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Setting

Let (N, g) be an n + 1-dimensional (n ≥ 2) globally hyperbolic

Lorentzian manifold. We assume that N = R×M and the metric

tensor is of the form

g = −β(t, x)dt2 + h(t, x),

where β > 0 is a smooth function and h(t, · ), t ∈ R, is a smooth

one-parameter family of Riemannian metrics on an n-dimensional

manifold M.

Let �g be the D'Alembertian wave operator

�gu = −
n∑

a,b=0

1√
| det(g)|

∂

∂xa

(√
| det(g)|gab ∂u

∂xb

)
.

I Example: �Minkowski = ∂2t −∆x in R× Rn.
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Notation and setting

Let Ω ⊂ M be a smooth compact submanifold with boundary

(possibly non-convex).

We are interested in the recovery of the potential function q in the

nonlinear wave equation
�gu(t, x) + q(t, x)u(t, x)m = 0, in [0,T ]× Ω,

u = f , on [0,T ]× ∂Ω,

u(0, x) = ∂tu(0, x) = 0, on Ω,

We assume that the exponent m is an integer and m ≥ 4.
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Notation and setting


�gu(t, x) + q(t, x)u(t, x)m = 0, in [0,T ]× Ω,

u = f , on [0,T ]× ∂Ω,

u(0, x) = ∂tu(0, x) = 0, on Ω,

We will let Σ = [0,T ]× ∂Ω denote the lateral boundary of the

domain.

The Dirichlet-to-Neumann map (DN map) is de�ned by

Λ : Hs+1

c (Σ)→ Hs(Σ),

Λ(f ) = ∂νuf
∣∣
Σ
,

where ν is the outward normal vector to Σ.
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The inverse problem


�gu(t, x) + q(t, x)u(t, x)m = 0, in [0,T ]× Ω,

u = f , on [0,T ]× ∂Ω,

u(0, x) = ∂tu(0, x) = 0, on Ω,

Inverse Problems

Recover q(x , t) from the DN map Λ. How stable is this

reconstruction process?
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Some earlier results

I Uniqueness for an inverse problem for (∂2t − c(x)2∆)u = 0 by

boundary control methods by Belishev, Belishev-Kurylev in

1987-1995

I First results exploiting nonlinearity of the equation by Kurylev,

Lassas and Uhlmann from 2014

I Since then, techniques using nonlinearity as a tool have been

extremely popular: T Balehowsky, C Cârstea, X Chen, M de

Hoop, A Feizmohammadi, C Guillarmou, P Hintz, Y Kian, H

Koch, K Krupchyk, M Lassas, T Liimatainen, Y-H Lin, G

Nakamura, L Oksanen, G Paternain, A Rüland, M Salo, P

Stefanov, G Uhlmann, Y Wang, J Zhai, and many more

(apologies to any who I missed!)
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The inverse problem


�gu(t, x) + q(t, x)u(t, x)m = 0, in [0,T ]× Ω,

u = f , on [0,T ]× ∂Ω,

u(0, x) = ∂tu(0, x) = 0, on Ω,

Inverse Problems

Recover q(x , t) from the DN map Λ. How stable is this

reconstruction process?

The �nite speed of propagation of waves causes natural limitation

to what we can recover: Let

W ⊂ I−(Σ) ∩ I+(Σ) ∩ ([0,T ]× Ω)

be a compact set.
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Theorem (Lassas, Liimatainen, Potenciano-Machado,T 2021)

Assume that q1, q2 ∈ C s+1(R× Ω) satisfy ‖qj‖C s+1 ≤ c , j = 1, 2,
for some c > 0 and s > (n− 1)/2. Let Λ1, Λ2 : Hs+1

c (Σ)→ H r (Σ),
r ≤ s, be the corresponding Dirichlet-to-Neumann maps of the

non-linear wave equation.

Let ε0 > 0, L > 0 and δ ∈ (0, L) be such that

‖Λ1(f )− Λ2(f )‖Hr (Σ) ≤ δ

for all f ∈ Hs+1

0
(Σ) with ‖f ‖Hs+1(Σ) ≤ ε0. Then there exists a

constant C > 0, independent of q1, q2 and δ > 0, such that

‖q1 − q2‖L∞(W ) ≤ Cδσ(s,m),

where

σ(s,m) =
8(m − 1)

2m(m − 1)(8s − n + 13) + 2m − 1
.
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Ideas of the proof: higher-order linearization
Use small parameters ε1, . . . , εm > 0 and di�erentiate:

�gu(t, x) + q(t, x)u(t, x)m = 0, in [0,T ]× Ω,

u = ε1f1 + · · ·+ εmfm, on [0,T ]× ∂Ω,

u(0, x) = ∂tu(0, x) = 0, on Ω,

Noisy measurements blow up, when using actual derivatives

(Frechet derivatives)

∂

∂ε1
· · · ∂

∂εm

∣∣∣
ε1=...=εm=0

.

