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Outline

Uniqueness results for:
Classical Calderón problem
Two fractional Calderón problems
Two inverse problems for fractional parabolic equations with
power type nonlinearities
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Notations

n ≥ 2 : space dimension
0 < s < 1 : fractional power
Ω : a bounded domain with smooth boundary ∂Ω
Ωe := Rn \ Ω̄
⟨·, ·⟩ : distributional pairing
Hs(U) : the Sobolev space W s,2(U)
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1. Classical Calderón Problem

Question: Can we determine the electrical conductivity of a medium by
making voltage and current measurements at its boundary?

Alberto P. Calderón
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1. Classical Calderón Problem

Mathematical formulation:
A conductor fills a bounded domain Ω.
γ(x) denotes the electrical conductivity at x .
We apply a voltage f on ∂Ω.
u(x) denotes the induced voltage at x .
Ohm’s Law: current at x is −γ(x)∇u(x).
In the absence of sinks or sources of current, u satisfies

div(γ∇u) = 0 in Ω, u|∂Ω = f .
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1. Classical Calderón Problem

The Dirichlet-to-Neumann (voltage-to-current) map is

Λγ : f → (γ
∂u
∂ν

)|∂Ω

where ν is the unit outer normal on ∂Ω.
Inverse problem: Does Λγ1 = Λγ2 imply γ1 = γ2?
Fundamental uniqueness theorem:

(Sylvester-Uhlmann, 87)

Suppose n ≥ 3. Let γ1,2 ∈ C2(Ω̄) be strictly positive. If

Λγ1 = Λγ2 ,

then γ1 = γ2 in Ω.
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1. Classical Calderón Problem

Reduction to Schrödinger equation:
Use the substitution q = (∆

√
γ)/

√
γ to convert the Dirichlet

problem into

(−∆+ q)u = 0 in Ω, u|∂Ω = f .

It suffices to determine q from the associated DN map

Λq : f → ∂u
∂ν

|∂Ω.

Main ingredients of the proof:
Integral identity for Dirichlet-to-Neumann maps
Complex geometrical optics solutions
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1. Classical Calderón Problem

Integral identity:
Let uj (j = 1,2) be the solution of

(−∆+ qj)u = 0 in Ω, u|∂Ω = fj .

We can show that

⟨(Λq1 − Λq2)f1, f2⟩ =
∫
Ω
(q1 − q2)u1u2.

Hence Λq1 = Λq2 implies that∫
Ω
(q1 − q2)u1u2 = 0.
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1. Classical Calderón Problem

CGO solutions:
Consider solutions of the form

uj = ex ·ρj (1 + ψqj (x , ρj))

where
ρ1,2 = ±η

2
+ i

k ± l
2

,

η, k , l ∈ Rn (n ≥ 3) satisfy

η · k = η · l = k · l = 0, |η|2 = |k |2 + |l |2

and ψqj → 0 as |ρj | → ∞.
Let |l | → ∞ in the integral identity to obtain∫

Ω
eix ·k (q1 − q2) = 0.

Li Li (IPAM) Inverse Problems Seminar UC Irvine, May 12, 2022 9 / 41



1. Classical Calderón Problem

Remarks:
The uniqueness theorem holds true for n = 2 (Nachman, 96;
Brown-Uhlmann, 97; Astala-Päivärinta, 06; Bukhgeim, 08)
but a different proof is required.
For Γ1, Γ2 ⊂ ∂Ω, does the partial DN map

ΛΓ1,Γ2
γ (f ) := (γ

∂u
∂ν

)|Γ2 , supp f ⊂ Γ1.

determine γ in Ω? This problem is open in general but much
progress has been made so far (Bukhgeim-Uhlmann, 02;
Ammari-Uhlmann, 04; Kenig-Sjöstrand-Uhlmann, 07; Kenig-
Salo, 14; Krupchyk-Uhlmann, 16).
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2. Fractional Calderón Problem

Nonlocal operators (e.g. the fractional Laplacian (−∆)s) arise in
problems involving anomalous diffusion (in probability theory,
physics, biology and finance).

Example: A continuous limit of discrete, long jump random walks
can be described by the fractional diffusion equation

∂tu + (−∆)su = 0.

