Stability of an inverse problem for a semi-linear wave equation

Teemu Tyni

Joint work with
Matti Lassas, Tony Liimatainen and Leyter Potenciano-Machado

University of Toronto

International Zoom Inverse Problems seminar

Setting

Let (N, g) be an $n+1$-dimensional ($n \geq 2$) globally hyperbolic Lorentzian manifold. We assume that $N=\mathbb{R} \times M$ and the metric tensor is of the form

$$
g=-\beta(t, x) d t^{2}+h(t, x)
$$

where $\beta>0$ is a smooth function and $h(t, \cdot), t \in \mathbb{R}$, is a smooth one-parameter family of Riemannian metrics on an n-dimensional manifold M.
Let \square_{g} be the D'Alembertian wave operator

$$
\square_{g} u=-\sum_{a, b=0}^{n} \frac{1}{\sqrt{|\operatorname{det}(g)|}} \frac{\partial}{\partial x^{a}}\left(\sqrt{|\operatorname{det}(g)|} g^{a b} \frac{\partial u}{\partial x^{b}}\right) .
$$

- Example: $\square_{\text {Minkowski }}=\partial_{t}^{2}-\Delta_{x}$ in $\mathbb{R} \times \mathbb{R}^{n}$.

Notation and setting

Let $\Omega \subset M$ be a smooth compact submanifold with boundary (possibly non-convex).
We are interested in the recovery of the potential function q in the nonlinear wave equation

$$
\begin{cases}\square_{g} u(t, x)+q(t, x) u(t, x)^{m}=0, & \text { in }[0, T] \times \Omega \\ u=f, & \text { on }[0, T] \times \partial \Omega \\ u(0, x)=\partial_{t} u(0, x)=0, & \text { on } \Omega,\end{cases}
$$

We assume that the exponent m is an integer and $m \geq 4$.

Notation and setting

$$
\begin{cases}\square_{g} u(t, x)+q(t, x) u(t, x)^{m}=0, & \text { in }[0, T] \times \Omega, \\ u=f, & \text { on }[0, T] \times \partial \Omega \\ u(0, x)=\partial_{t} u(0, x)=0, & \text { on } \Omega,\end{cases}
$$

We will let $\Sigma=[0, T] \times \partial \Omega$ denote the lateral boundary of the domain.
The Dirichlet-to-Neumann map (DN map) is defined by

$$
\begin{aligned}
& \Lambda: H_{c}^{s+1}(\Sigma) \rightarrow H^{s}(\Sigma) \\
& \Lambda(f)=\left.\partial_{\nu} u_{f}\right|_{\Sigma}
\end{aligned}
$$

where ν is the outward normal vector to Σ.

The inverse problem

$$
\begin{cases}\square_{g} u(t, x)+q(t, x) u(t, x)^{m}=0, & \text { in }[0, T] \times \Omega, \\ u=f, & \text { on }[0, T] \times \partial \Omega, \\ u(0, x)=\partial_{t} u(0, x)=0, & \text { on } \Omega,\end{cases}
$$

Inverse Problems

Recover $q(x, t)$ from the DN map Λ. How stable is this reconstruction process?

Some earlier results

- Uniqueness for an inverse problem for $\left(\partial_{t}^{2}-c(x)^{2} \Delta\right) u=0$ by boundary control methods by Belishev, Belishev-Kurylev in 1987-1995
- First results exploiting nonlinearity of the equation by Kurylev, Lassas and Uhlmann from 2014
- Since then, techniques using nonlinearity as a tool have been extremely popular: T Balehowsky, C Cârstea, X Chen, M de Hoop, A Feizmohammadi, C Guillarmou, P Hintz, Y Kian, H Koch, K Krupchyk, M Lassas, T Liimatainen, Y-H Lin, G Nakamura, L Oksanen, G Paternain, A Rüland, M Salo, P Stefanov, G Uhlmann, Y Wang, J Zhai, and many more (apologies to any who I missed!)

