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Inverse conductivity problem (Calderón, 1980)

• Is it possible to determine the electrical conductivity of a medium
by making voltage and current measurements on its boundary?

∇ · (γ∇u)|Ω = 0, u|∂Ω = f .

• Suppose one knows the DN map Λγf = γ∂νu|∂Ω, can we
determine the electrical conductivity γ : Ω → R uniquely?

• Mathematical model for the electrical impedance tomography
(EIT).
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Classical Calderón problem (n ≥ 3)
• Boundary determination (⇒ uniqueness for real-analytic γ)

(Kohn–Vogelius, 1984).
• Interior uniqueness when n ≥ 3 (Sylvester–Uhlmann, 1987).
• A reconstruction method (Nachman, 1988).
• Logarithmic stability (Alessandrini, 1988) and optimality

(Mandache, 2001).
• Studied typically via the Liouville transformation:

−∇ · γ∇(γ−1/2u) = γ1/2(−∆ + q)u, q = γ−1/2∆(γ1/2).

• The inverse problem is then solved using the complex geometric
optics (CGO) solutions and their behaviour when |ζ| → ∞:

u(x) = eiζ·x (1 + rζ(x)).
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Some basic definitions
• We say that an open set Ω∞ ⊂ Rn of the form Ω∞ = Rn−k × ω,

where n ≥ k > 0 and ω ⊂ Rk is a bounded open set, is a
cylindrical domain.

• We say that an open set Ω ⊂ Rn is bounded in one direction if
there exists a cylindrical domain Ω∞ ⊂ Rn and a rigid Euclidean
motion A(x) = Lx + x0, where L is a linear isometry and
x0 ∈ Rn, such that Ω ⊂ AΩ∞.

• The fractional gradient is defined for all sufficiently regular
functions by the formula

∇su(x , y) =

√
Cn,s

2
u(x) − u(y)

|x − y |n/2+s+1 (x − y)

and divs denotes its adjoint operator. In particular,
divs(∇su) = (−∆)su in the weak sense for all u ∈ Hs(Rn).
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A fractional Poincaré inequality
Theorem (Poincaré inequality, R.–Zimmermann, 2022)

Let Ω ⊂ Rn be an open set that is bounded in one direction. Suppose
that 2 ≤ p < ∞ and 0 ≤ s ≤ t < ∞, or 1 < p < 2, 1 ≤ t < ∞ and
0 ≤ s ≤ t. Then there exists C(n, p, s, t, Ω) > 0 such that

∥(−∆)s/2u∥Lp(Rn) ≤ C∥(−∆)t/2u∥Lp(Rn)

for all u ∈ H̃t,p(Ω).

Conjecture (Equivalence of the optimal constants)

Let Ω ⊂ Rn be an open (bounded) domain and 1 < p < ∞. If Cr ,z is
the optimal fractional Poincaré constant for r > z ≥ 0, then
Ct,s = C

t−s
r−z

r ,z is the optimal Poincaré constant for t > s ≥ 0.
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Fractional conductivity equation
• Let s ∈ (0, 1) and consider the Dirichlet problem for the

fractional conductivity equation:

divs(Θγ∇su) = 0 in Ω,

u = f in Ωe ,
(1)

where Ωe := Rn \ Ω is the exterior of the domain Ω, Θγ is an
appropriate matrix depending on the global, elliptic,
conductivity γ ∈ L∞

+ (Rn).
• We say u ∈ Hs(Rn) is a (weak) solution of (1) if the bilinear

form

Bγ(u, ϕ) := Cn,s
2

∫
R2n

γ1/2(x)γ1/2(y)
|x − y |n+2s (u(x)−u(y))(ϕ(x)−ϕ(y)) dxdy

vanishes for all ϕ ∈ C∞
c (Ω) and u − f ∈ H̃s(Ω) := C∞

c (Ω)Hs(Rn).
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Inverse fractional conductivity problem
• Let Ω ⊂ Rn be an open set which is bounded in one direction

and 0 < s < min(1, n/2). Assume that γ ∈ L∞(Rn) satisfy
γ ≥ γ0 > 0.

