
lruthotto@emory.edu Cont DL @ UCI

Differential Equations for
Continuous-Time Deep Learning

UCI International Zoom Inverse Problems Seminar

Lars Ruthotto
Departments of Mathematics and Computer Science
Emory University

lruthotto@emory.edu
@lruthotto

Slides Funding

Title CT-DL CNF DGM SBDM OC Σ References 1

lruthotto@emory.edu Cont DL @ UCI

Examples: Continuous Time Deep Learning

Ex 1: Supervised Learning

Given:
▶ features Y0

▶ labels C

Find F(·,θ) that minimizes

loss[F(Y0,θ),C] + regularizer[θ]

Options for F:
▶ Multilayer Perceptron
▶ ResNet, Neural ODE

LR
DiffEq for Continuous-Time Deep Learning
AMS Notices, arXiv:2401.03965

Ex 2: Generative Modeling

Given:
▶ samples

x1, x2, . . . ∼ ρx

▶ target density ρz

Find F : Rd → Rd that
maximizes

ρx(xj) = ρz(F(xj)) det∇F(xj)

conditional generative modeling: learn
ρx(x|y) using samples from joint distribution

LR, S Osher, W Li, L Nurbekyan, S Wu Fung
An ML Framework for Solving High-Dimensional MFG/C
PNAS 117 (17), 9183-9193, 2020

Title CT-DL CNF DGM SBDM OC Σ References 2

lruthotto@emory.edu Cont DL @ UCI

Examples: Continuous Time Deep Learning

Ex 1: Supervised Learning

Given:
▶ features Y0

▶ labels C

Find F(·,θ) that minimizes

loss[F(Y0,θ),C] + regularizer[θ]

Options for F:
▶ Multilayer Perceptron
▶ ResNet, Neural ODE

LR
DiffEq for Continuous-Time Deep Learning
AMS Notices, arXiv:2401.03965

Ex 2: Generative Modeling

Given:
▶ samples

x1, x2, . . . ∼ ρx

▶ target density ρz

Find F : Rd → Rd that
maximizes

ρx(xj) = ρz(F(xj)) det∇F(xj)

conditional generative modeling: learn
ρx(x|y) using samples from joint distribution

LR, S Osher, W Li, L Nurbekyan, S Wu Fung
An ML Framework for Solving High-Dimensional MFG/C
PNAS 117 (17), 9183-9193, 2020

Title CT-DL CNF DGM SBDM OC Σ References 2

lruthotto@emory.edu Cont DL @ UCI

Agenda: Diff Eq for Continuous-Time Deep Learning

▶ Intro to Continuous-Time Deep Learning
▶ ResNet and Neural ODEs
▶ Training via Inverse Problems / Optimal Control
▶ A PDE Perspective for Supervised Learning

▶ Generative Modeling
▶ (Conditional) Continuous Normalizing Flows
▶ Application in Simulation Based Inference
▶ Score-Based Diffusion Models

▶ Optimal Control
▶ High-dimensional HJB Equations
▶ Amortized PDE control

LR
DiffEq for Continuous-Time Deep
Learning
AMS Notices, arXiv:2401.03965

Z. Wang, D. Verma, R. Baptista, Y.
Marzouk, LR
NNs for COT and Bayesian Inference
arXiv preprint 2310.16975, 2023

T. Yang, P. Hagemann, S.
Mildenberger, LR, G. Steidl
ML Diffusion: ∞-dim SBDM
arXiv: 2303:04772, 2023

Title CT-DL CNF DGM SBDM OC Σ References 3

lruthotto@emory.edu Cont DL @ UCI

Continuous-Time Deep Learning

Title CT-DL CNF DGM SBDM OC Σ References 4

lruthotto@emory.edu Cont DL @ UCI

Example: Supervised Classification with a DNN

training data DNN sketch classification result

Title CT-DL CNF DGM SBDM OC Σ References 5

lruthotto@emory.edu Cont DL @ UCI

ResNet: Residual Neural Networks (He et al. 2016)
Training data {(y(1), c(1)), (y(2), c(2)), . . .} ⊂ R2 × {0, 1}.

Forward propagation of input y through simple ResNet

u0 = Kiny
u1 = u0 + h σ(K0u0 + b0)

... =
...

uN = uN−1 + h σ(KN−1uN−1 + bN−1))

with h > 0, θRes
i := (Ki,bi).

Let F(y,θ) := s(KoutuN + bout), weights
θ := (θRes

0 , . . . ,θRes
N−1,Kout,bout).

Train weights by solving (Bottou et al. 2018)

min
θ

E [ℓ(F(y,θ), c)] +
α

2
∥θ∥2

2,

with cross entropy loss ℓ(z, c) = −c log(z)− (1 − c) log(1 − z).

training data:

DNN sketch:

activation σ and sigmoid s:

−4 −2 0 2 4
−1

−0.5

0

0.5

1

s(x)
σ(x)

Title CT-DL CNF DGM SBDM OC Σ References 6

lruthotto@emory.edu Cont DL @ UCI

ResNet: Residual Neural Networks (He et al. 2016)
Training data {(y(1), c(1)), (y(2), c(2)), . . .} ⊂ R2 × {0, 1}.
Forward propagation of input y through simple ResNet

u0 = Kiny

u1 = u0 + h σ(K0u0 + b0)

... =
...

uN = uN−1 + h σ(KN−1uN−1 + bN−1))

with h > 0, θRes
i := (Ki,bi).

Let F(y,θ) := s(KoutuN + bout), weights
θ := (θRes

0 , . . . ,θRes
N−1,Kout,bout).

Train weights by solving (Bottou et al. 2018)

min
θ

E [ℓ(F(y,θ), c)] +
α

2
∥θ∥2

2,

with cross entropy loss ℓ(z, c) = −c log(z)− (1 − c) log(1 − z).

training data:

DNN sketch:

activation σ and sigmoid s:

−4 −2 0 2 4
−1

−0.5

0

0.5

1

s(x)
σ(x)

Title CT-DL CNF DGM SBDM OC Σ References 6

lruthotto@emory.edu Cont DL @ UCI

ResNet: Residual Neural Networks (He et al. 2016)
Training data {(y(1), c(1)), (y(2), c(2)), . . .} ⊂ R2 × {0, 1}.
Forward propagation of input y through simple ResNet

u0 = Kiny
u1 = u0 + h σ(K0u0 + b0)

... =
...

uN = uN−1 + h σ(KN−1uN−1 + bN−1))

with h > 0,

θRes
i := (Ki,bi).

Let F(y,θ) := s(KoutuN + bout), weights
θ := (θRes

0 , . . . ,θRes
N−1,Kout,bout).

