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models of nonlinear acoustics
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Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:

sound speed depends on (signed) amplitude ⇒ sawtooth profile
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Physical Principles

main physical quantities:


• acoustic particle velocity ~v ;

• acoustic pressure p;

• mass density %;

decomposition into mean and fluctuating part:

~v = ~v0 + ~v∼ = ~v , p = p0 + p∼ , % = %0 + %∼

governing equations: with phys. const. µ̄ =
(

4µV

3 + ζV

)
, µ̃ := κ

(
1
cV
− 1

cp

)
Navier Stokes equation (balance of momentum) with ∇× ~v = 0

%
(
~vt +∇(~v · ~v)

)
+∇p = µ̄∆~v

equation of continuity (balance of mass)

∇ · (%~v) = −%t
equation of state (material law) B

A
. . . nonlinearity parameter

%∼
%0

= p∼
p0
− B

2A

(
p∼
p0

)2
− µ̃p∼t

p2
0
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Derivation of Wave Equation

governing equations:

Navier Stokes equation (under the assumption ∇× ~v = 0)
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Derivation of Wave Equation

−∇·

%0~vt +∇p∼ = 0

∂

∂t

%0∇ · ~v = −%∼t

= − 1
c2 p∼t

—————————
1
c2 p∼tt −∆p∼ = 0
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Classical Models of Nonlinear Acoustics I

Kuznetsov’s equation [Lesser & Seebass 1968, Kuznetsov 1971]

p∼tt − c2∆p∼ − b∆p∼t = −
(

B

2A%0c2
p2
∼ + %0|~v |2

)
tt

where %0~vt = −∇p
for the particle velocity ~v and the pressure p, i.e.,

ψtt − c2∆ψ − b∆ψt = −
( B

2A c2
(ψt)

2 + |∇ψ|2
)
t

since ∇× ~v = 0 hence ~v = −∇ψ for a velocity potential ψ

Westervelt equation [Westervelt 1963]

p∼tt − c2∆p∼ − b∆p∼t = − 1

%0c2

(
1 +

B

2A

)
p2
∼tt

via %2
0|~v |2 ≈ 1

c2 (p∼t)
2.

B
2A . . . nonlinearity parameter.
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The Westervelt equation

with κ :=
1+ B

2A
%0c2 , u = p∼

utt − c2∆u − b∆ut = −κ(u2)tt

⇔ (
u − κu2

)
tt
− c2∆u − b∆ut = 0

This also illustrates state dependence of the effective wave speed:

utt − c̃2∆u − b̃(u)∆ut = f (u)

with c̃(u) = c√
1−2κu

, b̃(u) = b
1−2κu , f (u) = 2κ(ut)2

1−2κu

as long as 2κu < 1 (otherwise the model loses its validity)
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fractional damping models in ultrasonics
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Fractional Models of (Linear) Viscoelasticity

equation of motion (resulting from balance of forces)

%~utt = divσ + ~f

strain as symmetric gradient of displacements:

ε =
1

2
(∇~u + (∇~u)T ).

constitutive model: stress-strain relation

~u. . . displacements
σ. . . stress tensor
ε. . . strain tensor
%. . . mass density
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Fractional Models of (Linear) Viscoelasticity 1-d setting

equation of motion (resulting from balance of forces)

%utt = σx + f

strain as symmetric gradient of displacements:

ε = ux .

constitutive model: stress-strain relation:

Hooke’s law (pure elasticity): σ = b0ε

Newton model: σ = b1εt

Kelvin-Voigt model: σ = b0ε+ b1εt

Maxwell model: σ + a1σt = b0ε

Zener model: σ + a1σt = b0ε+ b1εt
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Fractional Models of (Linear) Viscoelasticity 1-d setting

equation of motion (resulting from balance of forces)

%utt = σx + f

strain as symmetric gradient of displacements:

ε = ux .

constitutive model: stress-strain relation:

fractional Newton model: σ = b1∂
β
t ε

fractional Kelvin-Voigt model: σ = b0ε+ b1∂
β
t ε

fractional Maxwell model: σ + a1∂
α
t σ = b0ε

fractional Zener model: σ + a1∂
α
t σ = b0ε+ b1∂

β
t ε

general model class:
N∑

n=0

an∂
αn
t σ =

M∑
m=0

bm∂
βm
t ε

[Caputo 1967, Atanackovic, Pilipović, Stanković, Zorica 2014]
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Fractional Models of (Linear) Acoustics
balance of momentum

%0~vt = −∇p + ~f

balance of mass
%∇ · ~v = −%t

equation of state %∼
%0

=
p∼
p0
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Fractional Models of (Linear) Acoustics
balance of momentum

