Travel time inverse problems on simple Riemannian manifolds

Boya Liu
(Joint with Joonas Ilmavirta and Teemu Saksala)
North Carolina State University
Inverse Problems Seminar, UC Irvine

December 8th, 2022

This talk is based on the following manuscript :

Three travel time inverse problems on simple Riemannian manifolds, preprint, ArXiv : 2208.08422

Outline

- Introduction: Simple Manifolds
- Problem 1 : Uniqueness of Broken Scattering Relations
- Problem 2 : Travel Time Data
- Reduction from Broken Scattering Relation to Travel Time Data
- Problem 3 : Travel Time Difference Data

Simple manifolds

Conjecture (Michel, 1981)

Simple Riemannian manifolds are boundary rigid.

A compact Riemannian manifold (M, g) is simple if

- It is simply connected
- Any geodesic has no conjugate points
- ∂M is strictly convex

Some features that simple manifolds pose are :

- Any two points of a simple manifold can be joined by a unique distance minimizing geodesic depending smoothly on the endpoints
- There are no trapped geodesics.

Measurements on the boundary

Differentiating $d(x, y)$ gives the scattering relation $(x, \eta) \mapsto(y, \xi)$.

However, scattering relation still does not provide any information about the interior of M.

We study geodesics that reflect at some interior point $p \in M$.

Outline

- Introduction: Simple Manifolds
- Problem 1 : Uniqueness of Broken Scattering Relations
- Problem 2 : Travel Time Data
- Reduction from Broken Scattering Relation to Travel Time Data
- Problem 3 : Travel Time Difference Data

Broken scattering relations

In a broken scattering relation $v_{1} \mathcal{B}_{T} v_{2}$, we know the entering direction v_{1} and exiting direction v_{2} of a broken geodesic and the total travel time $T=t_{1}+t_{2}$. We do not know the exact locations of $p \in M$.

The family $\left\{\mathcal{B}_{T}: T>0\right\}$ of relations is called the broken scattering relations of Riemannian manifold (M, g).

Known results

Theorem (Kurylev-Lassas-Uhlmann, 2010)
Let (M, g) be a compact connected Riemannian manifold with a nonempty boundary of dimension $n \geq 3$. Then ∂M and \mathcal{B}_{T} determine the isometry type of the manifold uniquely.

- de Hoop-Ilmavirta-Lassas-Saksala, 2021 : An analogous result on foliated and reversible Finsler manifolds ($n \geq 3$)

Sketch of proof

The crucial step is to reduce broken scattering relations to travel time via a construction of focusing surface.

Let $z_{0} \in \partial M$ and let U be a neighborhood of z_{0}. Define $\Psi: U \times \mathbb{R}_{+} \rightarrow M$ by $\Psi(z, t)=\exp _{z}(t \xi(z))$, where $\xi: U \rightarrow S U$ is given by $\gamma_{z, \xi(z)}(t(z))=x_{0}$. Then Ψ is a local diffeomorphism.

Let Σ be an $(n-1)$-dimensional submanifold of M that contains part of the geodesic γ, and let $\tilde{U} \subset U$ be a neighborhood of z_{0}. Then $\tilde{\Psi}: \tilde{U} \rightarrow \tilde{\Psi}(\tilde{U}) \subset \gamma$, where $\tilde{\Psi}(z)=\Psi(z, t(z))$, is a diffeomorphism of ($n-1$)-dimensional manifolds. This is a contradiction if $n \geq 3$, but not when $n=2$.

Uniqueness of the broken scattering relations on simple manifolds

Every simple Riemannian manifold is diffeomorphic to the closed unit ball \mathbb{D}^{n} of \mathbb{R}^{n}. Thus, from here onwards we study simple metrics on \mathbb{D}^{n}.

Theorem (Ilmavirta-L.-Saksala, 2022)

Let $n \geq 2$, and let g_{1} and g_{2} be two simple Riemannian metrics. If the broken scattering relations of g_{1} and g_{2} coincide, then there exists a smooth Riemannian isometry $\Psi:\left(\mathbb{D}^{n}, g_{1}\right) \rightarrow\left(\mathbb{D}^{n}, g_{2}\right)$ whose boundary restriction $\Psi: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}$ is the identity map.