• For all f ∈ X := Hs(Rn)/H̃s(Ω) there are unique weak solutions
uf ∈ Hs(Rn) of the fractional conductivity equation

divs(Θ∇su) = 0 in Ω,

u = f in Ωe .

• The exterior DN maps Λγ : X → X ∗ given by

⟨Λγf , g⟩ := Bγ(uf , g),

where uf ∈ Hs(Rn) is the unique solution to the fractional
conductivity equation, is a well-defined bounded linear map.

• The inverse fractional conductivity problem asks: Suppose
that Λγ1 = Λγ2 , does it imply that γ1 = γ2?
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Geometric illustration of related domains

Ωe

W2W1

Ω
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Comments on the approximation properties

• As s ↑ 1, then the fractional conductivity operator converges in
the sense of distributions to the classical conductivity operator
when applied to sufficiently regular functions (Covi, 2021).

• Approximation properties with respect to the DN maps and
inverse problems require more work and understanding.

• There is a work by Ghosh–Uhlmann (2021) showing that if the
exterior Cauchy data of fractional powers of elliptic 2nd order
operators agree for 0 < s < 1, then also the boundary Cauchy
data agree. (Their and our settings are however different.) Could
there be any hope for reversing this fascinating connection?
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Terminology for abstract nonlocal Calderón’s
problems

Let s ∈ R and B : Hs(Rn) × Hs(Rn) → R be a bounded bilinear form:

(i) We say that B has the left UCP on an open nonempty set
W ⊂ Rn when the following holds: If u ∈ Hs(Rn), u|W = 0 and
B(u, ϕ) = 0 for all ϕ ∈ C∞

c (W ), then u ≡ 0.

(ii) We say that B has the right UCP on an open nonempty set
W ⊂ Rn when the following holds: If u ∈ Hs(Rn), u|W = 0 and
B(ϕ, u) = 0 for all ϕ ∈ C∞

c (W ), then u ≡ 0.

(iii) We say that B is local when the following holds: If
u, v ∈ Hs(Rn) and supp(u) ∩ supp(v) = ∅, then B(u, v) = 0.

Jesse Railo (DPMMS, Cambridge) Inverse fractional conductivity problem UCI IP Seminar, Sep 2022 12 / 37



Abstract nonlocal Calderón problems

Lemma
Let s ∈ R, and Ω ⊂ Rn be open set such that Ωe ̸= ∅. Let
B : Hs(Rn) × Hs(Rn) → R be a bounded bilinear form that is
(strongly) coercive in H̃s(Ω), that is, there exists some c > 0 such
that B(u, u) ≥ c∥u∥2

Hs(Rn) for all u ∈ H̃s(Ω). Then the following hold:

1 Existence of solutions: For any f ∈ Hs(Rn) and F ∈ (H̃s(Ω))∗

there exists a unique u ∈ Hs(Rn) such that u − f ∈ H̃s(Ω) and
B(u, ϕ) = F (ϕ) for all ϕ ∈ H̃s(Ω). When F ≡ 0, we denote this
unique solution by uf .

2 Let X := Hs(Rn)/H̃s(Ω) be the abstract trace space. Then the
exterior DN map ΛB : X → X ∗ defined by ΛB[f ][g ] := B(uf , g)
for [f ], [g ] ∈ X is a well-defined bounded linear map.
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Runge approximation property
One may prove the following functional analytic theorem using the
ideas of Ghosh–Salo–Uhlmann (2020), Cekić–Lin–Rüland (2020),
Covi–Mönkkönen–R.–Uhlmann (2022):

Theorem (R.-Zimmermann, 2022)

Let s ∈ R and Ω ⊂ Rn be an open set such that Ωe ̸= ∅. Let
L, q : Hs(Rn) × Hs(Rn) → R be bounded bilinear forms and assume
that q is local and that BL,q := L + q is (strongly) coercive in H̃s(Ω).