The inverse problem

$$
\begin{cases}\square_{g} u(t, x)+q(t, x) u(t, x)^{m}=0, & \text { in }[0, T] \times \Omega \\ u=f, & \text { on }[0, T] \times \partial \Omega \\ u(0, x)=\partial_{t} u(0, x)=0, & \text { on } \Omega,\end{cases}
$$

Inverse Problems

Recover $q(x, t)$ from the DN map Λ. How stable is this reconstruction process?

The finite speed of propagation of waves causes natural limitation to what we can recover: Let

$$
W \subset I^{-}(\Sigma) \cap I^{+}(\Sigma) \cap([0, T] \times \Omega)
$$

be a compact set.

Theorem (Lassas, Liimatainen, Potenciano-Machado,T 2021)

Assume that $q_{1}, q_{2} \in C^{s+1}(\mathbb{R} \times \Omega)$ satisfy $\left\|q_{j}\right\|_{c^{s+1}} \leq c, j=1,2$, for some $c>0$ and $s>(n-1) / 2$. Let $\Lambda_{1}, \Lambda_{2}: H_{c}^{s+1}(\Sigma) \rightarrow H^{r}(\Sigma)$, $r \leq s$, be the corresponding Dirichlet-to-Neumann maps of the non-linear wave equation.
Let $\varepsilon_{0}>0, L>0$ and $\delta \in(0, L)$ be such that

$$
\left\|\Lambda_{1}(f)-\Lambda_{2}(f)\right\|_{H^{r}(\Sigma)} \leq \delta
$$

for all $f \in H_{0}^{s+1}(\Sigma)$ with $\|f\|_{H^{s+1}(\Sigma)} \leq \varepsilon_{0}$. Then there exists a constant $C>0$, independent of q_{1}, q_{2} and $\delta>0$, such that

$$
\left\|q_{1}-q_{2}\right\|_{L^{\infty}(W)} \leq C \delta^{\sigma(s, m)}
$$

where

$$
\sigma(s, m)=\frac{8(m-1)}{2 m(m-1)(8 s-n+13)+2 m-1} .
$$

Ideas of the proof: higher-order linearization

 Use small parameters $\varepsilon_{1}, \ldots, \varepsilon_{m}>0$ and differentiate:$$
\begin{cases}\square_{g} u(t, x)+q(t, x) u(t, x)^{m}=0, & \text { in }[0, T] \times \Omega, \\ u=\varepsilon_{1} f_{1}+\cdots+\varepsilon_{m} f_{m}, & \text { on }[0, T] \times \partial \Omega, \\ u(0, x)=\partial_{t} u(0, x)=0, & \text { on } \Omega,\end{cases}
$$

Noisy measurements blow up, when using actual derivatives (Frechet derivatives)

$$
\left.\frac{\partial}{\partial \varepsilon_{1}} \cdots \frac{\partial}{\partial \varepsilon_{m}}\right|_{\varepsilon_{1}=\ldots=\varepsilon_{m}=0}
$$

Instead, we will use finite differences

$$
\begin{aligned}
& D_{\vec{\varepsilon}}^{m} u_{\varepsilon_{1} f_{1}+\cdots+\varepsilon_{m} f_{m}} \\
& \qquad:=\frac{1}{\varepsilon_{1} \cdots \varepsilon_{m}} \sum_{\sigma \in\{0,1\}^{m}}(-1)^{|\sigma|+m} u_{\sigma_{1} \varepsilon_{1} f_{1}+\ldots+\sigma_{m} \varepsilon_{m} f_{m}} .
\end{aligned}
$$

Then we see that

$$
D_{\vec{\varepsilon}}^{m} \square_{g} u_{\varepsilon_{1} f_{1}+\ldots+\varepsilon_{m} f_{m}}=-m!q v_{1} \cdots v_{m}+D_{\vec{\varepsilon}}^{m} \square \mathcal{R},
$$

where \mathcal{R} is an error term (depends on ε_{j}) which we can control. Here the functions v_{j} solve

$$
\begin{cases}\square_{g} v_{j}=0, & \text { in }[0, T] \times \Omega, \\ v_{j}=f_{j}, & \text { on } \Sigma \\ v_{j}=\partial_{t} v_{j}=0, & \text { at } t=0\end{cases}
$$

for $j=1, \ldots, m$.
Let v_{0} be an auxiliary solution to

$$
\left\{\begin{array}{l}
\square_{g} v_{0}=0, \\
v_{0}=\partial_{t} v_{0}=0, \quad t=T
\end{array}\right.
$$