Train weights by solving (Bottou et al. 2018)

min
θ

E [ℓ(F(y,θ), c)] +
α

2
∥θ∥2

2,

with cross entropy loss ℓ(z, c) = −c log(z)− (1 − c) log(1 − z).

training data:

DNN sketch:

activation σ and sigmoid s:

−4 −2 0 2 4
−1

−0.5

0

0.5

1

s(x)
σ(x)

Title CT-DL CNF DGM SBDM OC Σ References 6

lruthotto@emory.edu Cont DL @ UCI

ResNet: Residual Neural Networks (He et al. 2016)
Training data {(y(1), c(1)), (y(2), c(2)), . . .} ⊂ R2 × {0, 1}.
Forward propagation of input y through simple ResNet

u0 = Kiny
u1 = u0 + h σ(K0u0 + b0)

... =
...

uN = uN−1 + h σ(KN−1uN−1 + bN−1))

with h > 0,

θRes
i := (Ki,bi).

Let F(y,θ) := s(KoutuN + bout), weights
θ := (θRes

0 , . . . ,θRes
N−1,Kout,bout).

Train weights by solving (Bottou et al. 2018)

min
θ

E [ℓ(F(y,θ), c)] +
α

2
∥θ∥2

2,

with cross entropy loss ℓ(z, c) = −c log(z)− (1 − c) log(1 − z).

training data:

DNN sketch:

activation σ and sigmoid s:

−4 −2 0 2 4
−1

−0.5

0

0.5

1

s(x)
σ(x)

Title CT-DL CNF DGM SBDM OC Σ References 6

lruthotto@emory.edu Cont DL @ UCI

ResNet: Residual Neural Networks (He et al. 2016)
Training data {(y(1), c(1)), (y(2), c(2)), . . .} ⊂ R2 × {0, 1}.
Forward propagation of input y through simple ResNet

u0 = Kiny
u1 = u0 + h σ(K0u0 + b0)

... =
...

uN = uN−1 + h σ(KN−1uN−1 + bN−1))

with h > 0, θRes
i := (Ki,bi).

Let F(y,θ) := s(KoutuN + bout), weights
θ := (θRes

0 , . . . ,θRes
N−1,Kout,bout).

Train weights by solving (Bottou et al. 2018)

min
θ

E [ℓ(F(y,θ), c)] +
α

2
∥θ∥2

2,

with cross entropy loss ℓ(z, c) = −c log(z)− (1 − c) log(1 − z).

training data:

DNN sketch:

activation σ and sigmoid s:

−4 −2 0 2 4
−1

−0.5

0

0.5

1

s(x)
σ(x)

Title CT-DL CNF DGM SBDM OC Σ References 6

lruthotto@emory.edu Cont DL @ UCI

ResNet: Residual Neural Networks (He et al. 2016)
Training data {(y(1), c(1)), (y(2), c(2)), . . .} ⊂ R2 × {0, 1}.
Forward propagation of input y through simple ResNet

u0 = Kiny
u1 = u0 + h σ(K0u0 + b0)

... =
...

uN = uN−1 + h σ(KN−1uN−1 + bN−1))

with h > 0, θRes
i := (Ki,bi).

Let F(y,θ) := s(KoutuN + bout), weights
θ := (θRes

0 , . . . ,θRes
N−1,Kout,bout).

Train weights by solving (Bottou et al. 2018)

min
θ

E [ℓ(F(y,θ), c)] +
α

2
∥θ∥2

2,

with cross entropy loss ℓ(z, c) = −c log(z)− (1 − c) log(1 − z).

training data:

DNN sketch:

activation σ and sigmoid s:

−4 −2 0 2 4
−1

−0.5

0

0.5

1

s(x)
σ(x)

Title CT-DL CNF DGM SBDM OC Σ References 6

lruthotto@emory.edu Cont DL @ UCI

ResNet: Discussion
In ResNet, uN is forward Euler approximation of u(T),

∂tu(t) = f (u(t),θODE(t)), t ∈ (0,T], u(0) = u0;

see (E 2017; Haber and Ruthotto 2017).

Advantages over other Architectures
1. ResNets often improve with depth
2. state-of-the-art results for many tasks
3. easy to train and easy to add depth

Remarks
1. f (u,θODE(t)) = σ(K(t)u + b(t)) gives ResNet

2. in practice: more complicated layer f , concatenate ResNets
to change width or image resolution

3. similar continuous networks, extensions to PDEs, and
implicit time integrators in (Rico-Martı́nez et al. 1992;
González-Garcı́a et al. 1998).

impact on loss function
(Li et al. 2018)

56-layer network (no ResNet)

56-layer ResNet

Title CT-DL CNF DGM SBDM OC Σ References 7

lruthotto@emory.edu Cont DL @ UCI

ResNet: Discussion
In ResNet, uN is forward Euler approximation of u(T),

∂tu(t) = f (u(t),θODE(t)), t ∈ (0,T], u(0) = u0;

see (E 2017; Haber and Ruthotto 2017).
Advantages over other Architectures

1. ResNets often improve with depth
2. state-of-the-art results for many tasks
3. easy to train and easy to add depth

Remarks
1. f (u,θODE(t)) = σ(K(t)u + b(t)) gives ResNet

2. in practice: more complicated layer f , concatenate ResNets
to change width or image resolution

3. similar continuous networks, extensions to PDEs, and
implicit time integrators in (Rico-Martı́nez et al. 1992;
González-Garcı́a et al. 1998).

impact on loss function
(Li et al. 2018)

56-layer network (no ResNet)

56-layer ResNet

Title CT-DL CNF DGM SBDM OC Σ References 7

lruthotto@emory.edu Cont DL @ UCI

ResNet: Discussion
In ResNet, uN is forward Euler approximation of u(T),

∂tu(t) = f (u(t),θODE(t)), t ∈ (0,T], u(0) = u0;

see (E 2017; Haber and Ruthotto 2017).
Advantages over other Architectures

1. ResNets often improve with depth
2. state-of-the-art results for many tasks
3. easy to train and easy to add depth

Remarks
1. f (u,θODE(t)) = σ(K(t)u + b(t)) gives ResNet
2. in practice: more complicated layer f , concatenate ResNets

to change width or image resolution
3. similar continuous networks, extensions to PDEs, and

implicit time integrators in (Rico-Martı́nez et al. 1992;
González-Garcı́a et al. 1998).

impact on loss function
(Li et al. 2018)

56-layer network (no ResNet)

56-layer ResNet

Title CT-DL CNF DGM SBDM OC Σ References 7

lruthotto@emory.edu Cont DL @ UCI

Stable Architectures for DNNs (Haber and Ruthotto 2017)
When is forward propagation stable? That is, when ∃M > 0 such that

∥F(y + ϵ,θ)− F(y,θ)∥ ≤ M∥ϵ∥ (ϵ input perturbation)

Motivation: well-posed training problem, adversarial attacks, efficient optimization,. . .

