b) *globally injective* when restricted to direct sums of line bundles or to connections with small enough curvature.

Remark. It was shown in our previous works that both conditions (A) and (B) are satisfied for an open and dense set of connections in the moduli space \mathbb{A} in the C^{N} -topology.

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Setup Main Theorem Inverse Spectral Problem

Remarks I

- Local injectivity: $\exists N \in \mathbb{N}$, such that \mathcal{T}^{\sharp} is locally injective in the C^{N} -quotient topology on $\mathbb{A}_{\mathcal{E}}$; i.e. for any $[\nabla^{\mathcal{E}}] \in \mathbb{A}_{\mathcal{E}}$, there exists $\varepsilon > 0$ such that: for any $\nabla^{\mathcal{E}}_{1,2} \in \mathcal{A}_{\mathcal{E}}$ for which there are $p_{1,2} \in \mathcal{G}(\mathcal{E})$ with $\|p_{i}^{*}\nabla_{i}^{\mathcal{E}} \nabla^{\mathcal{E}}\|_{C^{N}} < \varepsilon$, then $\mathcal{T}^{\sharp}(\nabla_{1}^{\mathcal{E}}) = \mathcal{T}^{\sharp}(\nabla_{2}^{\mathcal{E}})$ implies $[\nabla_{1}^{\mathcal{E}}] = [\nabla_{2}^{\mathcal{E}}]$.
- When dim *M* is odd, we also show that *T*[♯]([*E*], [∇^{*E*}]) determines [*E*].
- Example: if *M* is a surface, then
 - 1. If *d* is the trivial flat connection, $\mathcal{T}^{\sharp}([M \times \mathbb{C}], [d]) = (1, 1, ...);$
 - 2. If $\mathcal{K} = \mathcal{T}^* M^{0,1}$ is the canonical line bundle equipped with the Chern connection ∇^{LC} , then $\mathcal{T}^{\sharp}([\mathcal{K}], [\nabla^{\mathrm{LC}}]) = (1, 1, ...)$.
- Paternain ['09, '10, '12, '13] classified transparent connections on surfaces and showed their abundance on bundles with rank $\mathcal{E} = 2$; see also Guillarmou-Paternain-Salo-Uhlmann ['16].

(日) (周) (ヨ) (ヨ) (ヨ)

Setup Main Theorem Inverse Spectral Problem

Remarks II

- Manifolds with boundary: studied with the convex foliation condition by **P-S-U-Zhou** ['18] and on simple surfaces **P-S-U** ['12].
- Anosov embedding Theorem by **Chen-Erchenko-Gogolev** ['20] says that simple manifolds may be embedded into Anosov manifolds.
- Analogous marked length spectrum problem: study injectivity of $\mathcal{L}^{\sharp} : \mathbb{M}_{<0} \ni g \mapsto (L_g(c_1^{\sharp}), L_g(c_2^{\sharp}), \dots) \in \ell^{\infty}(\mathcal{C}^{\sharp})$. Our approach similar in spirit to **Guillarmou-Lefeuvre** ['19].

	Marked Length Spectrum	Holonomy Inverse Problem	
Object	metric g	connection $ abla^{\mathcal{E}}$	
Group Action	diffeomorphisms $\text{Diff}_0(M)$	gauge group $\mathcal{G}(\mathcal{E})$	
Data	$\mathcal{L}^{\sharp}: c\mapsto L_{g}(c)$	$\mathcal{T}^{\sharp}: \textit{c} \mapsto Tr(\mathrm{Hol}_{ abla^{\mathcal{E}}}(\textit{c}))$	
Linearisation	$DL_{g}(c)(eta) = \int_{\gamma_{g}(c)} eta(\dot{\gamma},\dot{\gamma})$	"X-ray on $End(\mathcal{E})$ -1-forms"	

・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト - -

э.