(i) If L has the right UCP on a nonempty open set W ⊂ Ωe , then
R(W ) := { uf − f ; f ∈ C∞

c (W ) } ⊂ H̃s(Ω) is dense.
(ii) If L has the left UCP on a nonempty open set W ⊂ Ωe , then

R∗(W ) := { u∗
g − g ; g ∈ C∞

c (W ) } ⊂ H̃s(Ω) is dense.
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Example (R.–Zimmermann, 2022)

Let us denote Bϵ = B(0; ϵ) ⊂ Rn for any ϵ > 0 and n ≥ 1. For any
ϵ, δ > 0, s ∈ R+ \ Z and Ω := Rn \ Bϵ, the restriction to Rn \ Bϵ of
the unique solutions uf to the equation ((−∆)s + δ)u = 0 in Rn \ Bϵ

are dense in H̃s(Rn \ Bϵ) with exterior conditions f ∈ C∞
c (Bϵ).

Bϵ

((−∆)s + δ)u = 0 u = f
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Generalized Ghosh–Salo–Uhlmann theorem
Theorem (R.-Zimmermann, 2022)
Let s ∈ R, and Ω ⊂ Rn be open such that Ωe ̸= ∅. Let
L : Hs(Rn) × Hs(Rn) → R be a bounded bilinear form with the
following properties:

1 There exists a nonempty open set W1 ⊂ Ωe such that L has the
right UCP on W1.

2 There exists a nonempty open set W2 ⊂ Ωe such that L has the
left UCP on W2.

3 W1 ∩ W2 = ∅.
Let qj : Hs(Rn) × Hs(Rn) → R, j = 1, 2, be local and bounded bilinear
forms. Suppose that BL,qj = L + qj are (strongly) coercive in H̃s(Ω).
If the exterior data ΛL,q1 [f ][g ] = ΛL,q2 [f ][g ] agree for all f ∈ C∞

c (W1)
and g ∈ C∞

c (W2), then q1 = q2 in H̃s(Ω) × H̃s(Ω).
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Examples from the literature
• (−∆)s + w where w ∈ L∞(Ω) and Ω is bounded where

L(u, v) = ((−∆)s/2u, (−∆)s/2v) and q(u, v) =
∫
Rn wuvdx

(Ghosh–Salo–Uhlmann, 2016). An extension to certain Sobolev
multiplier perturbations w (Rüland–Salo, 2017).

• Ls + w where Ls is a fractional power of an elliptic 2nd order
operator L and w ∈ L∞(Ω) and Ω is bounded (Ghosh–Lin–Xiao,
2017).

• (−∆)s + w + c · ∇, c a vector field, has 0th and 1st order terms
(Cekić–Lin–Rüland, 2018).

• Extension for general local linear lower order perturbations
(−∆)s + P, s ∈ R+ \ Z, m ∈ N such that 2s > m, by
P =

∑
|α|≤m aαDα in αα ∈ M0(Hs−|α| → H−s)

(Covi–Mönkkönen–R.–Uhlmann, 2021).
• ...and much more
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New examples (R.–Zimmermann, 2022)
• (Domains without Poincaré inequalities) For (−∆)s + q in Ω

where s ∈ R+ \ Z and the potential q is uniformly positive and
bounded, i.e. q ∈ L∞

+ (Rn).
• (Higher order perturbations) For

(−∆)t + (−∆)s/2(γ(−∆)s/2·) + q in Ω where t ∈ R+ \ Z,
s ∈ 2Z and t < s, and γ, q ∈ L∞

+ (Rn).
• (A small fractional perturbation of the conductivity equation –

with exterior data) λ(−∆)t + div(γ∇·) where λ, t ∈ (0, 1),
γ ∈ L∞

+ (Rn), Ω bounded in one direction. (One can plug in an
elliptic L∞(Ω;Rn×n) anisotropic conductivity as well.)