Main Findings and Contributions
1. ∂tu(t) = σ(K(t)u(t) + b(t)) not stable for all K(·),b(·)
2. alternative f : antisymmetric K, Hamiltonian-inspired networks
3. symplectic integrators to obtain stable architecture (̸= ResNet)
4. stable DNNs perform competitively (on simple tasks)

Improvements and Related Works
1. more expressive architectures (Chang et al. 2018), multilevel training (Chang

et al. 2017)
2. improved stability results (Ruthotto and Haber 2020; Celledoni et al. 2020)
3. analysis: convergence (Thorpe and Gennip 2018), opt. conditions (Benning et al.

2019)
4. multi-step and other time integrators (Lu et al. 2017)
5. discrete weights (Li and Hao 2018), maximum principles (Li et al. 2017)

Title CT-DL CNF DGM SBDM OC Σ References 8

lruthotto@emory.edu Cont DL @ UCI

Stable Architectures for DNNs (Haber and Ruthotto 2017)
When is forward propagation stable? That is, when ∃M > 0 such that

∥F(y + ϵ,θ)− F(y,θ)∥ ≤ M∥ϵ∥ (ϵ input perturbation)

Motivation: well-posed training problem, adversarial attacks, efficient optimization,. . .
Main Findings and Contributions

1. ∂tu(t) = σ(K(t)u(t) + b(t)) not stable for all K(·),b(·)
2. alternative f : antisymmetric K, Hamiltonian-inspired networks
3. symplectic integrators to obtain stable architecture (̸= ResNet)
4. stable DNNs perform competitively (on simple tasks)

Improvements and Related Works
1. more expressive architectures (Chang et al. 2018), multilevel training (Chang

et al. 2017)
2. improved stability results (Ruthotto and Haber 2020; Celledoni et al. 2020)
3. analysis: convergence (Thorpe and Gennip 2018), opt. conditions (Benning et al.

2019)
4. multi-step and other time integrators (Lu et al. 2017)
5. discrete weights (Li and Hao 2018), maximum principles (Li et al. 2017)

Title CT-DL CNF DGM SBDM OC Σ References 8

lruthotto@emory.edu Cont DL @ UCI

Stable Architectures for DNNs (Haber and Ruthotto 2017)
When is forward propagation stable? That is, when ∃M > 0 such that

∥F(y + ϵ,θ)− F(y,θ)∥ ≤ M∥ϵ∥ (ϵ input perturbation)

Motivation: well-posed training problem, adversarial attacks, efficient optimization,. . .
Main Findings and Contributions

1. ∂tu(t) = σ(K(t)u(t) + b(t)) not stable for all K(·),b(·)
2. alternative f : antisymmetric K, Hamiltonian-inspired networks
3. symplectic integrators to obtain stable architecture (̸= ResNet)
4. stable DNNs perform competitively (on simple tasks)

Improvements and Related Works
1. more expressive architectures (Chang et al. 2018), multilevel training (Chang

et al. 2017)
2. improved stability results (Ruthotto and Haber 2020; Celledoni et al. 2020)
3. analysis: convergence (Thorpe and Gennip 2018), opt. conditions (Benning et al.

2019)
4. multi-step and other time integrators (Lu et al. 2017)
5. discrete weights (Li and Hao 2018), maximum principles (Li et al. 2017)

Title CT-DL CNF DGM SBDM OC Σ References 8

lruthotto@emory.edu Cont DL @ UCI

Neural Ordinary Differential Equations (Chen et al. 2018)
Main Novelties and Contributions

1. apply adaptive time integrator to continuous ResNet
2. compute gradients of loss function using adjoint

equation

−∂tp(t) = ∇f (u(t),θ(t))⊤p(t), p(T) = ∇uNℓ(F(y), c)

3. save memory by re-computing u(t) backward in time.
4. popularized continuous models in ML community

Improvements and Related Works
1. item 3 above can be unstable⇝ checkpointing

(Gholami et al. 2019)
2. invertible ResNet (Behrmann et al. 2019), generative

modeling (Grathwohl et al. 2018; Chen et al. 2019)
3. augmentation needed for expressiveness (Dupont et al.

2019)

from (Chen et al. 2018)

MIT Tech Review, 2018

Title CT-DL CNF DGM SBDM OC Σ References 9

lruthotto@emory.edu Cont DL @ UCI

Neural Ordinary Differential Equations (Chen et al. 2018)
Main Novelties and Contributions

1. apply adaptive time integrator to continuous ResNet
2. compute gradients of loss function using adjoint

equation

−∂tp(t) = ∇f (u(t),θ(t))⊤p(t), p(T) = ∇uNℓ(F(y), c)

3. save memory by re-computing u(t) backward in time.
4. popularized continuous models in ML community

Improvements and Related Works
1. item 3 above can be unstable⇝ checkpointing

(Gholami et al. 2019)
2. invertible ResNet (Behrmann et al. 2019), generative

modeling (Grathwohl et al. 2018; Chen et al. 2019)
3. augmentation needed for expressiveness (Dupont et al.

2019)

from (Chen et al. 2018)

MIT Tech Review, 2018

Title CT-DL CNF DGM SBDM OC Σ References 9

lruthotto@emory.edu Cont DL @ UCI

Neural Ordinary Differential Equations (Chen et al. 2018)
Main Novelties and Contributions

1. apply adaptive time integrator to continuous ResNet
2. compute gradients of loss function using adjoint

equation

−∂tp(t) = ∇f (u(t),θ(t))⊤p(t), p(T) = ∇uNℓ(F(y), c)

3. save memory by re-computing u(t) backward in time.
4. popularized continuous models in ML community

Improvements and Related Works
1. item 3 above can be unstable⇝ checkpointing

(Gholami et al. 2019)
2. invertible ResNet (Behrmann et al. 2019), generative

modeling (Grathwohl et al. 2018; Chen et al. 2019)
3. augmentation needed for expressiveness (Dupont et al.

