Imaging with nonlinear and fractionally damped waves

Barbara Kaltenbacher

Alpen-Adria-Universität Klagenfurt

Inverse Problems Seminar at UC Irvine, April 28, 2022
joint work with
Bill Rundell, Texas A\&M University

Der Wissenschaftsfonds.
Modeling - Analysis - Optimization
DOC.FUNDS DOCTORAL SCHOOL

Outline

- models of nonlinear acoustics
- models of fractional damping
- photoacoustic tomography PAT with fractional damping
- nonlinearity parameter imaging
models of nonlinear acoustics

Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:

Nonlinear Acoustic Wave Propagation

nonlinear wave propagation:
sound speed depends on (signed) amplitude \Rightarrow sawtooth profile

Physical Principles

main physical quantities:
$\left\{\begin{array}{l}\text { - acoustic particle velocity } \vec{v} ; \\ \text { - acoustic pressure } p ; \\ \text { - mass density } \varrho ;\end{array}\right.$ decomposition into mean and fluctuating part:

$$
\vec{v}=\vec{v}_{0}+\vec{v}_{\sim}=\vec{v}, \quad p=p_{0}+p_{\sim}, \quad \varrho=\varrho_{0}+\varrho_{\sim}
$$

Physical Principles

main physical quantities:

- acoustic particle velocity \vec{v};
- acoustic pressure p;
- mass density ϱ; decomposition into mean and fluctuating part:

$$
\vec{v}=\vec{v}_{0}+\vec{v}_{\sim}=\vec{v}, \quad p=p_{0}+p_{\sim}, \quad \varrho=\varrho_{0}+\varrho_{\sim}
$$

governing equations: with phys. const. $\bar{\mu}=\left(\frac{4 \mu_{V}}{3}+\zeta_{v}\right), \tilde{\mu}:=\kappa\left(\frac{1}{c_{V}}-\frac{1}{c_{p}}\right)$

- Navier Stokes equation (balance of momentum) with $\nabla \times \vec{v}=0$

$$
\varrho\left(\vec{v}_{t}+\nabla(\vec{v} \cdot \vec{v})\right)+\nabla p=\bar{\mu} \Delta \vec{v}
$$

- equation of continuity (balance of mass)

$$
\nabla \cdot(\varrho \vec{v})=-\varrho_{t}
$$

- equation of state (material law) $\frac{B}{A} \ldots$ nonlinearity parameter

$$
\frac{\varrho_{\sim}}{\varrho_{0}}=\frac{p_{\sim}}{p_{0}}-\frac{B}{2 A}\left(\frac{p_{\sim}}{p_{0}}\right)^{2}-\tilde{\mu} \frac{p_{\sim_{t}}}{p_{0}^{2}}
$$

Derivation of Wave Equation

governing equations:

- Navier Stokes equation (under the assumption $\nabla \times \vec{v}=0$)

$$
\varrho\left(\vec{v}_{t}+\nabla(\vec{v} \cdot \vec{v})\right)+\nabla p=\bar{\mu} \Delta \vec{v}
$$

- equation of continuity

$$
\nabla \cdot(\varrho \vec{v})=-\varrho_{t}
$$

- equation of state

$$
\frac{\varrho_{\sim}}{\varrho_{0}}=\frac{p_{\sim}}{p_{0}}-\frac{B}{2 A}\left(\frac{p_{\sim}}{p_{0}}\right)^{2}-\tilde{\mu} \frac{p_{\sim t}}{p_{0}^{2}}
$$

Derivation of Wave Equation

governing equations:

- Navier Stokes equation (under the assumption $\nabla \times \vec{v}=0$)

$$
\varrho_{0}\left(\vec{v}_{t}+\nabla(\vec{v} \cdot \vec{v})\right)+\nabla p=\bar{\mu} \Delta \vec{v}
$$

- equation of continuity

$$
\nabla \cdot\left(\varrho_{0} \vec{v}\right)+\nabla \cdot\left(\varrho_{\sim} \vec{v}\right)=-\varrho_{t}
$$

- equation of state $c^{2}=\frac{p_{0}}{\varrho_{0}}$

$$
\frac{\varrho_{\sim}}{\varrho_{0}}=\frac{p_{\sim}}{p_{0}}-\frac{B}{2 A}\left(\frac{p_{\sim}}{p_{0}}\right)^{2}-\tilde{\mu} \frac{p_{\sim t}}{p_{0}^{2}}
$$

Derivation of Wave Equation

governing equations:

- Navier Stokes equation (under the assumption $\nabla \times \vec{v}=0$)

$$
\varrho_{0}\left(\vec{v}_{t}+\nabla(\vec{v} \cdot \vec{v})\right)+\nabla p=\bar{\mu} \Delta \vec{v}
$$

- equation of continuity

$$
\nabla \cdot\left(\varrho_{0} \vec{v}\right)+\nabla \cdot\left(\varrho_{\sim} \vec{v}\right)=-\varrho_{t}
$$

- equation of state $c^{2}=\frac{p_{0}}{\varrho_{0}}$

$$
\frac{\varrho_{\sim}}{\varrho_{0}}=\frac{p_{\sim}}{p_{0}}-\frac{B}{2 A}\left(\frac{p_{\sim}}{p_{0}}\right)^{2}-\tilde{\mu} \frac{p_{\sim t}}{p_{0}^{2}}
$$