• Solutions to the related exterior value problems are dense in the
corresponding spaces H̃s(Ω), H̃s(Ω) and H̃1(Ω), respectively.

• ...many other results extend to domains bounded in one direction.
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Solving the inverse fractional conductivity
problem
Define mγ := γ1/2 − 1 and call it the background deviation of γ.

Theorem (R.–Zimmermann, 2022)

Let Ω ⊂ Rn be an open set which is bounded in one direction and
0 < s < min(1, n/2). Assume that γ1, γ2 ∈ L∞(Rn) are uniformly
elliptic with m1, m2 ∈ Hs,n/s(Rn). Suppose that W ⊂ Ωe is a
nonempty open set such that γ1, γ2 are continuous a.e. in W . Then
Λγ1f |W = Λγ2f |W for all f ∈ C∞

c (W ) if and only if γ1 = γ2 in Rn.

• When m ∈ H2s,n/2s(Rn) ∩ Hs(Rn) earlier by
Covi–R.–Zimmermann (2022).

• Brown conjectured (2003) that the classical Calderón problem is
solvable for W 1,p(Ω) conductivities when p > n and Haberman
proved (2014) uniqueness when γ ∈ W 1,n(Ω), n = 3, 4.

Jesse Railo (DPMMS, Cambridge) Inverse fractional conductivity problem UCI IP Seminar, Sep 2022 19 / 37



Two fundamental properties of DN maps
Theorem (Covi–R.–Zimmermann, R.–Zimmermann, 2022)
Let Ω ⊂ Rn be an open set which is bounded in one direction and
0 < s < min(1, n/2). Assume that γ1, γ2 ∈ L∞(Rn) are uniformly
elliptic with m1, m2 ∈ Hs,n/s(Rn). Assume that W1, W2 ⊂ Ωe are
nonempty open sets and that γ1|W1∪W2 = γ2|W1∪W2 holds. If
W1 ∩ W2 ̸= ∅, then Λγ1f |W2

= Λγ2f |W2
for all f ∈ C∞

c (W1) if and
only if γ1 = γ2 in Rn.

Theorem (Covi–R.–Zimmermann, R.–Zimmermann, 2022)
Let Ω ⊂ Rn be an open set which is bounded in one direction and
0 < s < 1. Assume that γ1, γ2 ∈ L∞(Rn) satisfy
γ1(x), γ2(x) ≥ γ0 > 0. Suppose that W ⊂ Ωe is a nonempty open set
such that γ1, γ2 are continuous a.e. in W . If Λγ1f |W = Λγ2f |W for
all f ∈ C∞

c (W ), then γ1 = γ2 a.e. in W .
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Recall the picture:

Ωe

W2W1

Ω
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UCP of the DN maps 1/2
(i) Low regularity fractional Liouville reduction when

γ ∈ L∞
+ (Rn), m ∈ Hs,n/s(Rn):

⟨Θγ∇su, ∇sϕ⟩L2(R2n) = ⟨(−∆)s/2(γ1/2u), (−∆)s/2(γ1/2ϕ))⟩L2(Rn)

+ ⟨qγ(γ1/2u), (γ1/2ϕ)⟩, u, ϕ ∈ Hs(Rn)

where
⟨qγu, ϕ⟩ = −⟨(−∆)s/2m, (−∆)s/2(γ−1/2uϕ)⟩L2(Rn)

is a suitable Sobolev multiplier in M(Hs → H−s).
(ii) Reduction of DN maps: If γ1|W1∪W2 = γ2|W1∪W2 and

Λγ1f |W2 = Λγ2f |W2 for all f ∈ C∞
c (W1), then Λq1f |W2 = Λq2f |W2 .