- Length spectrum: the set of lengths of closed geodesics counted with multiplicities. We say the length spectrum is simple if all closed geodesics have distinct lengths (known to be a generic condition).
- Connection Laplacian is the operator Δ_ε := (∇^ε)*∇^ε. It is 2nd order elliptic, self-adjoint, non-negative, acting on C[∞](M, ε), with discrete spectrum spec(Δ_ε) = {0 ≤ λ₀(∇^ε) ≤ λ₁(∇^ε) ≤ ...} counted with multiplicities.
- $\operatorname{spec}(\Delta_{\mathcal{E}})$ depends only on $[\nabla^{\mathcal{E}}]$ and hence we may define the spectrum map:

$$\mathcal{S}:\mathbb{A}_{\mathcal{E}}\ni [\nabla^{\mathcal{E}}]\mapsto \operatorname{spec}(\Delta_{\mathcal{E}}).$$

 Trace formula of Duistermaat-Guillemin applied to Δ_ε reads (assuming simple length spectrum, and P_γ is the Poincaré map):

$$\lim_{t \to L_g(c)} \left(t - L_g(c) \right) \sum_{j \ge 0} e^{-it\sqrt{\lambda_j}} = \frac{L_g(c) \operatorname{Tr} \left(\operatorname{Hol}_{\nabla^{\mathcal{E}}}(c) \right)}{2\pi |\det(\operatorname{id} - P_{\gamma_g(c)})|^{1/2}}.$$
 (1.1)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● ● ●

Setup Main Theorem Inverse Spectral Problem

• Consequence of (1.1) and the Main Theorem is:

Corollary (C-Lefeuvre '21)

With the assumptions of the Main Theorem, the spectrum map ${\cal S}$ is:

- (a) locally injective near any generic point $\mathfrak{a} \in \mathbb{A}$,
- (b) globally injective when restricted to direct sums of line bundles or to connections with small enough curvature.
 - Kuwabara ['90]: counterexamples to injectivity of S for line bundles on covers of surfaces (simple length spectrum condition violated).
 - Famous question of Kac ['66]: "Can one hear the shape of a drum?". Shape ↔ magnetic field.
 - Classical result of Guillemin-Kazhdan ['80]: q ∈ C[∞](M) determined from spec(-Δ_g + q) (see also Croke-Sharafutdinov ['98], P-S-U ['14]).
 - Our result is the first such for Δ_ε or more generally for an inverse spectral problem with an *infinite* gauge group.

Summary

2 Ideas of the Proof

- Dynamical result
- Parry's free monoid
- Moduli space of connections and Pollicott-Ruelle resonances

< ロ > < 同 > < 三 > < 三 >

э

- Main new ingredients:
 - New Livšic-type theorem in hyperbolic dynamical systems with tight relation to representation theory, reducing the question to a transport problem on M = SM;
 - Interplay between the geometry of the moduli space of connections and the theory of Pollicott-Ruelle resonances (microlocal analysis).
- Analogy: flat connections up to gauge correspond to representations of π_1 up to conjugacy; we will see that unitary connections up to dynamical (cocycle) equivalence correspond to representations of the Parry's free monoid.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction Dynamical result Parry's free monoid Ideas of the Proof Moduli space of connections and Pollicott-Ruelle resonance

- φ_t: M → M is a transitive Anosov flow and E → M a Hermitian vector bundle. Each ∇^E ∈ A_E gives rise to a unitary cocycle C(x, t) : E_x → E_{φtx} by parallel transport (i.e. it satisfies C(φ_tx, t')C(x, t) = C(x, t + t')).
- Our new Livšic-type result in hyperbolic dynamical systems:

Theorem (C-Lefeuvre '21)

Let $\mathcal{E}_{1,2} \to \mathcal{M}$ be vector bundles equipped with unitary connections $\nabla_{1,2}^{\mathcal{E}}$, which induce unitary cocycles $C_{1,2}$ via parallel transport. Assume that for each primitive closed orbit $\gamma \ni x$ of period T we have

$$\mathsf{Tr}(C_1(x, T)) = \mathsf{Tr}(C_2(x, T)).$$

Then $\exists p \in \mathcal{G}(\mathcal{E}_2, \mathcal{E}_1)$ such that for all $x \in \mathcal{M}, t \in \mathbb{R}$:

$$C_1(x,t) = p(\varphi_t x) C_2(x,t) p(x)^{-1}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э.