- fluctuating quantities:

$$
\nabla p=\nabla p_{\sim}, \quad \varrho_{t}=\varrho_{\sim t}
$$

Derivation of Wave Equation

$$
\begin{aligned}
& \varrho_{0} \vec{v}_{t}+\nabla p_{\sim}=0 \\
& \varrho_{0} \nabla \cdot \vec{v}=-\varrho_{\sim}
\end{aligned}
$$

Derivation of Wave Equation

$$
\begin{aligned}
& \varrho_{0} \overrightarrow{v_{t}}+\nabla p_{\sim}=0 \\
& \varrho_{0} \nabla \cdot \vec{v}=-\varrho_{\sim t}=-\frac{1}{c^{2}} p_{\sim_{t}}
\end{aligned}
$$

Derivation of Wave Equation

$$
\begin{array}{ll}
-\nabla \cdot & \varrho_{0} \vec{v}_{t}+\nabla p_{\sim}=0 \\
\frac{\partial}{\partial t} & \varrho_{0} \nabla \cdot \vec{v}=-\varrho_{\sim t}=-\frac{1}{c^{2}} p_{\sim_{t}}
\end{array}
$$

Derivation of Wave Equation

$$
\begin{aligned}
-\nabla \cdot & \varrho_{0} \vec{v}_{t}+\nabla p_{\sim}=0 \\
\frac{\partial}{\partial t} & \varrho_{0} \nabla \cdot \vec{v}=-\varrho_{\sim t}=-\frac{1}{c^{2}} p_{\sim t} \\
& \begin{array}{l}
\frac{1}{c^{2}} p_{\sim t t}-\Delta p_{\sim}=0
\end{array}
\end{aligned}
$$

Derivation of Wave Equation

governing equations:

- Navier Stokes equation (under the assumption $\nabla \times \vec{v}=0$)

$$
\varrho\left(\vec{v}_{t}+\nabla(\vec{v} \cdot \vec{v})\right)+\nabla p=\bar{\mu} \Delta \vec{v}
$$

- equation of continuity

$$
\nabla \cdot(\varrho \vec{v})=-\varrho_{t}
$$

- equation of state

$$
\frac{\varrho_{\sim}}{\varrho_{0}}=\frac{p_{\sim}}{p_{0}}-\frac{B}{2 A}\left(\frac{p_{\sim}}{p_{0}}\right)^{2}-\tilde{\mu} \frac{p_{\sim t}}{p_{0}^{2}}
$$

Classical Models of Nonlinear Acoustics I

- Kuznetsov’s equation [Lesser \& Seebass 1968, Kuznetsov 1971]

$$
p_{\sim t t}-c^{2} \Delta p_{\sim}-b \Delta p_{\sim t}=-\left(\frac{B}{2 A \varrho_{0} c^{2}} p_{\sim}^{2}+\varrho_{0}|\vec{v}|^{2}\right)_{t t}
$$

where $\varrho_{0} \overrightarrow{v_{t}}=-\nabla p$
for the particle velocity \vec{v} and the pressure p, i.e.,

$$
\psi_{t t}-c^{2} \Delta \psi-b \Delta \psi_{t}=-\left(\frac{B}{2 A c^{2}}\left(\psi_{t}\right)^{2}+|\nabla \psi|^{2}\right)_{t}
$$

since $\nabla \times \vec{v}=0$ hence $\vec{v}=-\nabla \psi$ for a velocity potential ψ

- Westervelt equation [Westervelt 1963]

$$
p_{\sim_{t t}}-c^{2} \Delta p_{\sim}-b \Delta p_{\sim_{t}}=-\frac{1}{\varrho_{0} c^{2}}\left(1+\frac{B}{2 A}\right) p_{\sim t t}^{2}
$$ via $\varrho_{0}^{2}|\vec{v}|^{2} \approx \frac{1}{c^{2}}\left(p_{\sim_{t}}\right)^{2}$.

Classical Models of Nonlinear Acoustics I

- Kuznetsov’s equation [Lesser \& Seebass 1968, Kuznetsov 1971]

$$
p_{\sim t t}-c^{2} \Delta p_{\sim}-b \Delta p_{\sim t}=-\left(\frac{B}{2 A \varrho_{0} c^{2}} p_{\sim}^{2}+\varrho_{0}|\vec{v}|^{2}\right)_{t t}
$$

where $\varrho_{0} \overrightarrow{v_{t}}=-\nabla p$
for the particle velocity \vec{v} and the pressure p, i.e.,

$$
\psi_{t t}-c^{2} \Delta \psi-b \Delta \psi_{t}=-\left(\frac{B}{2 A c^{2}}\left(\psi_{t}\right)^{2}+|\nabla \psi|^{2}\right)_{t}
$$

since $\nabla \times \vec{v}=0$ hence $\vec{v}=-\nabla \psi$ for a velocity potential ψ

- Westervelt equation [Westervelt 1963]

$$
\begin{aligned}
\quad p_{\sim_{t t}}-c^{2} \Delta p_{\sim}-b \Delta p_{\sim_{t}} & =-\frac{1}{\varrho_{0} c^{2}}\left(1+\frac{B}{2 A}\right) p_{\sim t t}^{2} \\
\text { via } \varrho_{0}^{2}|\vec{v}|^{2} \approx \frac{1}{c^{2}}\left(p_{\sim_{t}}\right)^{2} . & \frac{B}{2 A} \cdots \text { nonlinearity parameter. }
\end{aligned}
$$