Integrating the differentiated equation against v_{0}, we get the identity

$$
\begin{aligned}
& -m!\int_{[0, T] \times \Omega} q v_{0} v_{1} v_{2} \cdots v_{m} d V_{g} \\
& =\int_{\Sigma} v_{0} D_{\tilde{\varepsilon}}^{m} \Lambda\left(\varepsilon_{1} f_{1}+\cdots+\varepsilon_{m} f_{m}\right) d S \\
& \quad+\frac{1}{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{m}} \int_{[0, T] \times \Omega} v_{0} \square \widetilde{\mathcal{R}} d V_{g}
\end{aligned}
$$

Let's make $v_{1} \cdots v_{m} \approx \delta$!

How to choose v_{1}, \ldots, v_{m} ?

We choose v_{1}, \ldots, v_{m} to be Gaussian beams. Gaussian beams are constructed by considering a lightlike geodesic γ. If s is the geodesic parameter, let $(s, y), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, be Fermi coordinates in a neighbourhood of the graph 「 of γ. A Gaussian beam looks roughly like

$$
e^{i y_{1} \tau-a \tau|y|^{2}}, \quad a>0, \tau \gg 1
$$

Qualitatively: oscillation to direction transversal to γ and exponential concentration on γ.
So Gaussian beams are like wave-packets travelling along lightlike geodesics.
We will choose two distinct geodesics γ_{1} and γ_{2} which intersect in W and set v_{1} and v_{2} to be Gaussian beams related to these geodesics. To cancel the oscillation, we choose $v_{3}=\overline{v_{1}}$ and
$v_{4}=\overline{v_{2}}$.

(Brief) Construction of Gaussian beams

Gaussian beams are constructed by using a WKB ansatz

$$
v(s, y)=e^{i \tau \Theta(s, y)} a(s, y)
$$

to approximatively solve the equation $\square_{g} v=0$ in the Fermi coordinates (s, y). We have
$\square_{g}\left(e^{i \tau \Theta} a\right)=e^{i \tau \Theta}\left(\tau^{2} g(d \Theta, d \Theta)-2 i \tau g(d \Theta, d a)+i \tau\left(\square_{g} \Theta\right) a+\square_{g} a\right)$.
We will choose a phase function Θ and an amplitude function a so that the right hand side is $\mathcal{O}\left(\tau^{-K}\right)$ in $H^{k}([0, T] \times \Omega)$ for a given $K \in \mathbb{N}$.

Construction of phase function

Approximatively solve the eikonal equation

$$
g(d \Theta, d \Theta)=0:
$$

set $\Theta=\sum_{j=0}^{N} \Theta_{j}(s, y)$, where $\Theta_{j}(s, y)$ is a homogeneous polynomial of order j in $y \in \mathbb{R}^{n}$. We say that $g(d \Theta, d \Theta)$ vanishes to order N on Γ, or that $g(d \Theta, d \Theta)=0$ is satisfied to order N on「, if

$$
\left(\partial_{y}^{\alpha} g(d \Theta, d \Theta)\right)(s, 0)=0
$$

where α is any multi-index with $|\alpha| \leq N$.) We set

$$
\Theta_{0}=0 \text { and } \Theta_{1}=y_{1}
$$

It follows that

$$
g(d \Theta, d \Theta)(s, 0)=0 \text { and }\left(\partial_{y} g(d \Theta, d \Theta)\right)(s, 0)=0
$$

where $I=1, \ldots, n$. That is, the eikonal equation is satisfied to order 1 on Γ. This process can be extended up to higher orders.