Some remarks

- In particular we have $\mathcal{E}_1 \cong \mathcal{E}_2$ via the map p.
- Result goes back to Livšic ['72]: if $f \in C^{\infty}(\mathcal{M})$ integrates to zero along every closed geodesic, then $\exists u \in C^{\alpha}(\mathcal{M})$ such that Xu = f (Abelian cocycle). Inspired by Parry ['99] and Schmidt ['99] who show a weaker result.
- When M = SM, $\mathcal{E}_{1,2}$ are pullbacks of bundles from M, then by the Theorem and differentiating in time, we get

$$\nabla_X^{\operatorname{Hom}(\mathcal{E}_2,\mathcal{E}_1)} p = 0.$$

Assuming p depends only on x-variable, we see that $p^* \nabla^{\mathcal{E}_1} = \nabla^{\mathcal{E}_2}$.

・ロト ・同ト ・ヨト ・ヨト

Introduction Ideas of the Proof	Dynamical result
	Parry's free monoid
	Moduli space of connections and Pollicott-Ruelle resonances

- Let x_{*} ∈ M be a periodic point. We say p is homoclinic to x_{*} if d(φ_{t±t₀[±]} p, φ_tx_{*}) →_{t→±∞} 0 for some t₀[±] ∈ ℝ; similarly an orbit γ is homoclinic to x_{*} if it contains a point homoclinic to x_{*}.
- Let \mathcal{H} be the set of all homoclinic orbits. Using the shadowing property for Anosov flows, homoclinic orbits are dense.
- We introduce the Parry's free monoid as the monoid generated by \mathcal{H} , i.e. the formal set of words (empty word corresponds to $\mathbf{1}_{G}$):

$$\mathbf{G} := \left\{ \gamma_1^{m_1} ... \gamma_k^{m_k} \mid k \in \mathbb{N}, m_1, ..., m_k \in \mathbb{N}_0, \gamma_1, ..., \gamma_k \in \mathcal{H} \right\},\$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Introduction Dynamical result Dynamical result Ideas of the Proof Moduli space of connections and Pollicott-Ruelle resonance

Fix $\gamma \in \mathcal{H}$ and set $x_n^{\pm} := \gamma(A_{\pm} \pm nT_{\star})$. Take a sequence $k_n \to \infty$ such that $C(x_{\star}, T_{\star})^{k_n} \to \mathrm{id}_{\mathcal{E}_{x_{\star}}}$ and set

$$\rho_n(\gamma) := C_{\mathbf{x}_{k_n}^+ \to \mathbf{x}_{\star}} C(\mathbf{x}_0^+, \mathbf{k}_n T_{\star}) C(\mathbf{x}_0^-, T_{\gamma}) C(\mathbf{x}_{k_n}^-, \mathbf{k}_n T_{\star}) C_{\mathbf{x}_{\star} \to \mathbf{x}_{k_n}^-}.$$

Define $\rho(\gamma) := \lim_{n \to \infty} \rho_n(\gamma)$; get a representation $\rho : \mathbf{G} \to \mathrm{U}(\mathcal{E}_{\mathsf{x}_*})$.