2019)

from (Chen et al. 2018)

MIT Tech Review, 2018

Title CT-DL CNF DGM SBDM OC Σ References 9

lruthotto@emory.edu Cont DL @ UCI

Optimal Control Framework for Deep Learning

training data, Y0,C prop. features, Y(T),C classification result

Supervised Deep Learning Problem

Given training data, Y0, and labels, C, find network parameters θ and classification
weights W, µ such that the DNN predicts the data-label relationship (and generalizes
to new data), i.e., solve

minimizeθ,W,µ loss[WY(T) + µ,C] + regularizer[θ,W,µ]

subject to ∂tY(t) = f (Y(t),θ(t)) , Y(0) = Y0.

Title CT-DL CNF DGM SBDM OC Σ References 10

lruthotto@emory.edu Cont DL @ UCI

Optimal Control Framework for Deep Learning

training data, Y0,C prop. features, Y(T),C classification result

Supervised Deep Learning Problem

Given training data, Y0, and labels, C, find network parameters θ and classification
weights W, µ such that the DNN predicts the data-label relationship (and generalizes
to new data), i.e., solve

minimizeθ,W,µ loss[WY(T,θ) + µ,C] + regularizer[θ,W,µ]

subject to ∂tY(t) = f (Y(t),θ(t)) , Y(0) = Y0.

Title CT-DL CNF DGM SBDM OC Σ References 10

lruthotto@emory.edu Cont DL @ UCI

control 1
control 2

control 3
control 4

control 5

input features
output features←− time −→

Supervised Classification with Continuous ResNet

Given (y1, c1), (y2, c2), . . . find network weights (θ) and classification weights (W, µ)
such that the DNN predicts the data-label relationship (and generalizes to new data),
by solving

minimizeθ,W,µ E (loss[g(Wu(T) + µ), c]) + regularizer[θ,W,µ]

subject to ∂tu(t) = f (u(t),θ(t)), ∀t ∈ [0,T], u(0) = y.

Title CT-DL CNF DGM SBDM OC Σ References 11

lruthotto@emory.edu Cont DL @ UCI

A PDE Perspective of Continuous-Time Learning

training data, Y0,C prop. features, u(X, 0) classification result u(X, 1)

Supervised Deep Learning Problem

Given training data, Y0, and labels, C, find network parameters θ and classification
weights W, µ such that the DNN predicts the data-label relationship (and generalizes
to new data), i.e., solve

minimizeθ,W,µ loss[u(Y0, 1),C] + regularizer[θ,W,µ]

subject to ∂tu(X, t) + f (X,θ(t))⊤∇u(X, t) = 0
u(X, 0) = WX + µ.

Title CT-DL CNF DGM SBDM OC Σ References 12

lruthotto@emory.edu Cont DL @ UCI

Continuous Normalizing Flows

Title CT-DL CNF DGM SBDM OC Σ References 13

lruthotto@emory.edu Cont DL @ UCI

Continuous Normalizing Flows (CNF)

Likelihood Maximization
Given samples x1, x2, . . . , xN ∈ Rd, find a velocity v that
maximizes the likelihood of the samples w.r.t. the
push-forward of the standard normal distribution ρz, i.e.,

maximizev,z
1
N

N∑
k=1

ρz(z(xk, 1)) · det∇(z(xk, 1))

subject to
d
dt

z(xk, t) = v(z(xk, t), t),

with z(xk, 0) = xk for k = 1, 2, . . . ,N.

Here: l(xk, 1) = log det(∇z(xk, 1))

W Grathwohl et al.
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
Models. arXiv, 2018.

z(x1, 0) . . . z(xN , 0)

ρz

z(xN , 1)

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 14

lruthotto@emory.edu Cont DL @ UCI

Continuous Normalizing Flows (CNF)

Likelihood Maximization
Given samples x1, x2, . . . , xN ∈ Rd, find a velocity v that
maximizes the likelihood of the samples w.r.t. the
push-forward of the standard normal distribution ρz, i.e.,

minimizev,z GCNF(v, z) :=
1
N

N∑
k=1

(
1
2
∥z(xk, 1)∥2 − l(xk, 1)

)
subject to

d
dt

(
z(xk, s)
l(xk, s)

)
=

(
v(z(xk, s), s)

trace(∇v(z(xk, s), s))

)
with z(xk, 0) = xk and l(xk, 0) = 0 for k = 1, 2, . . . ,N.

Here: l(xk, 1) = log det(∇z(xk, 1))
W Grathwohl et al.
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
Models. arXiv, 2018.

z(x1, 0) . . . z(xN , 0)

ρz

z(xN , 1)

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 14

lruthotto@emory.edu Cont DL @ UCI

Continuous Normalizing Flows (CNF)

Likelihood Maximization
Given samples x1, x2, . . . , xN ∈ Rd, find a velocity v that
maximizes the likelihood of the samples w.r.t. the
push-forward of the standard normal distribution ρz, i.e.,

minimizev,z GCNF(v, z) :=
1
N

N∑
k=1

(
1
2
∥z(xk, 1)∥2 − l(xk, 1)

)
subject to

d
dt

(
z(xk, s)
l(xk, s)

)
=

(
v(z(xk, s), s)

trace(∇v(z(xk, s), s))

)
with z(xk, 0) = xk and l(xk, 0) = 0 for k = 1, 2, . . . ,N.

Here: l(xk, 1) = log det(∇z(xk, 1))
W Grathwohl et al.
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
Models. arXiv, 2018.

z(x1, 0) . . . z(xN , 0)

ρz

z(xN , 1)

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 14

lruthotto@emory.edu Cont DL @ UCI

Continuous Normalizing Flows (CNF)

Likelihood Maximization
Given samples x1, x2, . . . , xN ∈ Rd, find a velocity v that
maximizes the likelihood of the samples w.r.t. the
push-forward of the standard normal distribution ρz, i.e.,

minimizev,z GCNF(v, z) :=
1
N

N∑
k=1

(
1
2
∥z(xk, 1)∥2 − l(xk, 1)

)
subject to

d
dt

(
z(xk, s)
l(xk, s)

)
=

(
v(z(xk, s), s)

trace(∇v(z(xk, s), s))

)
with z(xk, 0) = xk and l(xk, 0) = 0 for k = 1, 2, . . . ,N.