Construction of amplitude

After finding an (approximative) solution Θ to the eikonal equation, we solve for a by inserting Θ into

$$
-2 i \tau g(d \Theta, d a)+i \tau\left(\square_{g} \Theta\right) a+\square_{g} a=0
$$

By assuming an expansion $a=\sum_{j=0}^{N} \tau^{-j} a_{j}$ we are led by equating the powers of τ to a family of $N+1$ equations

$$
\begin{aligned}
& -2 i g\left(d \Theta, d a_{0}\right)+i\left(\square_{g} \Theta\right) a_{0}=0 \\
& -2 i g\left(d \Theta, d a_{j}\right)+i\left(\square_{g} \Theta\right) a_{j}-\square_{g} a_{j-1}=0
\end{aligned}
$$

$j=1, \ldots, N$. We solve these equations recursively in j starting from a_{0}.

Choosing v_{0}

So far our integral identity looks like

$$
\begin{aligned}
& -m!\int_{[0, T] \times \Omega} q v_{0}\left|v_{1}\right|^{2}\left|v_{2}\right|^{2} v_{5} \cdots v_{m} d V_{g} \\
& =\int_{\Sigma} v_{0} D_{\widetilde{\varepsilon}}^{m} \Lambda\left(\varepsilon_{1} f_{1}+\cdots+\varepsilon_{m} f_{m}\right) d S \\
& \\
& \quad+\frac{1}{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{m}} \int_{[0, T] \times \Omega} v_{0} \square \widetilde{\mathcal{R}} d V_{g} .
\end{aligned}
$$

Now we choose v_{0} so that it has vanishing Cauchy data at $\{t=T\}$ and so that v_{0} is supported near the intersection of γ_{1} and γ_{2}.

Boundary optimal geodesics

We say that a geodesic γ from p to $q(p \leq q)$ is optimal, if the time-separation function τ satisfies $\tau(p, q)=0$. Time-separation function is defined to be the supremum of lenghts of piecewise smooth causal paths from p to q.

Lemma (Boundary optimal geodesics)

Let (N, g) be globally hyperbolic, $N=\mathbb{R} \times M$. If
$x \in I^{+}(\Sigma) \cap([0, T] \times \Omega)$, there exists a future-directed optimal geodesic $\gamma:[0,1] \rightarrow[0, T] \times \Omega$ from Σ to x and the first intersection of γ and Σ is transverse. Similarly, if $x \in I^{-}(\Sigma) \cap([0, T] \times \Omega)$, there exists a past-directed optimal geodesic $\gamma:[0,1] \rightarrow[0, T] \times \Omega$ from Σ to x and the first intersection of γ and Σ is transverse.

Dealing with non-convexity

We allow possibly non-convex
 domain. To deal with this, we introduced boundary optimal geodesics, which are lightlike geodesics that intersect the lateral boundary Σ at the earliest or latest time possible.
Such geodesics intersect the lateral boundary transversally.

Multiple intersections?

In general, two lightlike geodesics can intersect many times. Suppose we have chosen two lightlike geodesics γ_{1} and γ_{2} with their corresponding Gaussian beams. Let

$$
\left\{x_{1}, \ldots, x_{P}\right\}=\gamma_{1}(\mathbb{R}) \cap \gamma_{2}(\mathbb{R}) \cap([0, T] \times \Omega)
$$

Due to exponential concentration of Gaussian beams, we then have that

$$
-m!\int_{[0, T] \times \Omega} q v_{0}\left|v_{1}\right|^{2}\left|v_{2}\right|^{2} v_{5} \cdots v_{m} d V_{g}=\sum_{j=1}^{P} c_{j} v_{0}\left(x_{j}\right) q\left(x_{j}\right)+\text { error }
$$

Separation of points

It is possible to choose a family $\left(v_{0}^{(k)}\right)_{k=1}^{P}$ of P functions, satisfying the required conditions for v_{0}, with the property that the matrix

$$
\mathcal{V}:=\left(\begin{array}{cccc}
v_{0}^{(1)}\left(x_{1}\right) & v_{0}^{(1)}\left(x_{2}\right) & \cdots & v_{0}^{(1)}\left(x_{P}\right) \\
v_{0}^{(2)}\left(x_{1}\right) & v_{0}^{(2)}\left(x_{2}\right) & \cdots & v_{0}^{(2)}\left(x_{P}\right) \\
\vdots & & \ddots & \vdots \\
v_{0}^{(P)}\left(x_{1}\right) & v_{0}^{(P)}\left(x_{2}\right) & \cdots & v_{0}^{(P)}\left(x_{P}\right)
\end{array}\right)
$$

is invertible.

