
TEMPLATE DESIGN © 2007

www.PosterPresentations.com

A DATA EXCHANGE MESSAGING SYSTEM FOR INTERNET OF THINGS SYSTEMS

Introduction
• Internet of things(IoT) is an internetworking of different 

devices, so there is a collection and exchange of data 
through the network.

• There is no way for the data from these sources to 
collaborate so we designed a software that will enable 
collaboration and incorporation of these data sources.

• Our goal is to make a software that will incorporate data 
from hydro meteorological instruments like rain gauge, 
sensors etc. to assist hydro meteorological decisions like 
rainfall, flooding, etc.. 

• Also since it’s a lot of data coming in we want the users 
or applications to be able to take a portion of the data 
without looking at the whole data .

Methodology

The Kafka producer and consumers classes are 
designed using Java on Eclipse IDE 

ProducerFile.java: Producer Class

1. Create a Java project and class in Eclipse
2. Save the data file in the project created
3. Import all the files needed for both Kafka and the

reader
4. Open the data file and using a while loop read the

data in the file, line by line into an array
5. In the while loop use the split command to split each

line and put the values in a 2-dimensional array
6. Calculate coordinates of each data in the data file

using the yllvalue and xllvalue given to us at the
beginning of the file

7. The first coordinates are (xllvalue, (yllvalue +
rows*cell size)); cell size and number of rows is
given at the beginning of the file

8. Increase the xllvalue by cell size to get the next x
coordinate and the (yllvalue + rows*cell size) by
cell size to get the next y coordinate

9. save the coordinates as the key and the data at the
coordinate as the value

10. Send the values to the consumer using the Kafka
command

ConsumerFile.java: Consumer class

1. Create a Java project and class in Eclipse
2. Use the Java scanner class to ask the user for the

topic they will like to connect to
3. Save the value entered in a variable and use it to

connect to the topic using Kafka commands
4. Ask the user for the starting and ending coordinates,

they would like to get the values
5. Calculate the number of rows and columns using

rows= (y2-y1)/cellsize, column= (x2-x1)/cellsize
6. Use a for loop to generate these values and save

them into a 2-dimensional array
7. Using a while loop, receive the values from the

producer class and save it into record
8. In the while loop, split record.value and save the

values in an array
9. Use a for loop to go through the coordinates saved in

the array above, use an if statement to check if the
coordinates matches with the one sent through the
topics by the producer and if it matches print the
coordinate and the value.

Results

Conclusion

Future Work

Acknowledgements

• In conclusion, the primary purpose for the research was 
achieved. We created a data exchange that is faster and 
more efficient.

• We were able to create a system where applications can 
receive their data directly from the data sources without 
having to download the file containing the data each 
time they needed data.

• Users can now request only the data they need and do 
not need to go through the entire data file to get a 
section. 

• Producers and consumers should be able to receive data 
in real time.

• Consumers should be able to subscribe to more than one 
topic at a time and receive data from them at the same 
time or concurrently.

• Producers should receive notifications when there is a 
new consumer that subscribers to the topic they are 
sending data to .

• Consumers should receive notifications when there is a 
new message from the Kafka broker(server).

• Dr. Nalini Venkatasubramanian for her mentorship

• Dr. Kuo-lin Hsu, Dr. Phu Nguyen and the center for 
hydrometeorology and remote sensing for the resources 
provided and their mentorship

• Praveen Venkateswaran for his mentorship and help 
through out the project

• The IoT-SITY REU directors for the opportunity to take 
part in this research

• University of California, Irvine and Donald Bren Hall for 
the space and resources

Producer1

producer2

Producer 3

Producer 4

Kafka 
Broker 1

Kafka 
Broker 2

Kafka 
Broker 3

Consumer 1

Consumer 2

Consumer 
3

zookeeper

Push msgs Pull msgs

Get Kafka 
broker id

Update 
offset

System Architecture

• The producers are the data sources e.g. rain gauge, water 
sensors, rainfall satellite data, data from users etc.

• The consumers are the users or applications that receive 
data from the producers.

• The Kafka brokers are the servers that run Kafka . Used 
by producers to publish data into topics. Used by 
consumers to pull data from topics.

• The consumers are the users or applications that receive 
the data from the producer based on their preferences.

• The zookeeper is used for managing the system. It 
notifies the publisher and subscriber of a new message in 
the system.

Data Sources
(Producers)

Bounding box to show the 
beginning and ending coordinates 
of the area a user is interested in 

getting the rainfall values.
Figure 2 : iRain is a website designed by the center of Hydrometeorology and remote sensing UCI 
and it is used as the test case for the research

Fig 3: A screen-shot of the producer sending coordinates and the values at the coordinates to the 
topic broker

Fig 4 : A screen-shot of the consumer program generating coordinates from the bounding box 
given by the user and using the coordinates generated to find and print out the values at the 
location

Figure 1: A diagram of data exchange system flow

Moyosore Akinrinmade, Nalini Venkatasubramanian, Praveen Venkateswaran, Phu Nguyen, Kuo-lin Hsu
University of Texas San Antonio, Department of Computer Science, Center for hydrometeorology and Remote Sensing,

University of California Irvine

iRain Description 


	Slide Number 1

