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Setting

Let (N, g) be an n+ 1-dimensional (n > 2) globally hyperbolic
Lorentzian manifold. We assume that N = R x M and the metric
tensor is of the form

g= _5(t7X)dt2 + h(t,X),

where 5 > 0 is a smooth function and h(t, -), t € R, is a smooth
one-parameter family of Riemannian metrics on an n-dimensional
manifold M.

Let [J, be the D'Alembertian wave operator
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> Example: Ouminkowski = 8? — Ay in R x R"



Notation and setting

Let Q C M be a smooth compact submanifold with boundary

(possibly non-convex).
We are interested in the recovery of the potential function g in the
nonlinear wave equation

Ogu(t,x)+ q(t,x)u(t,x)™ =0, in[0,T] x Q,
u="f, on [0, T] x 09,
u(0,x) = 0:u(0,x) =0, on Q,

We assume that the exponent m is an integer and m > 4.



Notation and setting

Ogu(t,x)+ q(t,x)u(t,x)™ =0, in[0,T] x £,
u=f, on [0, T] x 09,
u(0,x) = 0:u(0,x) =0, on Q,

We will let ¥ = [0, T] x 02 denote the lateral boundary of the

domain.
The Dirichlet-to-Neumann map (DN map) is defined by

A HSTH(E) — H(Y),
N(f) = al,u,r‘z,

where v is the outward normal vector to X.



The inverse problem

Ogu(t,x)+ q(t,x)u(t,x)™ =0, in [0, T] x Q,
u=f, on [0, T] x 09,
u(0,x) = 0:u(0,x) =0, on Q,

Inverse Problems

Recover q(x, t) from the DN map A. How stable is this
reconstruction process?




Some earlier results

» Uniqueness for an inverse problem for (02 — c(x)?A)u =0 by
boundary control methods by Belishev, Belishev-Kurylev in
1987-1995

> First results exploiting nonlinearity of the equation by Kurylev,
Lassas and Uhlmann from 2014

> Since then, techniques using nonlinearity as a tool have been
extremely popular: T Balehowsky, C Carstea, X Chen, M de
Hoop, A Feizmohammadi, C Guillarmou, P Hintz, Y Kian, H
Koch, K Krupchyk, M Lassas, T Liimatainen, Y-H Lin, G
Nakamura, L Oksanen, G Paternain, A Riiland, M Salo, P
Stefanov, G Uhlmann, Y Wang, J Zhai, and many more
(apologies to any who | missed!)



The inverse problem

Cgu(t, %) + (e, x)u(z, )™ = 0, in [0, T] x 2,
u=f, on [0, T] x 09,
u(0,x) = 0:u(0,x) =0, on Q,

Inverse Problems

Recover g(x, t) from the DN map A. How stable is this
reconstruction process?

The finite speed of propagation of waves causes natural limitation
to what we can recover: Let

W c I7(Z) N IH(E) N ([0, T] x Q)

be a compact set.






Theorem (Lassas, Liimatainen, Potenciano-Machado, T 2021)

Assume that q1,q2 € CSTH(R x Q) satisfy ||qjcs+1 < ¢, j=1,2,
for some ¢ > 0 and s > (n—1)/2. Let A1, Ay : HEPL(Z) — H7(X),
r <'s, be the corresponding Dirichlet-to-Neumann maps of the
non-linear wave equation.

Leteg >0, L >0 and 6 € (0,L) be such that

[AL(F) = Na(F)|lHr(z) <0

for all f € Hy™(X) with [l gs+1(s) < €0. Then there exists a
constant C > 0, independent of g1, q> and 6 > 0, such that

lgr — @l tooqwy < €576,

where
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Ideas of the proof: higher-order linearization
Use small parameters ¢1,...,e, > 0 and differentiate:

Ogu(t,x) + q(t,x)u(t,x)™ =0, in [0, T] x £,
u=e1fi+-+emfm, on [0, T] x 09,
u(0,x) = 0:u(0,x) =0, on Q,
Noisy measurements blow up, when using actual derivatives
(Frechet derivatives)
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Instead, we will use finite differences

e1=...—mem=0
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Then we see that
DELanu&flJr-.-Jrsmfm =-—mlgvy- - Vm+ Dg’lj’R7

where R is an error term (depends on ¢;) which we can control.
Here the functions v; solve

Ogv; =0, in [0, T] x Q,
vj = f on X
vi=0:vj =0, att=0

forj=1,...,m.

Let v be an auxiliary solution to

Ugvo =0,
VozatV():O, t=T.



Integrating the differentiated equation against vy, we get the
identity

—m!/ quoviva -+ vpdVg
[0,T]xQ

=/ DAL + -+ emf)dS
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Let's make vq - - - vy = 6!



How to choose vq,...,v,,?

We choose v1, ..., vy, to be Gaussian beams. Gaussian beams are
constructed by considering a lightlike geodesic . If s is the
geodesic parameter, let (s,y), y = (y1,...,yn) € R", be Fermi
coordinates in a neighbourhood of the graph I' of v. A Gaussian
beam looks roughly like

eihT_aTle, a>0,7>1.

Qualitatively: oscillation to direction transversal to v and
exponential concentration on .

So Gaussian beams are like wave-packets travelling along lightlike
geodesics.

We will choose two distinct geodesics 1 and ~» which intersect in
W and set v; and v, to be Gaussian beams related to these
geodesics. To cancel the oscillation, we choose v3 = v and

Vg = VWo.