Separation of points

Separation of points can be done uniformly

Let \bar{g} be a Riemannian metric on $\mathbb{R} \times M$.

Lemma (Separation filter)

Let $P \geq 1$ be an integer and let $\delta>0$. Suppose
$K \subset I^{-}(\Sigma) \cap I^{+}(\Sigma) \cap([0, T] \times \Omega)$ is a compact set. There exists a finite collection $\mathcal{M} \subset C^{\infty}(\Sigma)$ of boundary values with the following properties: Assume that $x_{1}, \ldots, x_{p} \in K$ are any points such that $x_{1}<x_{2}<\cdots<x_{P}$ and $d_{\bar{g}}\left(x_{k}, x_{l}\right)>\delta$ for $x_{k} \neq x_{l}, k, l=1, \ldots, P$. Then there are $f_{1}, \ldots, f_{P} \in \mathcal{M} \subset C^{\infty}(\Sigma)$ and corresponding solutions $v_{f_{k}}$ of $\square g v_{f_{k}}=0$ with vanishing Cauchy data at $t=T$, such that the separation matrix $\left(v_{f_{i}}\left(x_{j}\right)\right)_{i, j=1}^{P}$ is invertible.

Intersections near the lateral boundary

Lemma

Let $\tau>0, x \in \mathbb{R}_{+}^{d}, d \geq 2$, and assume $x=\left(x_{1}, \ldots, x_{d}\right)$, where $x_{1} \geq 0$. Let $b: \mathbb{R}_{+}^{d} \rightarrow \mathbb{R}$ be Lipschitz. Define a map $\Phi:]-\infty, 0] \rightarrow[1 / 2,1]$ by $\Phi(s):=\frac{1}{\sqrt{\pi}} \int_{s}^{\infty} e^{-t^{2}} d t$. The following estimate

$$
\begin{array}{r}
\left|b(x)-\frac{1}{\Phi\left(-\sqrt{\tau} x_{1}\right)}\left(\frac{\tau}{\pi}\right)^{\frac{d}{2}} \int_{\mathbb{R}^{d} \cap\left\{z_{1} \geq 0\right\}} b(z) \mathrm{e}^{-\tau|z-x|^{2}} \mathrm{~d} z\right| \\
\leq 2 c_{d}\|b\|_{\text {Lip }} \tau^{-1 / 2}
\end{array}
$$

holds true for all $x \in \mathbb{R}^{d} \cap\left\{x_{1} \geq 0\right\}$. In particular, the integral on the left converges uniformly to b as $\tau \rightarrow \infty$. Here $c_{d}=\Gamma\left(\frac{d+1}{2}\right) / \Gamma\left(\frac{d}{2}\right)$.

Combining everything

One can show that everything so far can be done uniformly with respect to the intersection points x_{1}, \ldots, x_{P} (using compactness of $[0, T] \times \Omega)$.
So finally optimizing all parameters implicit in the equalities

$$
-m!\int_{[0, T] \times \Omega} q v_{0}^{(i)} v_{1} v_{2} \cdots v_{m} d v_{g} \approx \sum_{j=1}^{P} c_{j} v_{0}^{(i)}\left(x_{j}\right) q\left(x_{j}\right)+\text { error }
$$

$j=1, \ldots, P$ recovers q up to a known error of Hölder type.

Reference

Lassas M, Liimatainen T, Potenciano-Machado L and Tyni T, Stability estimates for inverse problems for semi-linear wave equations on Lorentzian manifolds, arXiv:2106.122573, 2021