Similar to Kurylev, Lassas, and Uhlmann, the key step of the proof is a reduction to travel time data.

Outline

- Introduction : Simple Manifolds
- Problem 1 : Uniqueness of Broken Scattering Relations
- Problem 2 : Travel Time Data
- Reduction from Broken Scattering Relation to Travel Time Data
- Problem 3 : Travel Time Difference Data

Travel time data

For every point $p \in M$ its travel time function $r_{p}: \partial M \rightarrow \mathbb{R}$ is defined by the formula

$$
r_{p}(z)=d(p, z)
$$

The location of point sources p are unknown.
The travel time map of the Riemannian manifold (M, g) is then given by the formula

$$
\mathcal{R}:(M, g) \rightarrow\left(C(\partial M),\|\cdot\|_{\infty}\right)
$$

with $\mathcal{R}(p)=r_{p}$.
The image set $\mathcal{R}(M) \subset C(\partial M)$ of the travel time map is called the travel time data of the Riemannian manifold (M, g).

\mathcal{R} is a metric isometry

- \mathcal{R} is 1-Lipchitz: By triangle inequality,

$$
\left|r_{x}(z)-r_{y}(z)\right|=|d(x, z)-d(y, z)| \leq d(x, y)
$$

- For any $x, y \in \mathbb{D}^{n}$, there exists a unique distance minimzing geodesic connecting x and y to some $z \in \mathbb{S}^{n-1}$. Then

$$
\left|r_{x}(z)-r_{y}(z)\right|=|d(x, z)-d(y, z)|=d(x, y)
$$

Distance of travel time data

$\mathcal{R}\left(\mathbb{D}^{n}\right)$ is a compact subset of the Banach space $C\left(\mathbb{S}^{n-1},\|\cdot\|_{\infty}\right)$.
We set the distance of travel time data of two simple Riemannian metrics g_{1} and g_{2} on \mathbb{D}^{n} to be

$$
d_{H}^{c\left(\mathbb{S}^{n-1}\right)}\left(\mathcal{R}_{1}\left(\mathbb{D}^{n}\right), \mathcal{R}_{2}\left(\mathbb{D}^{n}\right)\right) \geq 0,
$$

where d_{H} is the Hausdorff distance.
Moreover, we say that the travel time data of the simple Riemannian metrics g_{1} and g_{2} on \mathbb{D}^{n} coincide if

$$
d_{H}^{C\left(\mathbb{S}^{n-1}\right)}\left(\mathcal{R}_{1}\left(\mathbb{D}^{n}\right), \mathcal{R}_{2}\left(\mathbb{D}^{n}\right)\right)=0
$$

Travel time data is invariant under boundary fixing diffeomorphism

If $\Phi: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ is a diffeomorphism whose restriction on \mathbb{S}^{n-1} is the identity map and g_{1} is any simple metric of \mathbb{D}^{n}, then the pullback metric $g_{2}:=\Phi^{*} g_{1}$ is a simple metric on \mathbb{D}^{n} isometric to g_{1}. Thus the equality

$$
d_{2}(p, z)=d_{1}(\Phi(p), \Phi(z))=d_{1}(\Phi(p), z)
$$

(valid for all $p \in \mathbb{D}^{n}$ and $z \in \mathbb{S}^{n-1}$) yields the equations $\mathcal{R}_{2}\left(\mathbb{D}^{n}\right)=\mathcal{R}_{1}\left(\mathbb{D}^{n}\right)$ and $d_{H}^{C\left(\mathbb{S}^{n-1}\right)}\left(\mathcal{R}_{1}\left(\mathbb{D}^{n}\right), \mathcal{R}_{2}\left(\mathbb{D}^{n}\right)\right)=0$.