(Brief) Construction of Gaussian beams

Gaussian beams are constructed by using a WKB ansatz
v(s,y) = e7Ma(s, y)

to approximatively solve the equation [gv = 0 in the Fermi
coordinates (s,y). We have

Og(e'®a) = €™ (r2g(dO, dO)—2i7g(dO, da)+iT(0g0)a+0ga).

We will choose a phase function © and an amplitude function a so
that the right hand side is O(7=K) in H%([0, T] x Q) for a given
K € N.



Construction of phase function
Approximatively solve the eikonal equation

g(d©,de)=0:

set © = ZjN:O ©j(s,y), where ©j(s, y) is a homogeneous
polynomial of order j in y € R". We say that g(d©, d©) vanishes
to order N on I, or that g(d©, d©) = 0 is satisfied to order N on
r,if
(976(d®, 4©))(5,0) = 0,
where « is any multi-index with |a| < N.) We set
@0 =0 and @1 =¥-
It follows that
g(d©,dO)(s,0) =0 and (0,,8(dO©, dO))(s,0) = 0,

where | =1,...,n. That is, the eikonal equation is satisfied to
order 1 on . This process can be extended up to higher orders.



Construction of amplitude

After finding an (approximative) solution © to the eikonal equation,
we solve for a by inserting © into

—2iTg(dO,da) + iT(0;0)a+ Oza=0.

By assuming an expansion a = Z}V:o 7/ a; we are led by equating

the powers of 7 to a family of N + 1 equations

—2ig(dO, dag) + i(0z0)ag = 0,
- 2Ig(d@7 da.l) + /'(Dg@)aj — Dgaj—l = 0’

j=1,...,N. We solve these equations recursively in j starting
from ag.



Choosing vy

So far our integral identity looks like

—m!/ qv0|v1|2|v2|2V5---vdeg
[0, T]x

:/VQDgA(Elﬂ+"'+€mfm)dS
pN
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Now we choose vy so that it has vanishing Cauchy data at {t = T}
and so that vy is supported near the intersection of 71 and 7».



Boundary optimal geodesics

We say that a geodesic v from p to g (p < q) is optimal, if the
time-separation function 7 satisfies 7(p, g) = 0. Time-separation
function is defined to be the supremum of lenghts of piecewise
smooth causal paths from p to g.

Lemma (Boundary optimal geodesics)

Let (N, g) be globally hyperbolic, N =R x M. If

x € IT(Z)N ([0, T] x Q), there exists a future-directed optimal
geodesic v : [0,1] — [0, T] x Q from ¥ to x and the first
intersection of v and ¥ is transverse. Similarly, if

x € 17(X)N ([0, T] x Q), there exists a past-directed optimal
geodesic v : [0,1] — [0, T] x Q from ¥ to x and the first
intersection of v and ¥ is transverse.




Dealing with non-convexity

We allow possibly non-convex
domain. To deal with this,
we introduced boundary opti-
mal geodesics, which are lightlike
geodesics that intersect the lat-
eral boundary X at the earliest
or latest time possible.

Such geodesics intersect the lat-
eral boundary transversally.




Multiple intersections?

In general, two lightlike geodesics can intersect many times.
Suppose we have chosen two lightlike geodesics 1 and 7, with
their corresponding Gaussian beams. Let

{Xl, . ,X,D} = ’yl(R) QWQ(R) N ([0, T] X Q)

Due to exponential concentration of Gaussian beams, we then have
that

P
—m! / qvo|vi|val?vs - - vindVg = Z cjvo(xj)q(x;)+error
[0, T]xQ ‘=



Separation of points

It is possible to choose a family (v(gk))f:1 of P functions, satisfying

the required conditions for vy, with the property that the matrix

vy (x1) Vél)(Xz) vy ' (xp)
oo | 70 wea) e e
WP0a) D) i (xp)

is invertible.



Separation of points




Separation of points can be done uniformly

Let g be a Riemannian metric on R x M.

Lemma (Separation filter)

Let P > 1 be an integer and let 6 > 0. Suppose
Kcl=(Z)nIT(Z)N ([0, T] x Q) is a compact set. There exists a
finite collection M C C*°(X) of boundary values with the following
properties: Assume that xi,...,xp € K are any points such that
x1 < Xxp < --- < xp and dg(xi,x;) > 0 for xi # x;, k, I =1,...,P.
Then there are fi,...,fp € M C C*(X) and corresponding
solutions v, of Ogvg, = 0 with vanishing Cauchy data att =T,
such that the separation matrix (vi(x;))};_; is invertible.




Intersections near the lateral boundary

Let 7> 0, x € RY, d > 2, and assume x = (x, ..., Xq), where
x1 > 0. Let b: Rd — R be Lipschitz Define a map

® ;] — 00,0] — [1/2 1] by ®(s) f [Ze ~dt. The following
estimate

< 2¢4 | bl 72

holds true for all x € RY N {x3 > 0}. In particular, the integral on
the left converges uniformly to b as 7 — oo. Here

ca =T(4FH)/T(%)-



Combining everything

One can show that everything so far can be done uniformly with
respect to the intersection points xq, ..., xp (using compactness of
[0, T] x Q).

So finally optimizing all parameters implicit in the equalities

P
—m! / qvé') ViV Vi dVg & Z cjvé')(xj)q(xj) +error
[0,T]xQ =1

j=1,...,P recovers g up to a known error of Hdlder type.
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