Here: l(xk, 1) = log det(∇z(xk, 1))
W Grathwohl et al.
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
Models. arXiv, 2018.

z(x1, 0) . . . z(xN , 0)

ρz

z(xN , 1)

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 14

lruthotto@emory.edu Cont DL @ UCI

OT-Flow: Regularized Continuous Normalizing Flow

Given samples x1, x2, . . . , xN ∼ ρx, find the value function Φ
such that the flow given by v = −∇Φ maximizes the likelihood
of the samples w.r.t. the standard normal distribution ρz, i.e.,

minimizeΦ Ex∼ρx

[
1
2
∥z(x, 1)∥2 − l(x, 1) +

cL(x, 1) + α1cH(x, 1)

]

subject to
d
dt

z(x, t)
l(x, t)

cL(x, t)
cH(x, t)

 =

−∇Φ(z(x, t), t)
−∆Φ(z(x, t), t)

1
2∥∇Φ(z(x, t), t)∥2∣∣ d

dtΦ(z(x, t), t) + 1
2∥∇Φ(z(x, t), t)∥2

∣∣

z(x, 0) = x,

cL(x, 0) = cH(x, 0)

= l(x, 0) = 0

OT⇝ uniqueness, more efficient time integration

Benefits of OT also observed in Zhang et al. 2018; Yang and
Karniadakis 2020; Finlay et al. 2020

z(x1, 0)

ρz

z(x1, 1)

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 15

lruthotto@emory.edu Cont DL @ UCI

OT-Flow: Regularized Continuous Normalizing Flow

Given samples x1, x2, . . . , xN ∼ ρx, find the value function Φ
such that the flow given by v = −∇Φ maximizes the likelihood
of the samples w.r.t. the standard normal distribution ρz, i.e.,

minimizeΦ Ex∼ρx

[
1
2
∥z(x, 1)∥2 − l(x, 1) +

cL(x, 1) + α1cH(x, 1)

]

subject to
d
dt

z(x, t)
l(x, t)

cL(x, t)
cH(x, t)

 =

−∇Φ(z(x, t), t)
−∆Φ(z(x, t), t)

1
2∥∇Φ(z(x, t), t)∥2∣∣ d

dtΦ(z(x, t), t) + 1
2∥∇Φ(z(x, t), t)∥2

∣∣

z(x, 0) = x,

cL(x, 0) = cH(x, 0)

= l(x, 0) = 0

OT⇝ uniqueness, more efficient time integration

Benefits of OT also observed in Zhang et al. 2018; Yang and
Karniadakis 2020; Finlay et al. 2020

without cL, cH

z(x1, 0)

ρz

z(x1, 1)

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 15

lruthotto@emory.edu Cont DL @ UCI

OT-Flow: Regularized Continuous Normalizing Flow

Given samples x1, x2, . . . , xN ∼ ρx, find the value function Φ
such that the flow given by v = −∇Φ maximizes the likelihood
of the samples w.r.t. the standard normal distribution ρz, i.e.,

minimizeΦ Ex∼ρx

[
1
2
∥z(x, 1)∥2 − l(x, 1) + cL(x, 1) + α1cH(x, 1)

]

subject to
d
dt

z(x, t)
l(x, t)

cL(x, t)
cH(x, t)

 =

−∇Φ(z(x, t), t)
−∆Φ(z(x, t), t)

1
2∥∇Φ(z(x, t), t)∥2∣∣ d

dtΦ(z(x, t), t) + 1
2∥∇Φ(z(x, t), t)∥2

∣∣

z(x, 0) = x, cL(x, 0) = cH(x, 0) = l(x, 0) = 0

OT⇝ uniqueness, more efficient time integration

Benefits of OT also observed in Zhang et al. 2018; Yang and
Karniadakis 2020; Finlay et al. 2020

with cL, cH

z(x1, 0)

ρz

z(x1, 1)

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 15

lruthotto@emory.edu Cont DL @ UCI

OT-Flow: Regularized Continuous Normalizing Flow

Given samples x1, x2, . . . , xN ∼ ρx, find the value function Φ
such that the flow given by v = −∇Φ maximizes the likelihood
of the samples w.r.t. the standard normal distribution ρz, i.e.,

minimizeΦ Ex∼ρx

[
1
2
∥z(x, 1)∥2 − l(x, 1) + cL(x, 1) + α1cH(x, 1)

]

subject to
d
dt

z(x, t)
l(x, t)

cL(x, t)
cH(x, t)

 =

−∇Φ(z(x, t), t)
−∆Φ(z(x, t), t)

1
2∥∇Φ(z(x, t), t)∥2∣∣ d

dtΦ(z(x, t), t) + 1
2∥∇Φ(z(x, t), t)∥2

∣∣

z(x, 0) = x, cL(x, 0) = cH(x, 0) = l(x, 0) = 0

OT⇝ uniqueness, more efficient time integration

Benefits of OT also observed in Zhang et al. 2018; Yang and
Karniadakis 2020; Finlay et al. 2020

with cL, cH

z(x1, 0)

ρz

z(x1, 1)

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 15

lruthotto@emory.edu Cont DL @ UCI

Background: OT-Flow as Mean Field Game

minimizev,ρ

∫
− log(ρ(x, 1))ρx(x)dx +

∫ 1

0

∫
1
2
∥v(x, t)∥2ρ(x, t)dxdt

subject to ∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0, ρ(·, 0) = ρz

From Pontryagin Maximum Principle, we get

v(x, ·) = −∇Φ(x, ·)

and Φ satisfies the Hamilton-Jacobi-Bellman equation

∂tΦ(x, t)− 1
2
∥∇Φ(x, t)∥2 = 0, Φ(x, 1) = − ρx(x)

ρ(x, 1)

Challenges: fwd/bwd structure, high-dim, density ρx unknown.

z(x1, 0)

ρz

ρ̂x

Title CT-DL CNF DGM SBDM OC Σ References 16

lruthotto@emory.edu Cont DL @ UCI

Neural Network Model for Value Function
Let s = (x, t) ∈ Rd+1 and use (NN + quadratic) model for value function

Φ(s, θ) = w⊤N(s, θN) +
1
2

s⊤As + c⊤s + b, θ = (w, θN , vec(A), c, b)

N(s, θN) is an M-layer ResNet with weights θN = (vec(K0), . . . , vec(KM), b0, . . . , bM).

forward propagation:

u0 = σ(K0s + b0)

u1 = u0 + hσ(K1u0 + b1)

...
...

uM = uM−1 + hσ(KMuM−1 + bM),

Output: w⊤uM = w⊤N(s, θN)

Remark: need also ∇sΦ and ∆xΦ

1. automatic differentiation, limited to
matrix-vector products

∆xΦ(s, θ) =
∑d

k=1 e⊤k ∇2
xΦ(s, θ)ek

2. trace estimators add inaccuracy
3. better compute derivatives manually
4. efficient algorithm⇝ O(m2 · d) flops
5. implementation easily parallelizes

Title CT-DL CNF DGM SBDM OC Σ References 17

lruthotto@emory.edu Cont DL @ UCI

Neural Network Model for Value Function
Let s = (x, t) ∈ Rd+1 and use (NN + quadratic) model for value function