%0~vt = −∇p + ~f

balance of mass
%∇ · ~v = −%t

equation of state M∑
m=0

bm∂
βm
t

%∼
%0

=
N∑

n=0

an∂
αn
t

p∼
p0

insert constitutive equations into combination of balance laws
 fractional acoustic wave equations [Holm et al 2003 ff, Szabo 1994]:

Caputo-Wismer-Kelvin wave equation (fractional Kelvin-Voigt):

ptt − b04p − b1∂
β
t 4p = f̃ ,

modified Szabo wave equation (fractional Maxwell):

ptt − a1∂
2+α
t p − b04p = f̃ ,

fractional Zener wave equation:

ptt − a1∂
2+α
t p − b04p + b1∂

β
t 4p = f̃ ,

general fractional model:∑N
n=0 an∂

2+αn
t p −

∑M
m=0 bm∂

βm
t 4p = f̃ .
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Fractional derivatives
Abel fractional integral operator

I γa f (x) =
1

Γ(γ)

∫ t

a

f (s)

(t − s)1−γ ds

Then a fractional (time) derivative can be defined by either

R
a D

α
t f =

d

dt
I 1−α
a f Riemann-Liouville derivative

or
C
a D

α
t f = I 1−α

a

df

ds
Djrbashian-Caputo derivative

R-L is defined on a larger function space, but derivative of
constant is nonzero; singularity at initial time a

D-C maps constants to zero  appropriate for prescribing
initial values

Nonlocal and causal character of these derivatives provides them
with a “memory”  initial values are tied to later values and can
therfore be better reconstructed backwards in time.
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PAT with fractional attenuation
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Motivation

attenuation of ultrasound in human tissue follows a power law
frequency dependence ωα

 fractional derivative ∂αt term in time domain

PAT/TAT (sub)problem: Reconstruct initial pressure from
observations of pressure at some transducer array over time

only mildly ill-posed without attenuation

severely ill-posed in with integer (1st) order damping

? Uniqueness and reconstruction for PAT/TAT with fractional
attenuation

? Dependence of instability on fractional differentition order
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The inverse problem of pat and tat
Identify u0(x) in

utt + c2Au + Du = 0 in Ω× (0,T )

u(0) = u0, ut(0) = 0 in Ω

where Au = −4 with homogeneous Dirichlet boundary conditions
from observations

g = u on Σ× (0,T )

Σ ⊂ Ω. . . transducer array (surface or collection of discrete points)

Caputo-Wismer-Kelvin:

D = bA∂βt with β ∈ [0, 1], b ≥ 0

fractional Zener:

D = a∂2+α
t + bA∂βt with a > 0, b ≥ ac2, 1 ≥ β ≥ α > 0,

space fractional Chen-Holm:

D = bAβ̃∂t with β̃ ∈ [0, 1], b ≥ 0,
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Uniqueness

Linear independence assumption:
For each eigenvalue λ of A with eigenfunctions (ϕk)k∈Kλ , the
restrictions of the eigenfunctions to the observation manifold are
linear independent: For any coefficient set (bk)k∈Kλ∑

k∈Kλ
bkϕk(x) = 0 for all x ∈ Σ

 =⇒
(
bk = 0 for all k ∈ Kλ

)
.

Theorem

Suppose the domain Ω and the operator A are known. Then under
the linear independence assumption we can uniquely recover the
initial value u0(x) from time trace measurements g on Σ.
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Some remarks

The linear independence assumption is satisfied in 1-d
(trivially) and in geometries allowing for separation of
variables in eigenfunctions.

It is a condition on zeros of eigenfunctions.

Instead of Au = −4 we may have Au = −c2
0∇ ·

(
1
%0
∇u
)

or

Au = −c2
04 with c0 = c0(x) a spatially variable sound speed.

Uniqueness of c0(x) from the same observations can be shown
by Sturm-Liouville theory in 1-d.

tools of proof:
separation of variables (solution representation),
analysis in Laplace domain (location of poles),
uniqueness of eigenvalues from poles.

[BK&Rundell. Inverse Problems, 37(4):045002]
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Separation of variables and relaxation equation

(λn, ϕn). . . eigensystem of A: u(x , t) =
∑∞

j=1 uj(t)ϕj(x) ,
where for each j ∈ N, uj solves

D̃λjuj = 0 on (0,T ) uj(0) = 〈u0, ϕj〉, u′j(0) = 0

with

D̃λ = ∂2
t + c2λ+

{
bλβ̃∂βt for C. . .H

a∂2+α
t + bλ∂βt for fZ

With relaxation functions wλ solving the relaxation equations

D̃λwλ = 0 on (0,T ) , wλ(0) = 1 , w ′λ(0) = 0 (if α > 0 : w ′′λ (0) = 0)

u(x , t) =
∞∑
j=1

wλj (t) 〈u0, ϕj〉ϕj(x).
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Uniqueness of eigenvalues from poles of relaxation
functions