Earlier results

Uniqueness:

- Katchalov-Kurylev-Lassas, $2001: \mathcal{R}(M)$ determines the isometry class of any compact, connected, oriented, and smooth Riemannian manifold
- de Hoop-Ilmavirta-Lassas-Saksala, 2021: $\mathcal{R}(M)$ determines a Finsler metric up to a natural obstruction in the direction of the tangent bundle corresponding to distance minimizing geodesics that reach the boundary.
- de Hoop-Ilmavirta-Lassas-Saksala, 2021: $\mathcal{R}(M)$ from multiple sources determines the isometry of a Riemannian manifold
- Pavlechko-Saksala, 2022 : Partial travel time data determines a compact manifold with strictly convex boundary up to isometry

Stability :

- Katsuda-Kurylev-Lassas, 2007 : Hölder type stability under certain geometric bounds

Gromov-Hausdorff distance

To measure how close two compact metric spaces X and Y are to each other, we use the Gromov-Hausdorff distance

$$
d_{G H}(X, Y):=\inf \left\{d_{H}^{Z}(f(X), g(Y)) ;\right.
$$

Z is a metric space,
$f: X \rightarrow Z$ and $g: Y \rightarrow Z$
are isometric embeddings\}.
$d_{G H}(X, Y)=0$ if and only if the metric spaces X and Y are isometric.

Lipschitz stability of the travel time data

Theorem (IImavirta-L.-Saksala, 2022)
Let $n \geq 2$, and let g_{1} and g_{2} be two simple Riemannian metrics of \mathbb{D}^{n}.
Then

$$
d_{G H}\left(\left(\mathbb{D}^{n}, g_{1}\right),\left(\mathbb{D}^{n}, g_{2}\right)\right) \leq d_{H}^{C\left(\mathbb{S}^{n-1}\right)}\left(\mathcal{R}_{1}\left(\mathbb{D}^{n}\right), \mathcal{R}_{2}\left(\mathbb{D}^{n}\right)\right)
$$

In particular, if the travel time data for two metrics coincide, then they agree up to a boundary fixing isometry.

Meyers-Steenrod Theorem

A key component of the proof is the following result :
Theorem (Myers-Steenrod, 1939)
Every distance-preserving map between two connected Riemannian manifolds is a smooth isometry of Riemannian manifolds.

Sketch of proof of travel time data stability

- $\mathcal{R}: \mathbb{D}^{n} \rightarrow C\left(\mathbb{S}^{n-1}\right)$ is an isometry.
- If $\mathcal{R}_{2}\left(\mathbb{D}^{n}\right)=\mathcal{R}_{1}\left(\mathbb{D}^{n}\right)$, then

$$
\Psi:=\mathcal{R}_{2}^{-1} \circ \mathcal{R}_{1}:\left(\mathbb{D}^{n}, d_{1}\right) \rightarrow\left(\mathbb{D}^{n}, d_{2}\right)
$$

is a well-defined bijective metric isometry. By Myers-Steenrod theorem, Ψ is a smooth Riemannian isometry.

- Claim of the theorem folllows by using $f=\mathcal{R}_{1}, g=\mathcal{R}_{2}$, and $Z=C\left(\mathbb{S}^{n-1}\right)$ in the definition of Gromov-Hausdorff distance.

Outline

- Introduction : Simple Manifolds
- Problem 1 : Uniqueness of Broken Scattering Relations
- Problem 2 : Travel Time Data
- Reduction from Broken Scattering Relation to Travel Time Data
- Problem 3: Travel Time Difference Data

Theorem (Ilmavirta-L.-Saksala, 2022)
Let $n \geq 2$, and let g_{1} and g_{2} be two simple Riemannian metrics. If the broken scattering relations of g_{1} and g_{2} coincide, then there exists a smooth Riemannian isometry $\Psi:\left(\mathbb{D}^{n}, g_{1}\right) \rightarrow\left(\mathbb{D}^{n}, g_{2}\right)$ whose boundary restriction $\Psi: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}$ is the identity map.

Idea of proof : reduction step to travel time data

Proposition (Ilmavirta-L.-Saksala, 2022)

Let g_{1} and g_{2} be two simple Riemannian metrics on \mathbb{D}^{n} whose first fundamental forms agree on \mathbb{S}^{n-1}. If the broken scattering relations of these metric coincide, then their travel time data also agree.

From $v_{1} \mathcal{B}_{T} v_{2}$, we need to recover (1) the scattering relation and (2) the travel times t_{1} and t_{2} such that $t_{1}+t_{2}=T$.

Suppose that g is a simple Riemannian metric of \mathbb{D}^{n}.