The Westervelt equation

with $\kappa:=\frac{1+\frac{B}{2 A}}{\varrho_{0} c^{2}}, \quad u=p_{\sim}$

$$
u_{t t}-c^{2} \Delta u-b \Delta u_{t}=-\kappa\left(u^{2}\right)_{t t}
$$

The Westervelt equation

with $\kappa:=\frac{1+\frac{B}{2 A}}{\varrho_{0} c^{2}}, \quad u=p_{\sim}$

$$
u_{t t}-c^{2} \Delta u-b \Delta u_{t}=-\kappa\left(u^{2}\right)_{t t}
$$

\Leftrightarrow

$$
\left(u-\kappa u^{2}\right)_{t t}-c^{2} \Delta u-b \Delta u_{t}=0
$$

The Westervelt equation

with $\kappa:=\frac{1+\frac{B}{2 A}}{\varrho_{0} c^{2}}, \quad u=p_{\sim}$

$$
\begin{aligned}
& u_{t t}-c^{2} \Delta u-b \Delta u_{t}=-\kappa\left(u^{2}\right)_{t t} \\
& \left(u-\kappa u^{2}\right)_{t t}-c^{2} \Delta u-b \Delta u_{t}=0
\end{aligned}
$$

This also illustrates state dependence of the effective wave speed:

$$
u_{t t}-\tilde{c}^{2} \Delta u-\tilde{b}(u) \Delta u_{t}=f(u)
$$

with $\tilde{c}(u)=\frac{c}{\sqrt{1-2 \kappa u}}, \tilde{b}(u)=\frac{b}{1-2 \kappa u}, f(u)=\frac{2 \kappa\left(u_{t}\right)^{2}}{1-2 \kappa u}$
as long as $2 \kappa u<1$ (otherwise the model loses its validity)
fractional damping models in ultrasonics

Fractional Models of (Linear) Viscoelasticity

- equation of motion (resulting from balance of forces)

$$
\varrho \vec{u}_{t t}=\operatorname{div} \sigma+\vec{f}
$$

- strain as symmetric gradient of displacements:

$$
\epsilon=\frac{1}{2}\left(\nabla \vec{u}+(\nabla \vec{u})^{T}\right) .
$$

- constitutive model: stress-strain relation
$\vec{u} .$. displacements
σ...stress tensor
ϵ. . . strain tensor
@. . . mass density

Fractional Models of (Linear) Viscoelasticity 1-d setting

- equation of motion (resulting from balance of forces)

$$
\varrho u_{t t}=\sigma_{x}+f
$$

- strain as symmetric gradient of displacements:

$$
\epsilon=u_{x} .
$$

- constitutive model: stress-strain relation:

Hooke's law (pure elasticity): $\sigma=b_{0} \epsilon$
Newton model: $\sigma=b_{1} \epsilon_{t}$
Kelvin-Voigt model: $\quad \sigma=b_{0} \epsilon+b_{1} \epsilon_{t}$
Maxwell model: $\sigma+a_{1} \sigma_{t}=b_{0} \epsilon$
Zener model: $\quad \sigma+a_{1} \sigma_{t}=b_{0} \epsilon+b_{1} \epsilon_{t}$

Fractional Models of (Linear) Viscoelasticity 1-d setting

- equation of motion (resulting from balance of forces)

$$
\varrho u_{t t}=\sigma_{x}+f
$$

- strain as symmetric gradient of displacements:

$$
\epsilon=u_{x} .
$$

- constitutive model: stress-strain relation:
fractional Newton model: $\quad \sigma=b_{1} \partial_{t}^{\beta} \epsilon$
fractional Kelvin-Voigt model: $\quad \sigma=b_{0} \epsilon+b_{1} \partial_{t}^{\beta} \epsilon$
fractional Maxwell model: $\quad \sigma+a_{1} \partial_{t}^{\alpha} \sigma=b_{0} \epsilon$
fractional Zener model: $\quad \sigma+a_{1} \partial_{t}^{\alpha} \sigma=b_{0} \epsilon+b_{1} \partial_{t}^{\beta} \epsilon$

$$
\text { general model class: } \quad \sum_{n=0}^{N} a_{n} \partial_{t}^{\alpha_{n}} \sigma=\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \epsilon
$$

[Caputo 1967, Atanackovic, Pilipović, Stanković, Zoriça_ 2014]

Fractional Models of (Linear) Acoustics

balance of momentum

$$
\varrho_{0} \vec{v}_{t}=-\nabla p+\vec{f}
$$

balance of mass

$$
\varrho \nabla \cdot \vec{v}=-\varrho_{t}
$$

equation of state

$$
\frac{\varrho_{\sim}}{\varrho_{0}}=\frac{p_{\sim}}{p_{0}}
$$

Fractional Models of (Linear) Acoustics

balance of momentum

$$
\varrho_{0} \vec{v}_{t}=-\nabla p+\vec{f}
$$

balance of mass
equation of state

$$
\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \frac{\varrho_{\sim}}{\varrho_{0}}=\sum_{n=0}^{N} a_{n} \partial_{t}^{\alpha_{n}} \frac{p_{\sim}}{p_{0}}
$$

Fractional Models of (Linear) Acoustics

balance of momentum

$$
\varrho_{0} \vec{v}_{t}=-\nabla p+\vec{f}
$$

balance of mass

$$
\begin{aligned}
\varrho \nabla \cdot \vec{v} & =-\varrho_{t} \\
\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \frac{\varrho_{\sim}}{\varrho_{0}} & =\sum_{n=0}^{N} a_{n} \partial_{t}^{\alpha_{n}} \frac{p_{\sim}}{p_{0}}
\end{aligned}
$$

equation of state
insert constitutive equations into combination of balance laws
\rightsquigarrow fractional acoustic wave equations [Holm et al 2003 ff , Szabo 1994]:

Fractional Models of (Linear) Acoustics

balance of momentum

$$
\varrho_{0} \vec{v}_{t}=-\nabla p+\vec{f}
$$

balance of mass

$$
\begin{aligned}
\varrho \nabla \cdot \vec{v} & =-\varrho_{t} \\
\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \frac{\varrho_{\sim}}{\varrho_{0}} & =\sum_{n=0}^{N} a_{n} \partial_{t}^{\alpha_{n}} \frac{p_{\sim}}{p_{0}}
\end{aligned}
$$

equation of state
insert constitutive equations into combination of balance laws
\rightsquigarrow fractional acoustic wave equations [Holm et al 2003 ff , Szabo 1994]:

- Caputo-Wismer-Kelvin wave equation (fractional Kelvin-Voigt):

$$
p_{t t}-b_{0} \Delta p-b_{1} \partial_{t}^{\beta} \triangle p=\tilde{f}
$$

- modified Szabo wave equation (fractional Maxwell):

$$
p_{t t}-a_{1} \partial_{t}^{2+\alpha} p-b_{0} \triangle p=\tilde{f}
$$

- fractional Zener wave equation:

$$
p_{t t}-a_{1} \partial_{t}^{2+\alpha} p-b_{0} \triangle p+b_{1} \partial_{t}^{\beta} \triangle p=\tilde{f}
$$

- general fractional model:

$$
\sum_{n=0}^{N} a_{n} \partial_{t}^{2+\alpha_{n}} p-\sum_{m=0}^{M} b_{m} \partial_{t}^{\beta_{m}} \triangle p=\tilde{f}
$$

Fractional derivatives

Abel fractional integral operator

$$
l_{a}^{\gamma} f(x)=\frac{1}{\Gamma(\gamma)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-\gamma}} d s
$$

Then a fractional (time) derivative can be defined by either
or

$$
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{1-\alpha} f \quad \text { Riemann-Liouville derivative }
$$

$$
{ }_{a}^{C} D_{t}^{\alpha} f=I_{a}^{1-\alpha} \frac{d f}{d s} \quad \text { Djrbashian-Caputo derivative }
$$

Fractional derivatives

Abel fractional integral operator

$$
l_{a}^{\gamma} f(x)=\frac{1}{\Gamma(\gamma)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-\gamma}} d s
$$

Then a fractional (time) derivative can be defined by either
or

$$
{ }_{a}^{R} D_{t}^{\alpha} f=\frac{d}{d t} I_{a}^{1-\alpha} f \quad \text { Riemann-Liouville derivative }
$$

$$
{ }_{a}^{c} D_{t}^{\alpha} f=I_{a}^{1-\alpha} \frac{d f}{d s} \quad \text { Djrbashian-Caputo derivative }
$$

- R-L is defined on a larger function space, but derivative of constant is nonzero; singularity at initial time a
- D-C maps constants to zero \rightsquigarrow appropriate for prescribing initial values
Nonlocal and causal character of these derivatives provides them with a "memory" \rightsquigarrow initial values are tied to later values and can therfore be better reconstructed backwards in time.

PAT with fractional attenuation

Motivation

- attenuation of ultrasound in human tissue follows a power law frequency dependence ω^{α}
\rightsquigarrow fractional derivative ∂_{t}^{α} term in time domain
- PAT/TAT (sub)problem: Reconstruct initial pressure from observations of pressure at some transducer array over time
- only mildly ill-posed without attenuation
- severely ill-posed in with integer (1st) order damping

Motivation

- attenuation of ultrasound in human tissue follows a power law frequency dependence ω^{α}
\rightsquigarrow fractional derivative ∂_{t}^{α} term in time domain
- PAT/TAT (sub)problem: Reconstruct initial pressure from observations of pressure at some transducer array over time
- only mildly ill-posed without attenuation
- severely ill-posed in with integer (1st) order damping
? Uniqueness and reconstruction for PAT/TAT with fractional attenuation
? Dependence of instability on fractional differentition order

The inverse problem of PAT and TAT

Identify $u_{0}(x)$ in

$$
\begin{aligned}
u_{t t}+c^{2} \mathcal{A} u+D u & =0 \text { in } \Omega \times(0, T) \\
u(0)=u_{0}, \quad u_{t}(0) & =0 \text { in } \Omega
\end{aligned}
$$

where $\mathcal{A} u=-\triangle$ with homogeneous Dirichlet boundary conditions from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} . \ldots$ transducer array (surface or collection of discrete points)

The inverse problem of PAT and TAT

 Identify $u_{0}(x)$ in$$
\begin{aligned}
u_{t t}+c^{2} \mathcal{A} u+D u & =0 \text { in } \Omega \times(0, T) \\
u(0)=u_{0}, \quad u_{t}(0) & =0 \text { in } \Omega
\end{aligned}
$$

where $\mathcal{A} u=-\triangle$ with homogeneous Dirichlet boundary conditions from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} . \ldots$ transducer array (surface or collection of discrete points)
Caputo-Wismer-Kelvin:

$$
D=b \mathcal{A} \partial_{t}^{\beta} \quad \text { with } \beta \in[0,1], \quad b \geq 0
$$

fractional Zener:

$$
D=a \partial_{t}^{2+\alpha}+b \mathcal{A} \partial_{t}^{\beta} \quad \text { with } a>0, b \geq a c^{2}, 1 \geq \beta \geq \alpha>0
$$

space fractional Chen-Holm:

$$
D=b \mathcal{A}^{\tilde{\beta}} \partial_{t} \quad \text { with } \tilde{\beta} \in[0,1], \quad b \geq 0
$$