(iii) Fractional Calderón problem for globally defined singular
potentials (Ghosh–Salo–Uhlmann, Rüland–Salo): If
Λq1f |W2 = Λq2f |W2 for all f ∈ C∞

c (W1), then q1 = q2 in Ω.
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UCP of the DN maps 2/2
(i) Exterior determination for the fractional Schrödinger

equation: Λq1f |W2 = Λq2f |W2 for all f ∈ C∞
c (W1) and

W = W1 ∩ W2 ̸= ∅, then q1 = q2 in W . This uses the earlier
interior determination step, which already guarantees that
q1 = q2 in Ω.

(ii) We may then use the assumption that γ1|W = γ2|W and the
knowledge (in the sense of distributions/as Sobolev multipliers)

−(−∆)s(γ1/2
1 − 1)

γ
1/2
1

= q1 = q2 = −(−∆)s(γ1/2
2 − 1)

γ
1/2
2

in W

and a UCP of the fractional Laplacians: If u ∈ H r ,p(Rn) for
r ∈ R, p ∈ [1, ∞) and (−∆)tu = u = 0 in a nonempty open
V ⊂ Rn, t ∈ R+ \ N, then u ≡ 0 in Rn (Kar–R.–Zimmermann,
2022 + based on several other works). Here p = n/s > 2.

(iii) Altogether, γ1 ≡ γ2.
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Exterior determination 1/2
(i) Define the Dirichlet energy first as

Eγ(u) := Bγ(u, u) =
∫
R2n

Θγ∇su · ∇su dxdy .

Notice that Eγ(uf ) = ⟨Λγf , f ⟩X∗×X where uf is the unique
solution of the fractional conductivity equation with the exterior
condition f .

(ii) Elliptic estimate: Let W ⊂ Ωe , dist(W , Ω) > 0, |W | < ∞. If
f ∈ C∞

c (W ) and uf ∈ Hs(Rn) is the unique solution of

((−∆)s + q)u = 0 in Ω,

u = f in Ωe ,

then
∥uf |Ω∥H̃s(Ω) = ∥uf − f ∥Hs(Rn) ≤ C∥f ∥L2(W )

for some C(n, s, |W |, Ω, dist(W , Ω)) > 0.
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Exterior determination 2/2
(i) This uses the quadratic definition of the fractional Laplacian

⟨(−∆)s f , ϕ⟩ = Cn,s
2

∫
R2n

(f (x) − f (y))(ϕ(x) − ϕ(y))
|x − y |n+2s dxdy .

Similar argument can be made for the conductivity equation.
(ii) Construction of special solutions: ϕN ∈ C∞

c (W ) such that
∥ϕN∥L2(W ) → 0 as N → ∞ and ∥ϕN∥Hs(Rn) = 1 for all N ∈ N.
Let uN ∈ Hs(Rn) be the unique solutions to the conductivity
equation with uN |Ωe = ϕN . The elliptic energy estimate and the
given properties of the exterior conditions give that Eγ(uN) and
Eγ(ϕN) are equal as N → ∞. These exterior conditions are
similar to the boundary conditions considered by Kohn and
Vogelius (1984).

(iii) Energy concentration property: Given any x0 ∈ W , one may
show that there exists such sequences ϕN so that
Eγ(ϕN) → γ(x0) as N → ∞.
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Counterexamples

Our uniqueness result for the partial data problem is complemented
with the following general counterexamples:

Theorem (R.–Zimmermann, 2022)
Let Ω ⊂ Rn be an open set which is bounded in one direction,
0 < s < min(1, n/2). For any nonempty open disjoint sets
W1, W2 ⊂ Ωe with dist(W1 ∪ W2, Ω) > 0 there exist two different
conductivities γ1, γ2 ∈ L∞(Rn) ∩ C∞(Rn) such that
γ1(x), γ2(x) ≥ γ0 > 0, m1, m2 ∈ Hs,n/s(Rn) ∩ Hs(Rn), and
Λγ1f |W2

= Λγ2f |W2
for all f ∈ C∞

c (W1).