Instead, we will use �nite di�erences

Dm
~ε uε1f1+···+εmfm

:=
1

ε1 · · · εm

∑
σ∈{0,1}m

(−1)|σ|+muσ1ε1f1+...+σmεmfm .
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Then we see that

Dm
~ε �guε1f1+...+εmfm = −m!qv1 · · · vm + Dm

~ε �R,

where R is an error term (depends on εj) which we can control.

Here the functions vj solve
�gvj = 0, in [0,T ]× Ω,

vj = fj , on Σ

vj = ∂tvj = 0, at t = 0

for j = 1, . . . ,m.

Let v0 be an auxiliary solution to{
�gv0 = 0,

v0 = ∂tv0 = 0, t = T .
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Integrating the di�erentiated equation against v0, we get the
identity

−m!

∫
[0,T ]×Ω

qv0v1v2 · · · vmdVg

=

∫
Σ
v0D

m
~ε Λ(ε1f1 + · · ·+ εmfm)dS

+
1

ε1ε2 · · · εm

∫
[0,T ]×Ω

v0�R̃dVg .

Let's make v1 · · · vm ≈ δ!
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How to choose v1, . . . , vm?
We choose v1, . . . , vm to be Gaussian beams. Gaussian beams are

constructed by considering a lightlike geodesic γ. If s is the

geodesic parameter, let (s, y), y = (y1, . . . , yn) ∈ Rn, be Fermi

coordinates in a neighbourhood of the graph Γ of γ. A Gaussian

beam looks roughly like

e iy1τ−aτ |y |
2
, a > 0, τ � 1.

Qualitatively: oscillation to direction transversal to γ and

exponential concentration on γ.

So Gaussian beams are like wave-packets travelling along lightlike

geodesics.

We will choose two distinct geodesics γ1 and γ2 which intersect in

W and set v1 and v2 to be Gaussian beams related to these

geodesics. To cancel the oscillation, we choose v3 = v1 and

v4 = v2.
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(Brief) Construction of Gaussian beams

Gaussian beams are constructed by using a WKB ansatz

v(s, y) = e iτΘ(s,y)a(s, y)

to approximatively solve the equation �gv = 0 in the Fermi

coordinates (s, y). We have

�g (e iτΘa) = e iτΘ
(
τ2g(dΘ, dΘ)−2i τ g(dΘ, da)+iτ (�gΘ)a+�ga

)
.

We will choose a phase function Θ and an amplitude function a so

that the right hand side is O(τ−K ) in Hk([0,T ]× Ω) for a given

K ∈ N.
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Construction of phase function
Approximatively solve the eikonal equation

g(dΘ, dΘ) = 0 :

set Θ =
∑N

j=0
Θj(s, y), where Θj(s, y) is a homogeneous

polynomial of order j in y ∈ Rn. We say that g(dΘ, dΘ) vanishes

to order N on Γ, or that g(dΘ, dΘ) = 0 is satis�ed to order N on

Γ, if
(∂αy g(dΘ, dΘ))(s, 0) = 0,

where α is any multi-index with |α| ≤ N.) We set

Θ0 = 0 and Θ1 = y1.

It follows that

g(dΘ, dΘ)(s, 0) = 0 and (∂ylg(dΘ, dΘ))(s, 0) = 0,

where l = 1, . . . , n. That is, the eikonal equation is satis�ed to

order 1 on Γ. This process can be extended up to higher orders.
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Construction of amplitude

After �nding an (approximative) solution Θ to the eikonal equation,

we solve for a by inserting Θ into

− 2i τ g(dΘ, da) + iτ(�gΘ)a +�ga = 0.

By assuming an expansion a =
∑N

j=0
τ−jaj we are led by equating

the powers of τ to a family of N + 1 equations

− 2i g(dΘ, da0) + i(�gΘ)a0 = 0,

− 2i g(dΘ, daj) + i(�gΘ)aj −�gaj−1 = 0,

j = 1, . . . ,N. We solve these equations recursively in j starting
from a0.
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Choosing v0

So far our integral identity looks like

−m!

∫
[0,T ]×Ω

qv0 |v1|2 |v2|2v5 · · · vmdVg

=

∫
Σ
v0D

m
~ε Λ(ε1f1 + · · ·+ εmfm)dS

+
1

ε1ε2 · · · εm

∫
[0,T ]×Ω

v0�R̃dVg .