Motivation: Can we have a fractional analogue of the classical
Calderón problem?
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2. Fractional Calderón Problem

Definition of (−∆)s (0 < s < 1):
(Fourier transform definition)

(−∆)su(x) := F−1(|ξ|2sFu(ξ))(x)

where F denotes the Fourier transform.
(Singular integral definition)

(−∆)su(x) := cn,s lim
ϵ→0+

∫
Rn\Bϵ(x)

u(x)− u(y)
|x − y |n+2s dy

where Bϵ(x) denotes the open ball centered at x with radius ϵ.
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2. Fractional Calderón Problem

(Caffarelli-Silvestre extension definition)

((−∆)sf )(x) := cs lim
y→0+

y1−2s∂yu(x , y)

where u is the solution of the extension problem{
div(y1−2s∇u) = 0 in Rn+1

+

u(x ,0) = f (x) on Rn × {0}.

Unique continuation property of (−∆)s has been proven based on
CS definition and Carleman estimates (Rüland, 15).

(Ghosh–Salo–Uhlmann, 16)
Let 0 < s < 1 and u ∈ Hs(Rn). Let W be nonempty and open. If

(−∆)su = u = 0 in W ,

then u = 0 in Rn.
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2.1. Fractional Calderón Problem (Schrödinger Type)

Formulation of the fractional Calderón problem:
We consider the exterior Dirichlet problem

((−∆)s + q)u = 0 in Ω, u|Ωe = g

where Ωe := Rn \ Ω̄ and define the Dirichlet-to-Neumann map

Λq : g → (−∆)su|Ωe .

The knowledge of Λq is equivalent to the knowledge of the
nonlocal Neumann operator

(Nsu)(x) := cn,s

∫
Ω

u(x)− u(y)
|x − y |n+2s dy , x ∈ Ωe,

which approaches the classical Neumann derivative as s → 1.
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2.1. Fractional Calderón Problem (Schrödinger Type)

Inverse problem: Can we determine q from Λq?

Fundamental uniqueness theorem:

(Ghosh–Salo–Uhlmann, 16)
Suppose n ≥ 2. Let 0 ≤ q1,2 ∈ L∞(Ω) and let W1,2 ⊂ Ωe be nonempty
and open. If

Λq1g|W2 = Λq2g|W2 , g ∈ C∞
c (W1),

then q1 = q2 in Ω.

Main ingredients of the proof:
Integral identity for Dirichlet-to-Neumann maps
Runge approximation property (based on UCP)

Li Li (IPAM) Inverse Problems Seminar UC Irvine, May 12, 2022 15 / 41



2.2. Fractional Calderón Problem (Conductivity Type)

Assume 0 < γ ∈ C∞(Rn) and γ = 1 in Ωe. Let

Lγ := −div(γ(x)∇).

We define
Ls
γ :=

1
Γ(−s)

∫ ∞

0
(e−tLγ − Id)

dt
t1+s

where Γ is the Gamma function.

This semigroup approach works for more general self-adjoint
non-negative operators.
Ls
γ coincides with (−∆)s when γ = 1 in Rn.
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2.2. Fractional Calderón Problem (Conductivity Type)

Formulation of the fractional Calderón problem:
We consider the exterior Dirichlet problem

Ls
γu = 0 in Ω, u|Ωe = g

and define the Dirichlet-to-Neumann map

Λγ : g → Ls
γu|Ωe .

Inverse problem: Can we determine γ from Λγ?
Answer: Yes (Ghosh–Uhlmann, 21).
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2.2. Fractional Calderón Problem (Conductivity Type)

Main ingredients of the proof:
Unique continuation results for the classical parabolic equation
The generalized UCP for the fractional operator:

(Ghosh–Lin–Xiao, 17; Ghosh–Uhlmann, 21)
Let 0 < s < 1 and u ∈ Hs(Rn). Let W be nonempty and open. If

Ls
γu = u = 0 in W ,

then u = 0 in Rn.