- Suppose $\gamma_{v_{1}}$ and $\gamma_{v_{2}}$ are two geodesics that do not have exactly the same endpoints on the boundary. There exists another geodesic $\gamma_{v_{3}}$ that intersects $\gamma_{v_{1}}$ but not $\gamma_{v_{2}}$.

- Let $v_{1}, v_{2} \in \partial_{\text {in }} S \mathbb{D}^{n}$. The following two statements are equivalent :
(1) We have $V\left(v_{1}\right)=V\left(v_{2}\right)$, where

$$
V\left(v_{i}\right):=\left\{w \in B \mathbb{S}^{n-1}: \text { there is } T>0 \text { for which } v_{i} \mathcal{B}_{T} w\right\} .
$$

(2) Either $v_{1}=v_{2}$ or $v_{2}=-\phi_{\tau_{\text {exit }}\left(v_{1}\right)}\left(v_{1}\right)$.

- The broken scattering relations determine the scattering relation and exit time function on $\partial_{\text {in }} S \mathbb{D}^{n}$.

To recover travel times, let $z \in \partial M$ and consider a geodesic normal to the boundary γ_{ν}. Let $p=\gamma_{\nu}(t), 0<t<\tau_{\text {exit }}\left(\gamma_{\nu}\right)$.

- Suppose that $v_{1} \mathcal{B}_{T} v_{2}$. Since g is simple, then $\gamma_{v_{1}}$ and $\gamma_{v_{2}}$ intersect exactly once. Then there are some numbers $t_{1}, t_{2}, s_{1}, s_{2} \geq 0$ that satisfy the equations

$$
\begin{array}{ll}
t_{1}+t_{2}=T\left(v_{1}, v_{2}\right), & t_{1}+s_{1}=T\left(v_{1}, \eta_{1}\right), \\
t_{2}+s_{2}=T\left(v_{2}, \eta_{2}\right), & t_{1}+s_{2}=T\left(v_{1}, \eta_{2}\right) .
\end{array}
$$

Then

$$
\begin{aligned}
& t_{1}=\frac{1}{2}\left(T\left(v_{1}, v_{2}\right)-T\left(v_{2}, \eta_{2}\right)+T\left(v_{1}, \eta_{2}\right)\right) \quad \text { and } \\
& t_{2}=T\left(v_{1}, v_{2}\right)-t_{1}
\end{aligned}
$$

Outline

- Introduction: Simple Manifolds
- Problem 1 : Uniqueness of Broken Scattering Relations
- Problem 2 : Travel Time Data
- Reduction from Broken Scattering Relation to Travel Time Data
- Problem 3 : Travel Time Difference Data

Travel time is difficult to measure

If the origin time of a seismic event is unknown, then the travel time is difficult to measure.

$d(p, z)=$ travel time $(p \rightarrow z)=$ arrival time $(p \rightarrow z)$ - origin time $d(p, z)-d(p, w)=$ arrival time $(p \rightarrow z)-\operatorname{arrival}$ time $(p \rightarrow w)$

Travel time difference data

The travel time difference function of a point $p \in M$ is the function

$$
\begin{aligned}
& D_{p}: \partial M \times \partial M \rightarrow \mathbb{R} \\
& D_{p}(z, w)=d(p, z)-d(p, w)
\end{aligned}
$$

Then the travel time difference map and the travel time difference data of the Riemannian manifold (M, g) are

$$
\mathcal{D}:(M, g) \rightarrow\left(C(\partial M \times \partial M),\|\cdot\|_{\infty}\right)
$$

with $\mathcal{D}(p)=\frac{1}{2} D_{p}$, and its image set

$$
\mathcal{D}(M) \subset C(\partial M \times \partial M)
$$

respectively.