Φ(s, θ) = w⊤N(s, θN) +
1
2

s⊤As + c⊤s + b, θ = (w, θN , vec(A), c, b)

N(s, θN) is an M-layer ResNet with weights θN = (vec(K0), . . . , vec(KM), b0, . . . , bM).

forward propagation:

u0 = σ(K0s + b0)

u1 = u0 + hσ(K1u0 + b1)

...
...

uM = uM−1 + hσ(KMuM−1 + bM),

Output: w⊤uM = w⊤N(s, θN)

Remark: need also ∇sΦ and ∆xΦ

1. automatic differentiation, limited to
matrix-vector products

∆xΦ(s, θ) =
∑d

k=1 e⊤k ∇2
xΦ(s, θ)ek

2. trace estimators add inaccuracy
3. better compute derivatives manually
4. efficient algorithm⇝ O(m2 · d) flops
5. implementation easily parallelizes

Title CT-DL CNF DGM SBDM OC Σ References 17

lruthotto@emory.edu Cont DL @ UCI

Neural Network Model for Value Function
Let s = (x, t) ∈ Rd+1 and use (NN + quadratic) model for value function

Φ(s, θ) = w⊤N(s, θN) +
1
2

s⊤As + c⊤s + b, θ = (w, θN , vec(A), c, b)

N(s, θN) is an M-layer ResNet with weights θN = (vec(K0), . . . , vec(KM), b0, . . . , bM).

forward propagation:

u0 = σ(K0s + b0)

u1 = u0 + hσ(K1u0 + b1)

...
...

uM = uM−1 + hσ(KMuM−1 + bM),

Output: w⊤uM = w⊤N(s, θN)

Remark: need also ∇sΦ and ∆xΦ

1. automatic differentiation, limited to
matrix-vector products

∆xΦ(s, θ) =
∑d

k=1 e⊤k ∇2
xΦ(s, θ)ek

2. trace estimators add inaccuracy
3. better compute derivatives manually
4. efficient algorithm⇝ O(m2 · d) flops
5. implementation easily parallelizes

Title CT-DL CNF DGM SBDM OC Σ References 17

lruthotto@emory.edu Cont DL @ UCI

OT-Flow: Two-Dimensional Examples

moons circles pinwheel checkerboard

sa
m

pl
es

de
ns

ity
es

tim
at

e

Title CT-DL CNF DGM SBDM OC Σ References 18

lruthotto@emory.edu Cont DL @ UCI

Generative Modeling for
Simulation-Based Inference

Title CT-DL CNF DGM SBDM OC Σ References 19

lruthotto@emory.edu Cont DL @ UCI

Motivation: Simulation-Based Inference
Goal: Learn posterior π(x|y) from samples
(x, y) ∼ π(x, y)
▶ x ∈ Rn - parameter of interest
▶ y ∈ Rm - indirect, noisy measurements

Continuous normalizing flow approach:
1. pick simple reference distribution ρZ ∼ N (0, In)

2. train invertible generator gθ : Rn × Rm → Rn

such that

π(x|y) ≈ ρZ
(
g−1
θ (x, y)

)
· | det∇xg−1

θ (x, y)|.

3. penalize transport costs⇝ conditional optimal
transport

4. define gθ as neural ODE⇝ parameterized
mean field game

Advantages for SBI:
non-intrusive
widely applicable
computationally efficient

Title CT-DL CNF DGM SBDM OC Σ References 20

lruthotto@emory.edu Cont DL @ UCI

Parameterized Mean Field Game

min
ρ,v

∫
Rm

∫
Rn
− log ρ(1, x)π(x, y) + α

∫ 1

0

1
2
∥v(t, x, y)∥2ρ(t, x, y)dtdxdy

subject to ∂tρ(t, x, y) +∇x · (ρ(t, x, y)v(t, x, y)) = 0, t ∈ (0, 1]
ρ(0, x, y) = ρZ(x).

Derivation: Consider OT-Penalized Maximum Likelihood problem

min
θ

E(x,y)∼π

[
1
2

∥∥g−1
θ (x, y)

∥∥2 − log det∇xg−1
θ (x, y) + α

∫ 1

0

1
2
∥vθ(t,p, y)∥2dt

]
with generator given by neural ODE; that is, gθ(z, y) = u(1) where

d
dt

u = vθ(t,u, y), t ∈ (0,T], u(0) = z

Title CT-DL CNF DGM SBDM OC Σ References 21

lruthotto@emory.edu Cont DL @ UCI

Insights from Optimal Control Theory

Parameterized Hamilton Jacobi Bellman Equations

∂tΦ(t, x, y)− 1
2α

∥∇xΦ(t, x, y)∥2 = 0, t ∈ [0, 1)

Φ(1, x, y) = − π(x, y)
ρ(1, x, y)

,

Similar Ansatz to prior work:
1. approximate Φ ≈ Φθ with scalar-valued NN
2. use feedback form: vθ(t,u, y) = − 1

α
∇xΦθ(t,u, y)

3. Jacobi identity: log det∇xg−1
θ (x, y) =

∫ 1
0 ∆Φθ(t,p, y)dt

4. penalize HJB violation in training

Title CT-DL CNF DGM SBDM OC Σ References 22

lruthotto@emory.edu Cont DL @ UCI

Experiment: Stochastic Lotka-Volterra
Inference for predator-prey
▶ x ∈ R4 - rate of change

for populations
▶ y ∈ R9 - summary stats
▶ comparison: sequential

MC
▶ metric: quality / #

samples

Training
▶ 100 pilot runs, 1 epoch
▶ 1 final training

Z. Wang, D. Verma, R. Baptista, Y.
Marzouk, LR
NNs for COT and Bayesian Inference
arXiv preprint 2310.16975, 2023

COT-Flow sequential MC

50k samples ≈5.8M samples

Samples closely match SMC @ much lower
computational costs

Title CT-DL CNF DGM SBDM OC Σ References 23

lruthotto@emory.edu Cont DL @ UCI

Experiment: Stochastic Lotka-Volterra
Inference for predator-prey
▶ x ∈ R4 - rate of change

for populations
▶ y ∈ R9 - summary stats
▶ comparison: sequential

MC
▶ metric: quality / #

samples

Training
▶ 100 pilot runs, 1 epoch
▶ 1 final training

Z. Wang, D. Verma, R. Baptista, Y.
Marzouk, LR
NNs for COT and Bayesian Inference
arXiv preprint 2310.16975, 2023

COT-Flow sequential MC

500k samples ≈5.8M samples

Samples closely match SMC @ much lower
computational costs

Title CT-DL CNF DGM SBDM OC Σ References 23

lruthotto@emory.edu Cont DL @ UCI

Experiment: Stochastic Lotka-Volterra
Inference for predator-prey
▶ x ∈ R4 - rate of change