Reduction to the classical Calderón problem
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2. Fractional Calderón Problem

Variants of the fractional Calderón problem:
Local perturbation of fractional Laplacian (Cekić-Lin-Rüland, 18;
Covi-Mönkkönen-Railo-Uhlmann, 20)

Nonlocal perturbation of fractional Laplacian
(Bhattacharyya-Ghosh-Uhlmann, 20; Covi, 21)

Space-time fractional parabolic operator (Lai-Lin-Rüland, 20)

Fractional magnetic operators (Covi, 19; L, 20; Lai-Zhou, 21)

Fractional elasticity (L, 21)

Operators involving fractional gradients (Covi, 18; Lai-Ohm, 20;
Railo-Zimmermann, 22)

Fractional operators on closed manifolds (Feizmohammadi-
Ghosh-Krupchyk-Uhlmann, 21; Quan-Uhlmann, 22)
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3.1. Nonlinear Fractional Parabolic Problem 1

We consider the power type nonlinear fractional parabolic equation

∂tu + (−∆)su + a(x , t ,u) = 0

where the nonlinearity satisfies

a(x , t , z) =
m∑

k=1

ak (x , t)|z|bk z, (1)

0 ≤ ak ∈ C(Ω̄× [0,T ]) and the powers 0 < b1 < · · · < bm are not
necessarily integers.
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3.1. Nonlinear Fractional Parabolic Problem 1

Formulation of the inverse problem:
We consider the initial exterior problem

∂tu + (−∆)su + a(x , t ,u) = 0 in Ω× (0,T ),

u = g in Ωe × (0,T ), u = 0 in Ω× {0}.

We define the Dirichlet-to-Neumann map

Λa : g → (−∆)su|Ωe×(0,T ).
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3.1. Nonlinear Fractional Parabolic Problem 1

Inverse problem: Can we determine the nonlinearity a from partial
measurements of Λa?

The following is the main theorem:

(L, 21)

Let W1,2 ⊂ Ωe be nonempty and open. Let a(1,2) be nonlinearities of
the form (1). Suppose

Λa(1)g|W2×(0,T ) = Λa(2)g|W2×(0,T )

for small g ∈ C∞
c (W1 × (0,T )). Then

a(1)
k = a(2)

k in Ω× (0,T ), k = 1, · · · ,m.
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3.1. Nonlinear Fractional Parabolic Problem 1

Forward problem part:
We make the substitution w := u − g and study the I.V.P.

∂tw + (−∆)sw + a(x , t ,w) = f in Ω× (0,T ), w = 0 in Ω× {0}.

We consider the semigroup {SΩ(t)}t≥0 associated with

∂tw + (−∆)sw = 0 in Ω× R+,

w = 0 in Ωe × R+, w = w0 in Ω× {0}

and for fixed f we define the nonlinear map

(Fu)(x , t) :=
∫ t

0
SΩ(t − τ)(f (x , τ)− a(x , τ, u(x , τ)))dτ.
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3.1. Nonlinear Fractional Parabolic Problem 1

Based on estimates on SΩ(t), we can use fixed-point theorem for
F to construct the solution of I.V.P. in the space

X := C([0,T ];Lr (Ω)) ∩ Lq(0,T ;Lp(Ω)).

for small f . Here p,q, r depend on n, s,a.
We can prove the L∞ inequality: Let u be a solution of

∂tu + (−∆)su + a(x , t ,u) = f in Ω× (0,T ),

u = g in Ωe × (0,T ), u = 0 in Ω× {0}.

Then we have

||u||L∞ ≤ T ||f ||L∞(Ω×(0,T )) + ||g||L∞(Ωe×(0,T )).
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3.1. Nonlinear Fractional Parabolic Problem 1

Inverse problem part:
Unique continuation property of (−∆)s

Runge approximation property associated with ∂t + (−∆)s

First order linearization (relating the nonlinear problem to the
linear one)

Remark:
The higher order multiple-fold linearization method is widely used
in solving inverse problems for power type classical equations
(Kurylev-Lassas-Uhlmann, 18; Lassas-Uhlmann-Wang, 18;
Krupchyk-Uhlmann, 20; Feizmohammadi-Oksanen, 20;
Liimatainen-Lin-Salo-Tyni, 20; Uhlmann-Zhai, 21).
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3.1. Nonlinear Fractional Parabolic Problem 1

First order Linearization:
Let ug be the solution of

∂tu + (−∆)su = 0 in Ω× (0,T ),

u = g in Ωe × (0,T ), u = 0 in Ω× {0}.

Let uλ,g be the solution of

∂tu + (−∆)su + a(x , t ,u) = 0 in Ω× (0,T ),

u = λg in Ωe × (0,T ), u = 0 in Ω× {0}.