\mathcal{D} is a metric isometry

- \mathcal{D} is 1 -Lipchitz.
- For any $x, y \in \mathbb{D}^{n}$, there exists a unique globally distance minimizing geodesic γ that goes through x and y, having some endpoints $z, w \in \mathbb{S}^{n-1}$. We have

$$
|(\mathcal{D}(x)-\mathcal{D}(y))(z, w)|=\frac{1}{2}|d(x, z)-d(y, z)+d(y, w)-d(x, w)|=d(x, y)
$$

Distance of travel time difference data

We set the distance of the travel time difference data of two simple Riemannian metrics g_{1} and g_{2} on \mathbb{D}^{n} to be

$$
d_{H}^{C\left(\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}\right)}\left(\mathcal{D}_{1}\left(\mathbb{D}^{n}\right), \mathcal{D}_{2}\left(\mathbb{D}^{n}\right)\right) \geq 0
$$

where $d_{H}^{C\left(\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}\right)}$ is the Hausdorff distance of the Banach space $\left(C\left(\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}\right),\|\cdot\|_{\infty}\right)$.

Moreover, we say that the travel time difference data of the simple Riemannian metrics g_{1} and g_{2} on \mathbb{D}^{n} coincide if

$$
d_{H}^{C\left(\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}\right)}\left(\mathcal{D}_{1}\left(\mathbb{D}^{n}\right), \mathcal{D}_{2}\left(\mathbb{D}^{n}\right)\right)=0 .
$$

The travel time difference data is invariant under boundary fixing diffeomorphism.

Earlier results

Uniqueness:

- Lassas-Saksala, 2019: $D_{p}(z, w)$ was measured for every $p \in N$ between any $z, w \in F$, where $F \subset N$ contains an open subset of a closed manifold (N, g). Then the metric on F, together with the travel time difference data, determine (N, g) up to isometry.
- de Hoop-Saksala, 2019 : Travel time difference data measured on the ∂M determines (M, g) up to isometry.
- Ivanov, 2022 : A complete Riemannian manifold with boundary is uniquely determined, up to an isometry, by its distance difference representation on the boundary.

Stability :

Theorem (Ivanov, 2020)

Suppose (M_{1}, g_{1}) and (M_{2}, g_{2}) are n-dimensional Riemannian manifolds with $n \geq 2$ and satisfy certain geometric bounds. Assume that $M_{1} \cap M_{2}=F \neq \emptyset$ is open, they induce the same topology and the same differential structure on F, and $\left.g_{1}\right|_{F}=\left.g_{2}\right|_{F}$. Assume that F contains a geodesic ball of radius ρ_{0}. Then for any $\varepsilon>0$, there exists $\delta>0$ such that $d_{H}\left(\mathcal{D}_{F}^{1}\left(M_{1}\right), \mathcal{D}_{F}^{2}\left(M_{2}\right)\right)<\delta$ implies $d_{G H}\left(M_{1}, M_{2}\right)<\varepsilon$.

However, this stability result does not have a modulo of continuity.

Lipschitz stability of the travel time difference data

Theorem (IImavirta-L.-Saksala, 2022)
Let $n \geq 2$, and let g_{1} and g_{2} be two simple Riemannian metrics of \mathbb{D}^{n}. Then

$$
d_{G H}\left(\left(\mathbb{D}^{n}, g_{1}\right),\left(\mathbb{D}^{n}, g_{2}\right)\right) \leq d_{H}^{C\left(\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}\right)}\left(\mathcal{D}_{1}\left(\mathbb{D}^{n}\right), \mathcal{D}_{2}\left(\mathbb{D}^{n}\right)\right) .
$$

In particular, if the travel time difference data for two metrics coincide, then they agree up to a boundary fixing isometry.

Sketch of proof

- $\mathcal{D}: \mathbb{D}^{n} \rightarrow C\left(\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}\right)$ is an isometry.
- If $\mathcal{D}_{2}\left(\mathbb{D}^{n}\right)=\mathcal{D}_{1}\left(\mathbb{D}^{n}\right)$, then

$$
\Psi:=\mathcal{D}_{2}^{-1} \circ \mathcal{D}_{1}:\left(\mathbb{D}^{n}, d_{1}\right) \rightarrow\left(\mathbb{D}^{n}, d_{2}\right)
$$

is a well-defined bijective metric isometry. By Myers-Steenrod theorem, Ψ is a smooth Riemannian isometry.

- Claim of the theorem follows by using $f=\mathcal{D}_{1}, g=\mathcal{D}_{2}$, and $Z=C\left(\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}\right)$ in the definition of Gromov-Hausdorff distance.

Thank you very much for your attention!