The inverse problem of PAT and TAT

Identify $u_{0}(x)$ in

$$
\begin{aligned}
u_{t t}+c^{2} \mathcal{A} u+D u & =0 \text { in } \Omega \times(0, T) \\
u(0)=u_{0}, \quad u_{t}(0) & =0 \text { in } \Omega
\end{aligned}
$$

where $\mathcal{A} u=-\triangle$ with homogeneous Dirichlet boundary conditions from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} . \ldots$ transducer array (surface or collection of discrete points)
C. . . H Caputo-Wismer-Kelvin / space fractional Chen-Holm:

$$
D=b \mathcal{A}^{\tilde{\beta}} \partial_{t}^{\beta} \quad \text { with } \beta \in[0,1], \tilde{\beta} \in[0,1], \quad b \geq 0
$$

FZ fractional Zener:

$$
D=a \partial_{t}^{2+\alpha}+b \mathcal{A} \partial_{t}^{\beta} \quad \text { with } a>0, b \geq a c^{2}, 1 \geq \beta \geq \alpha>0
$$

Uniqueness

Linear independence assumption:
For each eigenvalue λ of \mathcal{A} with eigenfunctions $\left(\varphi_{k}\right)_{k \in K^{\lambda}}$, the restrictions of the eigenfunctions to the observation manifold are linear independent: For any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$

$$
\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0 \text { for all } x \in \Sigma\right) \Longrightarrow\left(b_{k}=0 \text { for all } k \in K^{\lambda}\right)
$$

Theorem

Suppose the domain Ω and the operator \mathcal{A} are known. Then under the linear independence assumption we can uniquely recover the initial value $u_{0}(x)$ from time trace measurements g on Σ.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.
- It is a condition on zeros of eigenfunctions.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.
- It is a condition on zeros of eigenfunctions.
- Instead of $\mathcal{A} u=-\triangle$ we may have $\mathcal{A} u=-c_{0}^{2} \nabla \cdot\left(\frac{1}{\varrho_{0}} \nabla u\right)$ or $\mathcal{A} u=-c_{0}^{2} \triangle$ with $c_{0}=c_{0}(x)$ a spatially variable sound speed.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.
- It is a condition on zeros of eigenfunctions.
- Instead of $\mathcal{A} u=-\triangle$ we may have $\mathcal{A} u=-c_{0}^{2} \nabla \cdot\left(\frac{1}{\varrho_{0}} \nabla u\right)$ or $\mathcal{A} u=-c_{0}^{2} \triangle$ with $c_{0}=c_{0}(x)$ a spatially variable sound speed.
- Uniqueness of $c_{0}(x)$ from the same observations can be shown by Sturm-Liouville theory in 1-d.

Some remarks

- The linear independence assumption is satisfied in 1-d (trivially) and in geometries allowing for separation of variables in eigenfunctions.
- It is a condition on zeros of eigenfunctions.
- Instead of $\mathcal{A} u=-\triangle$ we may have $\mathcal{A} u=-c_{0}^{2} \nabla \cdot\left(\frac{1}{\varrho_{0}} \nabla u\right)$ or $\mathcal{A} u=-c_{0}^{2} \triangle$ with $c_{0}=c_{0}(x)$ a spatially variable sound speed.
- Uniqueness of $c_{0}(x)$ from the same observations can be shown by Sturm-Liouville theory in 1-d.
- tools of proof:
separation of variables (solution representation), analysis in Laplace domain (location of poles), uniqueness of eigenvalues from poles.
[BK\&Rundell. Inverse Problems, 37(4):045002]

Separation of variables and relaxation equation

$\left(\lambda_{n}, \varphi_{n}\right) \ldots$ eigensystem of $\mathcal{A}: \quad u(x, t)=\sum_{j=1}^{\infty} u_{j}(t) \varphi_{j}(x)$, where for each $j \in \mathbb{N}$, u_{j} solves

$$
\widetilde{D}_{\lambda_{j}} u_{j}=0 \text { on }(0, T) \quad u_{j}(0)=\left\langle u_{0}, \varphi_{j}\right\rangle, \quad u_{j}^{\prime}(0)=0
$$

with

$$
\widetilde{D}_{\lambda}=\partial_{t}^{2}+c^{2} \lambda+ \begin{cases}b \lambda^{\tilde{\beta}} \partial_{t}^{\beta} & \text { for C } \ldots \mathrm{H} \\ a \partial_{t}^{2+\alpha}+b \lambda \partial_{t}^{\beta} & \text { for } \mathrm{FZ}\end{cases}
$$

With relaxation functions w_{λ} solving the relaxation equations

$$
\widetilde{D}_{\lambda} w_{\lambda}=0 \text { on }(0, T), \quad w_{\lambda}(0)=1, w_{\lambda}^{\prime}(0)=0\left(\text { if } \alpha>0: w_{\lambda}^{\prime \prime}(0)=0\right)
$$

$$
u(x, t)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}(x)
$$

Uniqueness of eigenvalues from poles of relaxation

 functions$$
\widetilde{D}_{\lambda}=\partial_{t}^{2}+c^{2} \lambda+ \begin{cases}b \lambda^{\tilde{\beta}} \partial_{t}^{\beta} & \text { for } \mathrm{C} \ldots \mathrm{H} \\ a \partial_{t}^{2+\alpha}+b \lambda \partial_{t}^{\beta} & \text { for } \mathrm{FZ}\end{cases}
$$

