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Historical context



A classical geometric question

The boundary rigidity problem
m (M, g) a Riemannian manifold with boundary oM.
m Know the geodesic distance between any two boundary points
X,y € OM.
m Does this information determine the Riemannian metric g7

(M, g)




Obstructions

m Boundary-fixing diffeomorphisms.
m Regions of large positive curvature.

(M, g)

m Manifolds without such regions are called simple.
m Conjecture (Michel 1981): All simple manifolds are boundary
rigid.



Selected results on boundary rigidity

m Special cases were shown by Michel, Gromov, and Croke.

m Lassas, Sharafutdinov, Uhlmann (2003): g is C*-close to
Euclidean.

m Stefanov and Uhlmann (2005): g, g are simple and g is
Ck-close to g.

m Pestov and Uhlmann (2005): Simple 2-manifolds are
boundary rigid.

m Burago and lvanov (2010 and 2013): g is simple and either
C?-close to Euclidean or C3-close to a hyperbolic metric.

m Graham, Guillarmou, Stefanov, Uhlmann (2019):
Asymptotically hyperbolic setting.

m Stefanov, Uhlmann, and Vasy (2021): Manifolds with a
convex foliation condition + lens data.



2D rigidity
Pestov-Uhlmann (2005):

m (M, g) simple 2D manifold.
m knowledge of boundary distances equivalent to knowledge of
Dirichlet-to-Neumann map for a conductivity-type problem.

m Lassas-Uhlmann (2001):

Agu=0on M
u="f on oM.

The Dirichlet-to-Neumann map A, : f — g(Vu,v)|am
uniquely determines g. Here v outward-pointing unit normal
to OM.

m This settled the 2D boundary rigidity problem.



2D Calderén’s Problem

Nachman (1996):

For anisotropic case,

m Write «;; = \/detg g,-JTl.
m Then V- (y(x)Vu) = 0 transforms to Agu = 0.
m Isothermal coordinates g = e2¢(")l2x2 reduces to isotropic
case.
For isotropic case,
: A
m Write g = 7;1 v € C3(M).
m V- (v(x)Vu) = 0 transforms to Au+ qu = 0.
m Reconstructed g from DN-map A : f — v - Vu.



A lower codimensional rigidity
problem



Determining the metric from area data

m Let us consider a codimension n — 2 version of boundary
rigidity.
m Consider least-areas of minimal surfaces instead of distances

of geodesics.



m (M, g) a Riemannian manifold with boundary oM.

m For any simple closed curve v C OM, we know the area of the
least-area surface(s) circumscribed by ~.

m Does this information determine the Riemannian metric?




m Yes! (under certain geometric conditions.)

m In some cases, we only require the area data for a much
smaller subclass of curves.

10



Interesting connection to physics

AdS/CFT theories

m AdS/CFT correspondence:
Relates quantum gravity defined on an asymptotically Anti-de
Sitter (AdS) spacetime to a conformal field theory (CFT)
defined on the conformal boundary.

m Hubeny-Ryu-Takayanagi Conjecture:
Entanglement entropy of a region A in the CFT
< area of a least-area surface Y C AdS with boundary
oY = 0A.
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AdS/CFT theories

(n+1)-dim. CFT

(n 4+ 2)-dim. AdS

Figure 1: Region A in an (n+ 1)-dimensional CFT and a least-area
surface Y, in (n+ 2)-dimensional AdS.
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AdS/CFT theories

In AdS/CFT, expect knowledge of the boundary determines the
bulk.

Is this true?
H What other features of the bulk could you identify?
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Physics work which builds on our results

m N. Bao, CJ. Cao, S. Fischetti, C. Keeler. Towards bulk metric
reconstruction from extremal area variations, 2019 Class.
Quantum Grav. 36 185002.

m N. Bao, CJ. Cao, S. Fischetti, J. Pollack, Y. Zhong. More of
the bulk from extremal area variations, 2021 Class. Quantum
Grav. 38 047001.
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Our main results on recovering a Riemannian metric from area

data:

We can determine a Riemannian metric from knowledge of
least-areas for three classes of manifolds.