The problem remains open for any nonempty open disjoint sets
W1, W2 ⊂ Ωe with dist(W1 ∪ W2, Ω) = 0.
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Graphical illustration

W2

W1

Ω supp m1

supp m2
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Sketch of the proof 1/2
Using the fractional Liouville reduction one can characterize the
invariance of data, for any disjoint data the following holds:

Lemma (R.–Zimmermann, 2022)

Let Ω ⊂ Rn be an open set which is bounded in one direction and
0 < s < min(1, n/2). Assume that γ1, γ2 ∈ L∞(Rn) with background
deviations m1, m2 satisfy γ1(x), γ2(x) ≥ γ0 > 0 and
m1, m2 ∈ Hs,n/s(Rn) ∩ Hs(Rn). Finally, assume that W1, W2 ⊂ Ωe
are nonempty disjoint open sets and that γ1|W1∪W2 = γ2|W1∪W2 holds.
Then there holds Λγ1f |W2

= Λγ2f |W2
for all f ∈ C∞

c (W1) if and only
if m0 := m1 − m2 ∈ Hs(Rn) is the unique solution of

(−∆)sm + qγ2m = 0 in Ω,

m = m0 in Ωe .
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Sketch of the proof 2/2
• Take γ2 ≡ 1. Now, by the invariance of data and searching for

γ1 = (m1 + 1)2, the problem reduces to finding a s-harmonic
function in Ω, i.e. m1 ∈ Hs,n/s(Rn) ∩ Hs(Rn) ∩ L∞(Rn) which
solves

(−∆)sm1 = 0 in Ω, m1 = m0 in Ωe , (2)

with the ”positivity” condition m1 ≥ γ
1/2
0 − 1 and any suitable

exterior condition m0 ∈ C∞
c (Ωe \ W1 ∪ W2).

• One may first look for a Hs(Rn) function which is s-harmonic in
a slightly larger domain Ω′ and vanishes near W1 ∪ W2. Using a
mollification argument one finds a smooth s-harmonic function
solving (2) with the right regularity properties, as n/s > 2.

• Finally, using the linearity of the equation and a scaling
argument, the positivity condition can be made to hold.
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Sets in the proof

Ω

Ω′

W2

W1ω

Figure: We construct in the first step a nonzero s-harmonic background
deviation m̃1 ∈ Hs(Rn) in the set Ω′, which has a smooth boundary and lies
in the deformed annulus Ω3ϵ \ Ω2ϵ, and then obtain by mollification a
nonzero smooth s−harmonic function m1 := m̃1 ∗ ρϵ in the set Ω. The set
ω ⋐ Ωe \ W1 ∪ W2 is used to construct a cut–off function η ∈ C∞

c (ω3ϵ) with
η|ω = 1, which m̃1 has as an exterior value and its support contained in
Ω5ϵ ∪ ω5ϵ. Next scale so that ∥cm1∥L∞(Rn) ≤ 1/2 and set γ0 = 1/4.
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Stability estimate in the exterior

Write ∥A∥∗ := ∥A∥Hs(Ωe)→(Hs(Ωe))∗ . The exterior determination
argument is constructive and leads to the following stability estimate:

Theorem (Covi–R.–Zimmermann, R.–Zimmermann, 2022)

Let Ω ⊂ Rn be a domain bounded in one direction and 0 < s < 1.
Assume that γ1, γ2 ∈ L∞(Rn) satisfy γ1(x), γ2(x) ≥ γ0 > 0, and are
continuous a.e. in Ωe . There exists a constant C > 0 depending only
on s such that

∥γ1 − γ2∥L∞(Ωe) ≤ C∥Λγ1 − Λγ2∥∗.