$\widetilde{D}_{\lambda} w_{\lambda}=0$ on $(0, T), \quad w_{\lambda}(0)=1, w_{\lambda}^{\prime}(0)=0\left(\right.$ if $\left.\alpha>0: w_{\lambda}^{\prime \prime}(0)=0\right)$ Laplace transform $\Rightarrow \hat{w}_{\lambda}(s)=\frac{\left(\omega_{\lambda}(s)-c^{2} \lambda\right) / s}{\omega_{\lambda}(s)}$ where

$$
\omega_{\lambda}=s^{2}+c^{2} \lambda+ \begin{cases}b \lambda^{\tilde{\beta}} s^{\beta} & \text { for } \mathrm{C} \ldots \mathrm{H} \\ a s^{2+\alpha}+b \lambda s^{\beta} & \text { for } \mathrm{FZ}\end{cases}
$$

Lemma

The poles of \hat{w} differ for different $\lambda .{ }^{1}$

$$
{ }^{1} \text { (except for } p_{0}^{\mathrm{FZ}}=-1 / a \text { in case } \beta=\alpha=1 \text {) }
$$

Uniqueness of eigenvalues from poles of relaxation

 functions$$
\widetilde{D}_{\lambda}=\partial_{t}^{2}+c^{2} \lambda+ \begin{cases}b \lambda^{\tilde{\beta}} \partial_{t}^{\beta} & \text { for } \mathrm{C} \ldots \mathrm{H} \\ a \partial_{t}^{2+\alpha}+b \lambda \partial_{t}^{\beta} & \text { for } \mathrm{FZ}\end{cases}
$$

$\widetilde{D}_{\lambda} w_{\lambda}=0$ on $(0, T), \quad w_{\lambda}(0)=1, w_{\lambda}^{\prime}(0)=0\left(\right.$ if $\left.\alpha>0: w_{\lambda}^{\prime \prime}(0)=0\right)$
Laplace transform $\Rightarrow \hat{w}_{\lambda}(s)=\frac{\left(\omega_{\lambda}(s)-c^{2} \lambda\right) / s}{\omega_{\lambda}(s)}$ where

$$
\omega_{\lambda}=s^{2}+c^{2} \lambda+ \begin{cases}b \lambda^{\tilde{\beta}} s^{\beta} & \text { for } \mathrm{C} \ldots \mathrm{H} \\ a s^{2+\alpha}+b \lambda s^{\beta} & \text { for } \mathrm{FZ}\end{cases}
$$

Lemma

The poles of \hat{w} differ for different $\lambda .{ }^{1}$

Lemma

The residues of the poles of \hat{w} do no vanish. ${ }^{1}$

$$
{ }^{1} \text { (except for } p_{0}^{\mathrm{FZ}}=-1 / a \text { in case } \beta=\alpha=1 \text {) }
$$

Proof of Uniqueness Theorem

(A) The poles of \hat{w} differ for different λ.
(B) The residues of the poles of \hat{w} do no vanish.
(C) For all $\lambda=\lambda_{n}$ and any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$
$\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0\right.$ for all $\left.x \in \Sigma\right) \Longrightarrow\left(b_{k}=0\right.$ for all $\left.k \in K^{\lambda}\right)$

Proof of Uniqueness Theorem

(A) The poles of \hat{w} differ for different λ.
(B) The residues of the poles of \hat{w} do no vanish.
(C) For all $\lambda=\lambda_{n}$ and any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$
$\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0\right.$ for all $\left.x \in \Sigma\right) \Longrightarrow\left(b_{k}=0\right.$ for all $\left.k \in K^{\lambda}\right)$
separation of variables $\Rightarrow g\left(x_{0}, t\right)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), x_{0} \in \Sigma$

Proof of Uniqueness Theorem

(A) The poles of \hat{w} differ for different λ.
(B) The residues of the poles of \hat{w} do no vanish.
(C) For all $\lambda=\lambda_{n}$ and any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$
$\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0\right.$ for all $\left.x \in \Sigma\right) \Longrightarrow\left(b_{k}=0\right.$ for all $\left.k \in K^{\lambda}\right)$
separation of variables $\Rightarrow g\left(x_{0}, t\right)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), x_{0} \in \Sigma$
Inverse problem is linear \Rightarrow it suffices to prove $\left(g=0 \Rightarrow u_{0}=0\right)$.

Proof of Uniqueness Theorem

(A) The poles of \hat{w} differ for different λ.
(B) The residues of the poles of \hat{w} do no vanish.
(C) For all $\lambda=\lambda_{n}$ and any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$
$\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0\right.$ for all $\left.x \in \Sigma\right) \Longrightarrow\left(b_{k}=0\right.$ for all $\left.k \in K^{\lambda}\right)$
separation of variables $\Rightarrow g\left(x_{0}, t\right)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), x_{0} \in \Sigma$
Inverse problem is linear \Rightarrow it suffices to prove $\left(g=0 \Rightarrow u_{0}=0\right)$.
Apply Laplace transform; consider pole locations $p_{+, \ell}$ and residues:

Proof of Uniqueness Theorem

(A) The poles of \hat{w} differ for different λ.
(B) The residues of the poles of \hat{w} do no vanish.
(C) For all $\lambda=\lambda_{n}$ and any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$
$\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0\right.$ for all $\left.x \in \Sigma\right) \Longrightarrow\left(b_{k}=0\right.$ for all $\left.k \in K^{\lambda}\right)$
separation of variables $\Rightarrow g\left(x_{0}, t\right)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), x_{0} \in \Sigma$
Inverse problem is linear \Rightarrow it suffices to prove $\left(g=0 \Rightarrow u_{0}=0\right)$.
Apply Laplace transform; consider pole locations $p_{+, \ell}$ and residues:

$$
\begin{aligned}
0= & \operatorname{Res}\left(\hat{g}, p_{+, \ell}\right)=\lim _{s \rightarrow p_{+, \ell}}\left(s-p_{+, \ell}\right) \sum_{j=1} \hat{w}_{\lambda_{j}}(s)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right) \\
= & \operatorname{Res}\left(\hat{w}_{\lambda_{\ell}}, p_{+, \ell}\right) \sum_{k \in K^{\lambda_{\ell}}}\left\langle u_{0}, \varphi_{k}\right\rangle \varphi_{k}\left(x_{0}\right) \text { for all } x_{0} \in \Sigma, \\
& \text { since }(\mathrm{A}) \Rightarrow \lim _{s \rightarrow p_{+, \ell}}\left(s-p_{+, \ell}\right) \hat{w}_{\lambda_{j}}(s)=0 \text { for } j \neq \ell .
\end{aligned}
$$

Proof of Uniqueness Theorem

(A) The poles of \hat{w} differ for different λ.
(B) The residues of the poles of \hat{w} do no vanish.
(C) For all $\lambda=\lambda_{n}$ and any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$
$\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0\right.$ for all $\left.x \in \Sigma\right) \Longrightarrow\left(b_{k}=0\right.$ for all $\left.k \in K^{\lambda}\right)$
separation of variables $\Rightarrow g\left(x_{0}, t\right)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), x_{0} \in \Sigma$
Inverse problem is linear \Rightarrow it suffices to prove $\left(g=0 \Rightarrow u_{0}=0\right)$.
Apply Laplace transform; consider pole locations $p_{+, \ell}$ and residues:

$$
\begin{aligned}
0= & \operatorname{Res}\left(\hat{g}, p_{+, \ell}\right)=\lim _{s \rightarrow p_{+, \ell}}\left(s-p_{+, \ell}\right) \sum_{j=1} \hat{w}_{\lambda_{j}}(s)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right) \\
= & \operatorname{Res}\left(\hat{w}_{\lambda_{\ell}}, p_{+, \ell}\right) \sum_{k \in K^{\lambda_{\ell}}}\left\langle u_{0}, \varphi_{k}\right\rangle \varphi_{k}\left(x_{0}\right) \text { for all } x_{0} \in \Sigma, \\
& \text { since }(\mathrm{A}) \Rightarrow \lim _{s \rightarrow p_{+, \ell}}\left(s-p_{+, \ell}\right) \hat{w}_{\lambda_{j}}(s)=0 \text { for } j \neq \ell .
\end{aligned}
$$

Now (B), (C) $\Rightarrow\left\langle u_{0}, \varphi_{j}\right\rangle=0, j \in \mathbb{N}$

Proof of Uniqueness Theorem

(A) The poles of \hat{w} differ for different λ.
(B) The residues of the poles of \hat{w} do no vanish.
(C) For all $\lambda=\lambda_{n}$ and any coefficient set $\left(b_{k}\right)_{k \in K^{\lambda}}$
$\left(\sum_{k \in K^{\lambda}} b_{k} \varphi_{k}(x)=0\right.$ for all $\left.x \in \Sigma\right) \Longrightarrow\left(b_{k}=0\right.$ for all $\left.k \in K^{\lambda}\right)$
separation of variables $\Rightarrow g\left(x_{0}, t\right)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), x_{0} \in \Sigma$
Inverse problem is linear \Rightarrow it suffices to prove $\left(g=0 \Rightarrow u_{0}=0\right)$.
Apply Laplace transform; consider pole locations $p_{+, \ell}$ and residues:

$$
\begin{aligned}
0= & \operatorname{Res}\left(\hat{g}, p_{+, \ell}\right)=\lim _{s \rightarrow p_{+, \ell}}\left(s-p_{+, \ell}\right) \sum_{j=1} \hat{w}_{\lambda_{j}}(s)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right) \\
= & \operatorname{Res}\left(\hat{w}_{\lambda_{\ell}}, p_{+, \ell}\right) \sum_{k \in K^{\lambda_{\ell}}}\left\langle u_{0}, \varphi_{k}\right\rangle \varphi_{k}\left(x_{0}\right) \text { for all } x_{0} \in \Sigma, \\
& \text { since }(\mathrm{A}) \Rightarrow \lim _{s \rightarrow p_{+, \ell}}\left(s-p_{+, \ell}\right) \hat{w}_{\lambda_{j}}(s)=0 \text { for } j \neq \ell .
\end{aligned}
$$

Now (B), (C) $\Rightarrow\left\langle u_{0}, \varphi_{j}\right\rangle=0, j \in \mathbb{N} \Rightarrow u_{0}=\sum_{j=1}^{\infty}\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}=0$.

Location of poles

C...H Caputo-Wismer-Kelvin / space fractional Chen-Holm: $u_{t t}-c^{2} \Delta u+b(-\Delta)^{\tilde{\beta}} \partial_{t}^{\beta} u=0$

Roots of $\omega_{\mathrm{C} \ldots \mathrm{H}}(s)$ for various $\beta, \tilde{\beta}, c$ values.