Briefly:

m The first two classes of manifolds arise from the tradeoff:
less area data available — more restrictions on the geometry.

m The third class of manifolds arise from the tradeoff:
more data available — fewer restrictions on the metric.

| will discuss a result for classes 1 and 2 today.
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Our global result

Theorem (Alexakis, B., Nachman, 2020)

m (M, g) a manifold of Class 1 or Class 2.
m glom given.
m Suppose for the given family of simple closed curves
v(t) € OM and any nearby perturbations (s, t) C M, we

know the area of the properly embedded surface Y(s,t) C M
which solves the least-area problem for (s, t).

Then, the metric g is uniquely determined up to diffeomorphisms
which fix OM.
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Determining a Riemannian metric from least-area surfaces:

The first and second class of manifolds:

Let (M, g) be a Riemannian manifold with boundary OM satisfying

m (M,g) is C*smooth.
m dim(M) = 3.
m (M, g) has strictly mean convex boundary M.

m there is a foliation of M by simple closed curves
{7(t)}te(=1,1) which satisfy some technical curvature bounds.

m the foliation {7(t)}:c(—1,1) induces a foliation of M by area
minimizing discs { Y'(t)}:e(—1,1)
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Class 1: For (M, g) as described, we additionally have g is
C3-close to Euclidean.

Figure 2: g “looks flat” even when zoomed to level of curvature.



Class 2: For (M, g) as described, (M, g) is also straight-thin: the
minimal surfaces Y(t) have area bounded above by a (small)
number and (M, g) is not too “curvy”.

Figure 3: Cross-sectional area is Figure 4: Wider cross-section

small. compensated by “straightness”. 20



Local result

m What if we only know area info near a point on the boundary?

m Could we determine the metric near the point?

(M, g)
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Local result

Theorem (Alexakis, B., Nachman)

m (M, g) a 3-dimensional Riemannian manifold with boundary
oM.

m OM is both C*-smooth and mean convex at p € OM.

m U C OM is a neighbourhood of p with g|y known, and a
given foliation {7(t)}:c(—1,1) of U by simple, closed curves.

m Suppose that for (t) and any nearby perturbation
(s, t) C U, we know the area of the properly embedded
surface Y(s, t) which solves the least-area problem for (s, t).

Then, there exists a neighbourhood V C M of p such that g is
uniquely determined on V' up to isometries which fix V N OM.
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Sketch of the proof of the global
result




Overview of global result proof:

Want to show: least-area data for the foliation
{Y(t) : t € (—1,1)} = M and its nearby perturbations — g is
uniquely determined.

m Solve for the metric by moving along the foliation Y/(t).

m Use conformal structure of each Y/(t) to write the metric as

e 0 gan
g=| 0 e g5
813 823 833

m Note: by extending (M, g) to an asymptotically flat manifold,
¢ is unique on each Y(t).
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Main proof ideas:

m Key: Use variations of the foliation to relate geometric data
to PDE data.

m By considering the normal variation of Y(0) to Y(t), we find

82
SAY(2)

— _/ " (Ay(o) + RicM (7, ) + |yA||2) ¥ dVol
Y(0)

t=0

+/ Yg(Vip,v) d5+/ g(VyV,v)dS.
oY (0) aY(0)

where V =4, ¢ : Y(0) — R, and A'is a unit normal vector
field.
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Main proof ideas:

m In our conformal coordinates, we determine the
Dirichlet-to-Neumann map

9
/\g]E . ¢0 — %

for

Ag, )+ € (Ricg(A, M) + |AlZ) ¥ =0 on DCR* (1)
Y =1y on dD.

= Nachman (1996):
Ag; determines e?? (Ricg (A, ) + ||AH§)

m Thus we know any solution v to (1).
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Main proof ideas:

m For the foliation {Y'(t)};c(—1,1), the lapse function
1 :=||N||g is a solution to (1).