Now we choose v0 so that it has vanishing Cauchy data at {t = T}
and so that v0 is supported near the intersection of γ1 and γ2.
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Boundary optimal geodesics

We say that a geodesic γ from p to q (p ≤ q) is optimal, if the

time-separation function τ satis�es τ(p, q) = 0. Time-separation

function is de�ned to be the supremum of lenghts of piecewise

smooth causal paths from p to q.

Lemma (Boundary optimal geodesics)

Let (N, g) be globally hyperbolic, N = R×M. If

x ∈ I+(Σ) ∩ ([0,T ]× Ω), there exists a future-directed optimal

geodesic γ : [0, 1]→ [0,T ]× Ω from Σ to x and the �rst

intersection of γ and Σ is transverse. Similarly, if

x ∈ I−(Σ) ∩ ([0,T ]× Ω), there exists a past-directed optimal

geodesic γ : [0, 1]→ [0,T ]× Ω from Σ to x and the �rst

intersection of γ and Σ is transverse.
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Dealing with non-convexity

We allow possibly non-convex

domain. To deal with this,

we introduced boundary opti-

mal geodesics, which are lightlike

geodesics that intersect the lat-

eral boundary Σ at the earliest

or latest time possible.

Such geodesics intersect the lat-

eral boundary transversally.
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Multiple intersections?

In general, two lightlike geodesics can intersect many times.

Suppose we have chosen two lightlike geodesics γ1 and γ2 with

their corresponding Gaussian beams. Let

{x1, . . . , xP} = γ1(R) ∩ γ2(R) ∩ ([0,T ]× Ω)

Due to exponential concentration of Gaussian beams, we then have

that

−m!

∫
[0,T ]×Ω

qv0 |v1|2|v2|2v5 · · · vmdVg =
P∑
j=1

cjv0(xj)q(xj)+error
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Separation of points

It is possible to choose a family (v
(k)
0

)Pk=1
of P functions, satisfying

the required conditions for v0, with the property that the matrix

V :=


v

(1)
0

(x1) v
(1)
0

(x2) · · · v
(1)
0

(xP)

v
(2)
0

(x1) v
(2)
0

(x2) · · · v
(2)
0

(xP)
...

. . .
...

v
(P)
0

(x1) v
(P)
0

(x2) · · · v
(P)
0

(xP)


is invertible.
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Separation of points
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Separation of points can be done uniformly

Let g be a Riemannian metric on R×M.

Lemma (Separation �lter)

Let P ≥ 1 be an integer and let δ > 0. Suppose

K ⊂ I−(Σ) ∩ I+(Σ) ∩ ([0,T ]×Ω) is a compact set. There exists a

�nite collectionM⊂ C∞(Σ) of boundary values with the following

properties: Assume that x1, . . . , xP ∈ K are any points such that

x1 < x2 < · · · < xP and dg (xk , xl) > δ for xk 6= xl , k , l = 1, . . . ,P .
Then there are f1, . . . , fP ∈M ⊂ C∞(Σ) and corresponding

solutions vfk of �gvfk = 0 with vanishing Cauchy data at t = T ,

such that the separation matrix (vfi (xj))Pi ,j=1
is invertible.
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Intersections near the lateral boundary

Lemma

Let τ > 0, x ∈ Rd
+, d ≥ 2, and assume x = (x1, . . . , xd), where

x1 ≥ 0. Let b : Rd
+ → R be Lipschitz. De�ne a map

Φ :]−∞, 0]→ [1/2, 1] by Φ(s) := 1√
π

∫∞
s e−t

2
dt. The following

estimate∣∣∣∣∣b(x)− 1

Φ(−
√
τx1)

( τ
π

) d
2

∫
Rd∩{z1≥0}

b(z)e−τ |z−x |
2
dz

∣∣∣∣∣
≤ 2cd ‖b‖Lip τ

−1/2

holds true for all x ∈ Rd ∩ {x1 ≥ 0}. In particular, the integral on

the left converges uniformly to b as τ →∞. Here

cd = Γ(d+1

2
)/Γ(d

2
).
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Combining everything

One can show that everything so far can be done uniformly with

respect to the intersection points x1, . . . , xP (using compactness of

[0,T ]× Ω).

So �nally optimizing all parameters implicit in the equalities

−m!

∫
[0,T ]×Ω

qv
(i)
0

v1v2 · · · vmdVg ≈
P∑
j=1

cjv
(i)
0

(xj)q(xj) +error

j = 1, . . . ,P recovers q up to a known error of Hölder type.
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