for populations
▶ y ∈ R9 - summary stats
▶ comparison: sequential

MC
▶ metric: quality / #

samples

Training
▶ 100 pilot runs, 1 epoch
▶ 1 final training

Z. Wang, D. Verma, R. Baptista, Y.
Marzouk, LR
NNs for COT and Bayesian Inference
arXiv preprint 2310.16975, 2023

COT-Flow sequential MC

samples ≈17.9M samples

Samples closely match SMC @ much lower
computational costs

Title CT-DL CNF DGM SBDM OC Σ References 23

lruthotto@emory.edu Cont DL @ UCI

Infinite-Dimensional Score-Based
Diffusion

Title CT-DL CNF DGM SBDM OC Σ References 24

lruthotto@emory.edu Cont DL @ UCI

Multilevel Diffusion: ∞-Dimensional Score-Based Diffusion

SBDM in a nutshell:
1. approach: sθ(t,X) ≈ ∇ log pt(X)
2. set dWt ∼ N (0,Q) and train via

EX0,tEXt∼PXt|X0
∥sθ(t,Xt)−Q∇ log pt(Xt|X0)∥2

Xt sθ Q
∈ Rd U-Net Id

∈ L2([0, 1]2) FNO trace class

Developments
▶ well-posed formulation of ∞-dim

SBDMs
▶ convergence guarantee as d → ∞
▶ towards multilevel training

Related findings: Kovachki, Marzouk, . . .

T. Yang, P. Hagemann, S. Mildenberger, LR, G. Steidl
ML Diffusion: ∞-dim SBDM
arXiv: 2303:04772, 2023

Title CT-DL CNF DGM SBDM OC Σ References 25

lruthotto@emory.edu Cont DL @ UCI

Comparisons of Networks and Priors
sθ(t,Xt) modeled as UNET, trained on 282 (top row). Columns are different priors.

(2
8
⇥

2
8)

Standard Gaussian

(5
6
⇥

56
)

U
-N

et

Laplacian FNO Combined

(a) U-Net architecture

(2
8
⇥

28
)

Standard Gaussian

(5
6
⇥

56
)

U
-N

et

Laplacian FNO Combined

(b) FNO architecture

Figure 5: Comparison of generated image quality on original (28 ⇥ 28) resolution and higher
resolution (56 ⇥ 56). (a) Gaussian priors in U-Net architecture. (b) Gaussian priors in FNO
architecture.

27

architecture + prior important to generalize to higher resolution

Title CT-DL CNF DGM SBDM OC Σ References 26

lruthotto@emory.edu Cont DL @ UCI

Comparisons of Networks and Priors
sθ(t,Xt) modeled as FNO, trained on 282 (top row). Columns are different priors.

(2
8
⇥

2
8)

Standard Gaussian

(5
6
⇥

5
6)

U
-N

et

Laplacian FNO Combined

(a) U-Net architecture
(2

8
⇥

28
)

Standard Gaussian

(5
6
⇥

56
)

U
-N

et

Laplacian FNO Combined

(b) FNO architecture

Figure 5: Comparison of generated image quality on original (28 ⇥ 28) resolution and higher
resolution (56 ⇥ 56). (a) Gaussian priors in U-Net architecture. (b) Gaussian priors in FNO
architecture.

27

architecture + prior important to generalize to higher resolution
Title CT-DL CNF DGM SBDM OC Σ References 26

lruthotto@emory.edu Cont DL @ UCI

Optimal Control

Title CT-DL CNF DGM SBDM OC Σ References 27

lruthotto@emory.edu Cont DL @ UCI

Hamilton Jacobi Bellman and Pontryagin Max Principle
Consider value function of (stochastic) optimal control problem

Φ(t, x) = min
u

{Jt,x[u], subject to dz(s) = f (z,u)ds + σdW, z(t) = x}

Quick facts from optimal control theory:
1. feedback form relates optimal control and value function (PMP)

u∗(s) ∈ argmaxuH(s, z(s),p(s),M(s),u)

▶ Hamiltonian H(s, z,p,M,u) = 1
2 tr(σM) + p⊤f (s, z,u)− L(s, z,u)

▶ p(s) = ∇Φ(s, z(s)) and M(s) = −σ∇2Φ(s, z(s))
2. value function satisfies HJB

−∂sΦ(s, x) + sup
u

H(s, x,−∇Φ(s, x),−σ∇2Φ(s, z),u) = 0

Φ(T, x) = g(x)

Challenges: fwd/bwd structure, nonlinearity, regularity, high-dimensionality,. . .

Title CT-DL CNF DGM SBDM OC Σ References 28

lruthotto@emory.edu Cont DL @ UCI

Neural Network Algorithms for Stochastic Optimal Control

Stochastic Optimal Control

SDE dynamics

dz(s) = f (z,u)ds+σdW,

where s ∈ (t,T) and
▶ z(s) ∈ Rd, u(s) ∈ Rn

▶ z(t) = x ∼ µ

Idea: Learn policy that minimizes

Jt,x[u] = E
[∫ T

t
L(s, z(s),u(s))ds + g(z(T))

]
through value function Φ (feedback form).

X. Li, D. Verma, LR
A Neural Network Approach for SOC
arXiv:2209:13104, accepted at SIAM SISC, 2024

Contributions:
▶ inform sampling by PMP
▶ consistent with method of

characteristics when σ = 0
▶ min objective function and HJB loss

Numerical Evaluations:
▶ comparison with FEM for d = 2

▶ ≈ 2% rel. error for Φ at t = 0
▶ comparison with neural solvers for

semilinear elliptic PDEs in d = 100
▶ faster convergence for benchmark

problem
▶ 2x smaller error for modified problem

▶ robust control of quadcopters
▶ outperforms deterministic solver

Title CT-DL CNF DGM SBDM OC Σ References 29

lruthotto@emory.edu Cont DL @ UCI

Amortizing PDE Controls with HJB, PMP

Source Mitigation Problem

min
u,a

∫ T

0
L(t, u, a)dt + G(u(T))

subject to

∂tu = ∆u − v⊤∇u + f − g(a)

▶ u - concentration of pollutant
▶ v - velocity
▶ f - source
▶ g - sink parameterized by a

Goal: Learn policy

a∗(t) = p(t, u, v, f , g)
Title CT-DL CNF DGM SBDM OC Σ References 30

lruthotto@emory.edu Cont DL @ UCI

Comparison with Reinforcement Learning

HJB Approach:
▶ new CNN architecture
▶ FEniCS to solve PDE
▶ similar training as before