We can show that
uλ,g

λ
→ ug

as λ→ 0 in L∞(Ω× (0,T )).
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3.1. Nonlinear Fractional Parabolic Problem 1

Runge approximation property:

Based on UCP of (−∆)s, we can prove the parabolic RAP

(Rüland–Salo, 17)
Let W ⊂ Ωe be nonempty and open. Then the set

S := {ug |Ω×(0,T ) : g ∈ C∞
c (W × (0,T ))}

is dense in L2(Ω× (0,T )).
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3.1. Nonlinear Fractional Parabolic Problem 1

Sketch the proof of the main theorem:
Let u(j)

λ,g be the solution of

∂tu + (−∆)su + a(j)(x , t ,u) = 0 in Ω× (0,T ),

u = λg in Ωe × (0,T ), u = 0 in Ω× {0}.
Based on the assumption on DN maps and UCP, we can show

u(1)
λ,g = u(2)

λ,g =: uλ,g

in Rn × (0,T ). Then we have

(a(1)
1 (x , t)− a(2)

1 (x , t))|uλ,g |b1uλ,g = R(2)
1 (x , t ,uλ,g)− R(1)

1 (x , t ,uλ,g)

in Ω× (0,T ) where

R(i)
1 (x , t , z) :=

m∑
k=2

a(i)
k (x , t)|z|bk z.
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3.1. Nonlinear Fractional Parabolic Problem 1

Sketch the proof of the main theorem (continued):

We can write |a(1)
1 (x , t)− a(2)

1 (x , t)|
1

b1+1 as the sum of

|a(1)
1 (x , t)− a(2)

1 (x , t)|
1

b1+1 (1 −
uλ,g

λ
)

and
1
λ
|a(1)

1 (x , t)− a(2)
1 (x , t)|

1
b1+1 uλ,g .

We can choose g s.t. both the first term (by using RAP and
linearization) and the second term (by using L∞ inequality to
estimate R(i)

1 ) can be arbitrarily small as λ→ 0.

Iteratively, once we have shown a(1)
j = a(2)

j (1 ≤ j ≤ m′ − 1), we

repeat the process above to show a(1)
m′ = a(2)

m′ .
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3.2. Nonlinear Fractional Parabolic Problem 2

Porous medium equations:
The classical porous medium equation

∂tu −∆(|u|m−1u) = 0, m > 1

appears in models for gas flow through porous media,
high-energy physics, population dynamics.

The fractional porous medium equation

∂tu + (−∆)s(|u|m−1u) = 0, m > 1, 0 < s < 1

is a combination of fractional diffusion and porous medium
nonlinearities, which describes anomalous diffusion through
porous media.
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3.2. Nonlinear Fractional Parabolic Problem 2

Formulation of the inverse problem:
We consider the initial exterior problem

∂tu + Ls
γ(|u|m−1u) + λu = 0 in Ω× (0,T ),

u = g in Ωe × (0,T ), u = 0 in Ω× {0}

where the conductivity γ and the absorption coefficient λ are
time-independent.
We define the Dirichlet-to-Neumann map

Λγ,λ : g → Ls
γ(|u|m−1u)|Ωe×(0,T ).
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3.2. Nonlinear Fractional Parabolic Problem 2

Inverse problem: Can we determine λ and γ in Ω from partial
measurements of Λγ,λ?

The following is the main theorem:

(L, 21)

Let W1,2 ⊂ Ωe be nonempty and open. Suppose λ(1,2) ∈ C∞(Ω̄),
0 < γ(1,2) ∈ C∞(Rn) and γ(1) = γ(2) = 1 in Ωe. Suppose

Λγ(1),λ(1)g|W2×(0,T ) = Λγ(2),λ(2)g|W2×(0,T )

for all g s.t. gm ∈ C∞
c (W1). Then γ(1) = γ(2) and λ(1) = λ(2) in Ω.
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3.2. Nonlinear Fractional Parabolic Problem 2

Forward problem part:
We make the substitution w := u − g and study the I.V.P.

∂tw + Ls
γ(w

m) + λw = f in Ω× (0,T ), w = 0 in Ω× {0}.

We define the operator A in H−s(Ω) by

Aw := Ls
γ(w

m)|Ω, D(A) := {w ∈ H−s(Ω) ∩ L1(Ω) : wm ∈ H̃s(Ω)}

where
H̃s(Ω) := the closure of C∞

c (Ω) in Hs(Rn)

(so H−s(Ω) = H̃s(Ω)∗).
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3.2. Nonlinear Fractional Parabolic Problem 2

It is known (Bonforte-Sire-Vázquez, 15) that A is maximal
monotone (i.e. A is monotone and the Ran(Id+A)= H−s(Ω)).