Sketch-proof of the dynamical Theorem

Lemma

If $\nabla^{\mathcal{E}_1}$ and $\nabla^{\mathcal{E}_2}$ are trace-equivalent, then the induced representations $\rho_{1,2}: \mathbf{G} \to \mathrm{U}(\mathcal{E}_{x_\star})$ are isomorphic, i.e. there is a $p_\star \in \mathrm{U}(\mathcal{E}_{2x_\star}, \mathcal{E}_{1x_\star})$:

$$\forall \gamma \in \mathbf{G}, \ \ \rho_1(\gamma) = p_\star \rho_2(\gamma) p_\star^{-1}.$$

• By algebra, it suffices to show ρ_1, ρ_2 have equal characters. Take $\gamma_{1,2} \in \mathcal{H}, \ \gamma = \gamma_1 \cdot \gamma_2$ and show $\mathsf{Tr}(\rho_1(\gamma)) = \mathsf{Tr}(\rho_2(\gamma))$. We have

$$\rho_1(\gamma) = \rho_{1,n}(\gamma_1)\rho_{1,n}(\gamma_2) + o(1).$$

By the shadowing property, take $\tilde{\gamma} \ni y_n$ that $\mathcal{O}(e^{-\theta k_n})$ -shadows the concatenation $S = [x_{k_n}^-(1)x_{k_n}^+(1)] \cup [x_{k_n}^-(2)x_{k_n}^+(2)]$. Thus:

$$\rho_{1,n}(\gamma_1)\rho_{1,n}(\gamma_2) = C_{1,y_n \to x_{\star}} C_1(y_n, T'_n) C_{1,y_n \to x_{\star}}^{-1} + \mathcal{O}(e^{-\theta k_n}).$$

• Taking traces and letting $n \to \infty$, we get the claim $\mathbb{B} \to \mathbb{A} \cong \mathbb{A} \oplus \mathbb{A} \cong \mathbb{A}$

Dynamical result Parry's free monoid Moduli space of connections and Pollicott-Ruelle resonances

The proof is completed by pushing p_{\star} along elements of \mathcal{H} by parallel transport with respect to the connection $\nabla^{\operatorname{Hom}(\nabla^{\mathcal{E}_2},\nabla^{\mathcal{E}_1})}$ from both the past and the future. Both pushforwards agree by construction; denote them by p. We show p is Lipschitz continuous, so by a regularity result of **Bonthonneau-L ['21]** $\implies p$ is smooth.

Introduction Dynamical result Parry's free monoid Moduli space of connections and Pollicott-Ruelle resonances

- Let [∇^E] ∈ A_E; consider A ∈ C[∞](M, End_{sk}(E)). Consider the operator X_A := (π*∇^{Hom}(∇^E+A,∇^E))_X. By opacity of ∇^E, we know that X = X₀ has a simple resonance at zero (spanned by id_E).
- P-R resonances are poles of the meromorphic extension of
 (X + z)⁻¹: C[∞] → D'. By continuity, ∃ small contour γ such that
 for A small enough, no resonance crosses γ. Set:

$$\Pi_A^+ := \frac{1}{2\pi i} \int_{\gamma} (z + \mathbf{X}_A)^{-1} dz, \quad \lambda_A := \operatorname{Tr}(-\mathbf{X}_A \Pi_A^+).$$

- Denote by φ(A) the gauge-equivalent connection sending ∇^ε + A to Coulomb gauge, (∇^{End(ε)})*(φ(A) − ∇^ε) = 0.
- It turns our that the second variation controls the distance in the moduli space (convexity):

$$0 \leq \|\phi(A) - \nabla^{\mathcal{E}}\|^2_{H^{-1/2}(M,\,T^*M\otimes \mathsf{End}_{\mathrm{sk}}(\mathcal{E}))} \leq C |\lambda_A|.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = ● ● ●

Dynamical result Parry's free monoid Moduli space of connections and Pollicott-Ruelle resonances

イロン イ団 と イヨン イヨン

Introduction Ideas of the Proof	
	Moduli space of connections and Pollicott-Ruelle resonances

Thank you for your attention!

イロン イ団 と イヨン イヨン

∃ < n < 0</p>