RL Approach
▶ actor/critic approach
▶ critic architecture similar to HJB
▶ two training approaches

▶ Proximal Policy Optimization
▶ Temporal Difference

▶ difficult hyperparameter tuning

Training performance:

HJB: accuracy fewer PDE solves
intrusive

D. Verma, N. Winovich, LR, B v Bloemen Waanders
NNs for Parameterized Optimal Control
arXiv:2402.10033

Title CT-DL CNF DGM SBDM OC Σ References 31

lruthotto@emory.edu Cont DL @ UCI

Summary

Title CT-DL CNF DGM SBDM OC Σ References 32

lruthotto@emory.edu Cont DL @ UCI

Σ: Diff Eq for Continuous-Time Deep Learning

▶ Intro to Continuous-Time Deep Learning
▶ ResNet and Neural ODEs
▶ Training via Inverse Problems / Optimal Control
▶ A PDE Perspective for Supervised Learning

▶ Generative Modeling
▶ (Conditional) Continuous Normalizing Flows
▶ Application in Simulation Based Inference
▶ Score-Based Diffusion Models

▶ Optimal Control
▶ High-dimensional HJB Equations
▶ Amortized PDE control

LR
DiffEq for Continuous-Time Deep
Learning
AMS Notices, arXiv:2401.03965

Z. Wang, D. Verma, R. Baptista, Y.
Marzouk, LR
NNs for COT and Bayesian Inference
arXiv preprint 2310.16975, 2023

T. Yang, P. Hagemann, S.
Mildenberger, LR, G. Steidl
ML Diffusion: ∞-dim SBDM
arXiv: 2303:04772, 2023

Title CT-DL CNF DGM SBDM OC Σ References 33

lruthotto@emory.edu Cont DL @ UCI

References
Behrmann, Jens et al. (2019). “Invertible residual networks”. In: International Conference on Machine Learning, pp. 573–582.

Benning, Martin et al. (2019). “Deep learning as optimal control problems: models and numerical methods”. In: arXiv preprint
arXiv:1904.05657.
Bottou, L et al. (2018). “Optimization methods for large-scale machine learning”. In: SIAM Journal on Mathematics of Data
Science 60.2, pp. 223–311.

Celledoni, Elena et al. (2020). Structure preserving deep learning. arXiv: 2006.03364 [cs.LG].

Chang, Bo et al. (Oct. 2017). “Multi-level Residual Networks from Dynamical Systems View”. In: arXiv.org. arXiv:
1710.10348v2 [stat.ML].
Chang, Bo et al. (2018). “Reversible architectures for arbitrarily deep residual neural networks”. In: Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 1–8.

Chen, Ricky TQ et al. (2019). “Residual flows for invertible generative modeling”. In: Advances in Neural Information
Processing Systems, pp. 9916–9926.

Chen, Tian Qi et al. (June 2018). “Neural Ordinary Differential Equations”. In: NeurIPS.

Dupont, Emilien et al. (2019). “Augmented Neural ODEs”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., pp. 3140–3150. URL:
http://papers.nips.cc/paper/8577-augmented-neural-odes.pdf.

E, Weinan (Mar. 2017). “A Proposal on Machine Learning via Dynamical Systems”. In: Communications in Mathematics and
Statistics 5.1, pp. 1–11.

Finlay, Chris et al. (2020). “How to Train Your Neural ODE: the World of Jacobian and Kinetic Regularization”. In:
International Conference on Machine Learning (ICML), pp. 3154–3164.

Title CT-DL CNF DGM SBDM OC Σ References 34

https://arxiv.org/abs/2006.03364
https://arxiv.org/abs/1710.10348v2
http://papers.nips.cc/paper/8577-augmented-neural-odes.pdf

lruthotto@emory.edu Cont DL @ UCI

References (cont.)

Gholami, Amir et al. (Feb. 2019). “ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs”. In:
arXiv.org. arXiv: 1902.10298v1 [cs.LG].

González-Garcı́a, R et al. (Mar. 1998). “Identification of distributed parameter systems: A neural net based approach”. In:
Computers Chem Engn. 22, S965–S968.

Grathwohl, Will et al. (2018). “Ffjord: Free-form continuous dynamics for scalable reversible generative models”. In: arXiv
preprint arXiv:1810.01367.

Haber, Eldad and Lars Ruthotto (2017). “Stable architectures for deep neural networks”. In: Inverse Problems 34.1, pp. 1–22.

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778.

Li, H et al. (2018). “Visualizing the loss landscape of neural nets”. In: Advances in Neural Information Processing Systems.

Li, Qianxiao and Shuji Hao (2018). “An optimal control approach to deep learning and applications to discrete-weight neural
networks”. In: arXiv preprint arXiv:1803.01299.

Li, Qianxiao et al. (2017). “Maximum principle based algorithms for deep learning”. In: The Journal of Machine Learning
Research 18.1, pp. 5998–6026.

Lu, Yiping et al. (Oct. 2017). “Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential
Equations”. In: arXiv.org. arXiv: 1710.10121v2 [cs.CV].

Rico-Martı́nez, R et al. (1992). “Discrete- vs. Continuous-time Nonlinear Signal Processing of Cu Electrodissolution Data”.
In: Chemical Engineering Communications 118.1, pp. 25–48.

Ruthotto, Lars and Eldad Haber (2020). “Deep neural networks motivated by partial differential equations”. In: Journal of
Mathematical Imaging and Vision 62.3, pp. 352–364.

Title CT-DL CNF DGM SBDM OC Σ References 35

https://arxiv.org/abs/1902.10298v1
https://arxiv.org/abs/1710.10121v2

lruthotto@emory.edu Cont DL @ UCI

References (cont.)

Thorpe, Matthew and Yves van Gennip (2018). “Deep limits of residual neural networks”. In: arXiv preprint arXiv:1810.11741.

Yang, L. and G. E. Karniadakis (2020). “Potential Flow Generator With L2 Optimal Transport Regularity for Generative
Models”. In: IEEE Transactions on Neural Networks and Learning Systems.

Zhang, Linfeng et al. (2018). “Monge-Ampère Flow for Generative Modeling”. In: arXiv:1809.10188.

Title CT-DL CNF DGM SBDM OC Σ References 36

	Title
	Continuous-Time Deep Learning
	Continuous Normalizing Flows
	Generative Modeling for Simulation-Based Inference
	Infinite-Dimensional Score-Based Diffusion
	Optimal Control
	Summary
	References

	anm6:
	6.25:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