We apply the theory of monotone operators in Hilbert spaces to
show the well-posedness result:
Let f ∈ L2(0,T ;H−s(Ω)). Then there exists a unique solution

w ∈ C([0,T ];H−s(Ω)) ∩ H1(0,T ;H−s(Ω))

of I.V.P. Moreover, w(t) ∈ D(A) for t ∈ (0,T ).
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3.2. Nonlinear Fractional Parabolic Problem 2

Inverse problem part:
We use a time-integral transform, which relates the nonlinear
parabolic problem to the linear elliptic problem. This enables
us to apply the uniqueness result for the fractional Calderón
problem to determine γ.
Once γ is determined, we use UCP of Ls

γ to determine λ.

Remark:
Time-integral transform methods have been used in solving the
inverse problem for the classical porous medium equation
(Cârstea-Ghosh-Nakamura, 21; Cârstea-Ghosh-Uhlmann, 21).
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3.2. Nonlinear Fractional Parabolic Problem 2

Sketch the proof of the main theorem:
We make substitutions v := um, g̃ := gm to write IEP as

∂t(v
1
m ) + Ls

γv + λv
1
m = 0 in Ω× (0,T ),

v = g̃ in Ωe × (0,T ), v = 0 in Ω× {0}.

We define the associated DN map

Λ̃γ,λ : g̃ → Ls
γv |Ωe×(0,T ).

The knowledge of Λ̃γ,λ is equivalent to the knowledge of Λγ,λ.
v (h) denotes the solution corresponding to g̃ := hg0 for fixed
time-independent g0 ∈ C∞

c (W1). Here h > 0 is a parameter.
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3.2. Nonlinear Fractional Parabolic Problem 2

Sketch the proof of the main theorem (continued):
We consider the time-integral transform

V (x) :=
∫ T

0
(T − t)αv(x , t)dt .

We also define

M(x) := α

∫ T

0
(T − t)α−1v

1
m (x , t)dt ,

N(x) := λ(x)
∫ T

0
(T − t)αv

1
m (x , t)dt .

Applying the transform and integrating by parts w.r.t. t , we get

Ls
γV (h) = M(h) + N(h) in Ω, V (h)|Ωe = CαT 1+αhg0.
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3.2. Nonlinear Fractional Parabolic Problem 2

Sketch the proof of the main theorem (continued):
We write

V (h) = CαT 1+αhV0 + R(h)

where V0 is the solution of

Ls
γV0 = 0 in Ω, V0|Ωe = g0

and R(h) is the solution of

Ls
γR(h) = M(h) + N(h) in Ω, R(h)|Ωe = 0.

We can estimate M(h),N(h) and then show that

R(h) = O(h
1
m )

as h → ∞ in Hs-norm.
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3.2. Nonlinear Fractional Parabolic Problem 2

Sketch the proof of the main theorem (continued):

Applying Ls
γ to the equality, we get

h−1Ls
γV (h) = CαT 1+αLs

γV0 + h−1Ls
γR(h).

Let h → ∞. Then we see that Λlin
γ g0|W2 is determined by

the time-integral of Λ̃γ,λg̃|W2×(0,T ).

Now we apply the uniqueness theorem for the fractional
Calderón problem to determine γ.
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3.2. Nonlinear Fractional Parabolic Problem 2

Sketch the proof of the main theorem (continued):
Pick a nonzero g. Let uj (j = 1,2) be the solution of

∂tu + Ls
γ(u

m) + λju = 0 in Ω× (0,T ),

u = g in Ωe × (0,T ), u = 0 in Ω× {0}.

Using UCP, we can show

u1 = u2 := u in Rn × (0,T )

and for any x0 ∈ Ω, we can choose (xk , tk ) ∈ Ω× (0,T ) s.t.
xk → x0 and u(xk , tk ) ̸= 0. Hence

λ(j)(x0) = lim
k→∞

λ(j)(xk )

= − lim
k→∞

∂tu(xk , tk ) + Ls
γ(um)|(xk ,tk )

u(xk , tk )
, j = 1,2.
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