D̃λ = ∂2
t + c2λ+

{
bλβ̃∂βt for C. . .H

a∂2+α
t + bλ∂βt for fZ

D̃λwλ = 0 on (0,T ) , wλ(0) = 1 , w ′λ(0) = 0 (if α > 0 : w ′′λ (0) = 0)

Laplace transform ⇒ ŵλ(s) = (ωλ(s)−c2λ)/s
ωλ(s) where

ωλ = s2 + c2λ+

{
bλβ̃sβ for C. . .H

as2+α + bλsβ for fZ

Lemma

The poles of ŵ differ for different λ.1

Lemma

The residues of the poles of ŵ do no vanish.1

1(except for pfZ
0 = −1/a in case β = α = 1)
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The poles of ŵ differ for different λ.1

Lemma

The residues of the poles of ŵ do no vanish.1
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Proof of Uniqueness Theorem

(A) The poles of ŵ differ for different λ.

(B) The residues of the poles of ŵ do no vanish.

(C) For all λ = λn and any coefficient set (bk)k∈Kλ(∑
k∈Kλ bkϕk(x) = 0 for all x ∈ Σ

)
=⇒

(
bk = 0 for all k ∈ Kλ

)

separation of variables ⇒ g(x0, t) =
∑∞

j=1 wλj (t) 〈u0, ϕj〉ϕj(x0), x0 ∈ Σ

Inverse problem is linear ⇒ it suffices to prove
(
g = 0 ⇒ u0 = 0

)
.

Apply Laplace transform; consider pole locations p+,` and residues:

0 = Res(ĝ , p+,`) = lim
s→p+,`

(s − p+,`)
∞∑
j=1

ŵλj (s)〈u0, ϕj〉ϕj(x0)

= Res(ŵλ` , p+,`)
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Location of poles
C. . .H Caputo-Wismer-Kelvin / space fractional Chen-Holm:

utt − c24u + b(−4)β̃∂βt u = 0

Roots of ωC. . .H(s) for various β, β̃, c values.
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Reconstructions I
Ω = (0, 1)

g(t) =
∑∞

j=1 wλj (t) 〈u0, ϕj〉ϕj(x0), t ∈ (0,T )

 ~g = W~a,

where

W = (wλj (ti ))i=1,...,M, j=1,...N ,

~g = (g(ti ))Mi=1, ~a = (ϕj(x0)〈u0, ϕj〉)j=1,...N

Singular values of W with different values of β; here β̃ = 1
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Reconstructions II

Ω = (0, 1)

g(t) =
∑∞

j=1 wλj (t) 〈u0, ϕj〉ϕj(x0), t ∈ (0,T )  ~g = W~a,

where

W = (wj(ti ))i=1,...,M, j=1,...N ,

~g = (g(ti ))Mi=1, ~a = (ϕj(x0)〈u0, ϕj〉)j=1,...N

Recovery of u0(x) from gβ(t). Left: with 1% noise; Right: with 0.1% noise
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nonlinearity parameter imaging
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The inverse problem
Identify κ(x) in(

u − κ(x)u2
)
tt
− c2

04u + Du = r in Ω× (0,T )

u = 0 on ∂Ω× (0,T ), u(0) = 0, ut(0) = 0 in Ω

(with excitation r) from observations

g = u on Σ× (0,T )

Σ ⊂ Ω. . . transducer array (surface or collection of discrete points)

fractional damping

Caputo-Wismer-Kelvin:
D = −b∆∂βt with β ∈ [0, 1], b ≥ 0

fractional Zener:

D = a∂2+α
t − b∆∂βt with a > 0, b ≥ ac2, 1 ≥ β ≥ α > 0,

space fractional Chen-Holm:

D = b(−∆)β̃∂t with β̃ ∈ [0, 1], b ≥ 0,
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Challenges

model equation is nonlinear;
nonlinearity occurs in highest order term;

unknown coefficient κ(x) appears in this nonlinear term

κ is spatially varying whereas the data g(t) is in the
“orthogonal” time direction;
This is well known to lead to severe ill-conditioning of the
inversion of the map F from data to unknown.
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Results

Well-definedness and Fréchet differentiability of forward
operator F : κ 7→ u|Σ
uniqueness of linearized problem under linear independence
assumption

reconstructions by Newton’s method

[BK&Rundell IPI 2021, Math.Comp. 2021]
see also arXiv:2103.08965 [math.AP], arXiv:2102.07608 [math.AP]
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Reconstructions of κ(x)

Caputo-Wismer-Kelvin: D = −b∆∂βt , 0.1% noise
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Reconstructions of κ(x)

0.5% (blue) and 1% (green) noise
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Singular values of linearized forward operator
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Thank you for your attention!
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