Figure 5: The lapse function is || N||.
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Main proof ideas:

m Variations Y(s, t) of Y(t) lead to knowledge of new lapse
functions (s, t) := [|N(s, t)|4-
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Main proof ideas:

Next steps:

m Linearizing ||N(s, t)|| about s = 0 gives nonlinear, non-local

equations for the components of g—*.

m Get an evolution equation for ¢ from the minimality of each
Y(t).

m We show uniqueness for this system by considering two
metrics g1 and g» for which we have the same area data.
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Main proof ideas:

m Obtain §g33 := g33 — g33 = 0 in the coordinates (x®).

m Taking differences of the equations we derived:

0 =08 (p) + 9k||Vx|| g, (P)3Xf (p)
0 =0g%(p) + 9k||Vx®|g,(P) 555 (p)
0 = gf30k(69) + g7205(3¢9)

<8k¢2 - *3k log(g? )> g + 3 K(0g3).

in the differences dg3t, 9g32, and §¢.

m Here 6>'<,-k is a pseudodifferential operator (WDO) acting on
6g3t, 6g32, 6¢ and 036¢.
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Main ideas of the proof

m We show 6g3!, 6g32 are WDOs acting on §¢ and 930¢.

m The conditions of close to Euclidean or straight-thin are used
to invert the system.

m Then, the equation for ¢ becomes a hyperbolic Cauchy
problem:

309+ P(6¢p) =0 on M
0¢=0 onOM.

where P is an order 1 WDO in the tangential directions.

m The uniqueness of this Cauchy problem gives us uniqueness of

the metric components.
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Class 3: (M, g) admits foliations from all directions

Figure 6: Foliations by mean Figure 7: Foliations by
convex submanifolds N(r). area-minimizers which reach
pEe M.
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Global result Il

Theorem (Alexakis, B., Nachman)

m Suppose (M, g) admits foliations from all directions.
m g|om given.

m Suppose that for all p € M and for each 7(t, p) as above, and
any nearby perturbation ~(s, t, p) C M, we know the area of
the properly embedded surface Y (s, t, p) which solves the
least-area problem for (s, t, p).

Then the knowledge of these areas uniquely determines the metric
g (up to isometries which fix the boundary).
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Future projects




Future projects

m AdS/CFT - renormalized area information.

m Larger classes of 3-manifolds.
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Thanks!



xk equation

By = fzpr"fr,-k-(go) — 2gJ V;(vpAF)
(gJE)jk
2HV g

—2¢ ( ik

ge)

+2g w _—
g 2HV *llg

= gl V()5 (80j0i8>* + £ia 0,8 + £>*Ougij)

(80j0ig>" + £ia0;g>* + " Ongyy)

ij . 3 (g]E)j 9.3 . 9..3x 3a .
+g0 wpmﬁij ||g 2HV 3|| (gajalg +glaajg +g 8Ozglj)
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+ gkm 2¢8mg3ja ¢ + glm 2¢amg3ka’,¢ _ ggjamg3me4¢aj¢}

= ]:k(g137g237 ¢> wp,h dwp,h P)

- & {0i8am0ig>* + gam0j0i8>* + 0j€aiOmE>" + 8ai0jOmg™"



Here 6)'(,-" is a pseudodifferential operator (WDO) acting on dg3!, 6g%2,
d0¢ and 030¢:

Dg, 05K = 1, i AN 90,083 ™(W) + 1, i B 0,000 (W)
+ (Vp,i CE + 0105, C5*) (W) Db p(w)
+ (1, C3 + 80 i )0
+ (p,i Dfp + 0o, D) (W) 058%™ (w)
+ (Vp.iFim + O1p.i ) (W)™ (w),

for smooth functions Ak ..., FX!in the unknown metric coefficients
gi3, g2 and g33, g5° and their first and second derivatives at q.
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