The argument is ”local” in the exterior. Therefore, similar holds with
the partial data in W ⊂ Ωe .
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Stability estimate in the interior
Theorem (Covi–R.–Tyni–Zimmermann, 2022)
Let 0 < s < min(1, n/2), ϵ > 0 and assume that Ω ⊂ Rn is a smooth bounded domain. Suppose that the the
conductivities γ1, γ2 ∈ L∞(Rn) with background deviations m1, m2 fulfill the following conditions:

(i) γ0 ≤ γ1(x), γ2(x) ≤ γ−1
0 for some 0 < γ0 < 1,

(ii) m1 − m2 ∈ Hs (Rn) and there exist C1, C2 > 0 such that

∥mi ∥
H4s+2ϵ, n

2s (Rn)
≤ C1, ∥(−∆)s mi ∥L1(Ωe ) ≤ C2

for i = 1, 2.

If θ0 ∈ (max(1/2, 2s/n), 1) and there holds ∥Λγ1 − Λγ2 ∥∗ ≤ 3−1/δ for some 0 < δ <
1−θ0

2 , then we have

∥γ
1/2
1 − γ

1/2
2 ∥Lq (Ω) ≤ ω(∥Λγ1 − Λγ2 ∥∗)

for all 1 ≤ q ≤ 2n
n−2s , where ω(x) is a logarithmic modulus of continuity satisfying

ω(x) ≤ C| log x|−σ
, for 0 < x ≤ 1,

for some constants σ, C > 0 depending only on s, ϵ, n, Ω, C1, C2, θ0 and γ0.
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About the proof
1 The proof is based on one of the possible uniqueness proofs with

full data.
2 The proof uses the stability estimate for the corresponding

Schrödinger problem by Rüland–Salo (2020).
3 The proof uses the earlier exterior stability estimate, which also

is related to having L1 ⊂ (L∞)∗ a priori bound in the exterior.
4 Other key properties to show (resembling Alessandrini’s work)

are ”∥Λq1 − Λq2∥∗ ≤ C∥Λγ1 − Λγ2∥∗” up to a constant depending
of the a priori bounds (the real estimate looks a bit different),
and the identity

divs(Θγ1∇sm̃) = γ
1/2
1 γ

1/2
2 (q2 − q1) in Rn,

where m̃ := (γ1/2
1 − γ

1/2
2 )/γ

1/2
1 .
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Open problems 1/2
1 Regularity in the exterior. Let Ω ⊂ Rn be an open set which is

bounded in one direction and 0 < s < min(1, n/2). Assume that
γ1, γ2 ∈ L∞(Rn) are uniformly elliptic and W ⊂ Ωe is an open
set. Does Λγ1f |W = Λγ2f |W for all f ∈ C∞

c (W ) imply that
γ1 = γ2 a.e. in W ?

2 Fractional Astala–Päivärinta type theory. Does the partial/full
data uniqueness hold for the uniformly elliptic conductivities that
only satisfy γ ∈ L∞(Rn)? Can one remove the assumption that
conductivities converge to the trivial conductivity at infinity by
some other regularity assumptions?

3 Missing counterexamples. Are there counterexamples to
uniqueness in the partial data inverse problem for all nonempty
open sets W1, W2 ⊂ Rn such that W1 ∩ W2 = ∅ and
dist(W1 ∪ W2, Ω) = 0?
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Open problems 2/2
1 Partial data stability. Does the partial data stability hold?
2 Regularity of the boundary and domain. Do the stability results

hold without smoothness or boundedness assumptions?
3 General kernels. Under what conditions, on the symbols a(x , y),

one may obtain global uniqueness results in Rn and how to
characterize ”gauge” for more general equations related to

Ba(u, ϕ) =
∫
R2n

a(x , y)
|x − y |n+2s (u(x) − u(y))(ϕ(x) − ϕ(y)) dxdy?

Our work has extensively analyzed symbols of the product type
a(x , y) = σ(x)σ(y), and the works of Ghosh–Uhlmann and their
collaborators some aspects for another classes of kernels
generated by the heat semigroups of elliptic operators.
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