Reconstructions I

$$
\begin{aligned}
& \Omega=(0,1) \\
& g(t)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), t \in(0, T)
\end{aligned}
$$

Reconstructions I

$$
\Omega=(0,1)
$$

$g(t)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), t \in(0, T) \rightsquigarrow \vec{g}=\mathbb{W} \vec{a}$, where

$$
\begin{aligned}
& \mathbb{W}=\left(w_{\lambda_{j}}\left(t_{i}\right)\right)_{i=1, \ldots, \ldots, j=1, \ldots, N,} \\
& \vec{g}=\left(g\left(t_{i}\right)\right)_{i=1}^{M}, \quad \vec{a}=\left(\varphi_{j}\left(x_{0}\right)\left\langle u_{0}, \varphi_{j}\right\rangle\right)_{j=1, \ldots . .}
\end{aligned}
$$

Reconstructions I

$\Omega=(0,1)$
$g(t)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), t \in(0, T) \rightsquigarrow \quad \vec{g}=\mathbb{W} \vec{a}$,
where

$$
\begin{aligned}
& \mathbb{W}=\left(w_{\lambda_{j}}\left(t_{i}\right)\right)_{i=1, \ldots, M, j=1, \ldots N}, \\
& \vec{g}=\left(g\left(t_{i}\right)\right)_{i=1}^{M}, \quad \vec{a}=\left(\varphi_{j}\left(x_{0}\right)\left\langle u_{0}, \varphi_{j}\right\rangle\right)_{j=1, \ldots . N}
\end{aligned}
$$

Singular values of \mathbb{W} with different values of β; here $\tilde{\beta}=1$

Reconstructions II

$$
\begin{aligned}
& \Omega=(0,1) \\
& g(t)=\sum_{j=1}^{\infty} w_{\lambda_{j}}(t)\left\langle u_{0}, \varphi_{j}\right\rangle \varphi_{j}\left(x_{0}\right), t \in(0, T) \quad \rightsquigarrow \quad \vec{g}=\mathbb{W} \vec{a}, \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{W}=\left(w_{j}\left(t_{i}\right)\right)_{i=1, \ldots, M, j=1, \ldots N}, \\
& \vec{g}=\left(g\left(t_{i}\right)\right)_{i=1}^{M}, \quad \vec{a}=\left(\varphi_{j}\left(x_{0}\right)\left\langle u_{0}, \varphi_{j}\right\rangle\right)_{j=1, \ldots . N}
\end{aligned}
$$

Recovery of $\mu_{0}(x)$ from $g_{\beta}(t)$. Left: with 1% noise; Right: with 0.1% noise
nonlinearity parameter imaging

The inverse problem

Identify $\kappa(x)$ in

$$
\begin{aligned}
& \left(u-\kappa(x) u^{2}\right)_{t t}-c_{0}^{2} \Delta u+D u=r \quad \text { in } \Omega \times(0, T) \\
& u=0 \text { on } \partial \Omega \times(0, T), \quad u(0)=0, \quad u_{t}(0)=0 \quad \text { in } \Omega
\end{aligned}
$$

(with excitation r) from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} \ldots$ transducer array (surface or collection of discrete points)

The inverse problem

 Identify $\kappa(x)$ in$$
\begin{array}{ll}
\left(u-\kappa(x) u^{2}\right)_{t t}-c_{0}^{2} \triangle u+D u=r & \text { in } \Omega \times(0, T) \\
u=0 \text { on } \partial \Omega \times(0, T), \quad u(0)=0, \quad u_{t}(0)=0 \quad \text { in } \Omega
\end{array}
$$

(with excitation r) from observations

$$
g=u \quad \text { on } \Sigma \times(0, T)
$$

$\Sigma \subset \bar{\Omega} \ldots$ transducer array (surface or collection of discrete points)
fractional damping
Caputo-Wismer-Kelvin:

$$
D=-b \Delta \partial_{t}^{\beta} \quad \text { with } \beta \in[0,1], \quad b \geq 0
$$

fractional Zener:

$$
D=a \partial_{t}^{2+\alpha}-b \Delta \partial_{t}^{\beta} \quad \text { with } a>0, b \geq a c^{2}, 1 \geq \beta \geq \alpha>0
$$

space fractional Chen-Holm:

$$
D=b(-\Delta)^{\tilde{\beta}} \partial_{t} \quad \text { with } \tilde{\beta} \in[0,1], b \geq 0
$$

Challenges

- model equation is nonlinear; nonlinearity occurs in highest order term;
- unknown coefficient $\kappa(x)$ appears in this nonlinear term
- κ is spatially varying whereas the data $g(t)$ is in the "orthogonal" time direction;
This is well known to lead to severe ill-conditioning of the inversion of the map F from data to unknown.

Results

- Well-definedness and Fréchet differentiability of forward operator $F:\left.\kappa \mapsto u\right|_{\Sigma}$
- uniqueness of linearized problem under linear independence assumption
- reconstructions by Newton's method
[BK\&Rundell IPI 2021, Math.Comp. 2021]
see also arXiv:2103.08965 [math.AP], arXiv:2102.07608 [math.AP]

Reconstructions of $\kappa(x)$

Caputo-Wismer-Kelvin:

$$
D=-b \Delta \partial_{t}^{\beta},
$$

0.1% noise

Reconstructions of $\kappa(x)$

Singular values of linearized forward operator

Thank you for your attention!

