Introduction

Internet of things(loT) Is an internetworking of different
devices, so there Is a collection and exchange of data
through the network.

There Is no way for the data from these sources to
collaborate so we designed a software that will enable
collaboration and incorporation of these data sources.

Our goal Is to make a software that will incorporate data
from hydro meteorological instruments like rain gauge,
sensors etc. to assist hydro meteorological decisions like
rainfall, flooding, etc..

Also since it’s a lot of data coming In we want the users
or applications to be able to take a portion of the data
without looking at the whole data .

System Architecture
Producerl
Kafka Consumer 1
Push msgs Broker 1 Pull msgs
producer2 Kafka
Broker 2 Consumer 2
Producer 3
Kafka
Broker 3 Consumer
3
Producer 4
Get Kafka Update
broker id offset
zookeeper

Figure 1: A diagram of data exchange system flow

The producers are the data sources e.g. rain gauge, water
sensors, rainfall satellite data, data from users etc.

The consumers are the users or applications that receive
data from the producers.

The Kafka brokers are the servers that run Kafka . Used
by producers to publish data into topics. Used by
consumers to pull data from topics.

The consumers are the users or applications that receive
the data from the producer based on their preferences.

The zookeeper Is used for managing the system. It
notifies the publisher and subscriber of a new message Iin
the system.

A DATA EXCHANGE MESSAGING SYSTEM FOR INTERNET OF THINGS SYSTEMS

Moyosore Akinrinmade, Nalini Venkatasubramanian, Praveen Venkateswaran, Phu Nguyen, Kuo-lin Hsu

University of Texas San Antonio, Department of Computer Science, Center for hydrometeorology and Remote Sensing,

University of California Irvine

The Kafka producer and consumers classes are
designed using Java on Eclipse IDE

ProducerFile.java: Producer Class

1. Create a Java project and class in Eclipse

2. Save the data file In the project created

3. Import all the files needed for both Kafka and the
reader

4. Open the data file and using a while loop read the
data in the file, line by line into an array

5. In the while loop use the split command to split each
line and put the values in a 2-dimensional array

6. Calculate coordinates of each data In the data file
using the yllvalue and xllvalue given to us at the
beginning of the file

/. The first coordinates are (xllvalue, (yllvalue +
rows*cell size)); cell size and number of rows is
given at the beginning of the file

8. Increase the xllvalue by cell size to get the next X
coordinate and the (yllvalue + rows*cell size) by
cell size to get the next y coordinate

9. save the coordinates as the key and the data at the
coordinate as the value

10. Send the values to the consumer using the Kafka
command

ConsumerkFile.java: Consumer class

1. Create a Java project and class in Eclipse

2. Use the Java scanner class to ask the user for the
topic they will like to connect to

3. Save the value entered In a variable and use It to
connect to the topic using Kafka commands

4. Ask the user for the starting and ending coordinates,
they would like to get the values

5. Calculate the number of rows and columns using
rows= (y2-y1)/cellsize, column= (x2-x1)/cellsize

6. Use a for loop to generate these values and save
them into a 2-dimensional array

7. Using a while loop, receive the values from the
producer class and save It into record

8. In the while loop, split record.value and save the
values in an array

9. Use a for loop to go through the coordinates saved in
the array above, use an If statement to check If the
coordinates matches with the one sent through the
topics by the producer and If it matches print the
coordinate and the value.

An Integrated System for Global Real-time Precipitation Observation using

Home Tutorial Products About Us Thu Aug 10 2017 00:28 GMT Lat 12.726, Lon 172.793
Map Layers : . A * _ :

Country Pol. Division
Cont. Basin Major River
Tributary Watershed

GRDC Gauge Rain Gauge

PERSIANN-CCS Data

[mage Time: Aug 08 2017 19:00 GMT

Current Lastime: 0 Hours and 56 Minutes

R-an Layers :
PERSIANN-CCS

Radar (US only)
Crowdsource

Rain Gauge Filter Bf. | Rain

kain Totals (Hrs)| Exireme Events
.

J Hourly Rain Animation
0 - 72 past hours

KK b

Spatial Query

400500 Ne T
uery By: Location v 500-600 3
>600
NO data Tl

Data Sources
(Producers)

Bounding box to show the
beginning and ending coordinates
of the area a user Is interested In
getting the rainfall values.

Figure 2 : IRain is a website designed by the center of Hydrometeorology and remote sensing UCI
and it is used as the test case for the research

| Problems @ Javadoc (& Declaration & Console %

ProducerFile [Java Application] /usr/lib/jvmyjava-8-openjdk-amd64/bin/java (Aug 9, 2017, 5:56:05 PM)

0.00 (-180.60,41.50)6.16 (-186.25,41.56)0.16 (-180.50,41.50)0.16 (-180.75,41.50)0.00 (-181.06,41.50)0.00 (-181.25,41.50)9.15
0.60 (-180.00,41.56)0.16 (-180.25,41.50)0.16 (-180.50,41.50)0.16 (-180.75,41.56)0.00 (-181.00,41.50)0.00 (-181.25,41.50)0.15
0.00 (-180.60,41.25)0.00 (-186.25,41.25)0.00 (-180.50,41.25)0.00 (-180.75,41.25)0.00 (-181.06,41.25)0.00 (-181.25,41.25)0.00
0.00 (-186.00,41.00)0.00 (-186.25,41.00)0.06 (-180.50,41.00)0.06 (-180.75,41.00)0.00 (-181.06,41.00)0.00 (-181.25,41.60)0.00

Fig 3: A screen-shot of the producer sending coordinates and the values at the coordinates to the
topic broker

ConsumerFile [Java Application] fusr/lib/jvm/java-8-openjdk-amdé4/bin/fjava (Aug *
What topic do you want to subscribe to:

Enter the starting x and y coordinates(separate with comma)
Enter the ending x and y coordinates(separate with comma)
(-180.@0,-59.25)(-180.25,-59.25)(-188.50,-59.25) (-180.75, -59.25)

(-180.00,-59.50)(-180.25,-59.50)(-180.50,-59.50)(-180.75,-59.50)
(-180.00,-59.75)(-180.25,-59.75)(-180.50,-59.75)(-186.75,-59.75])

' 59
Key=(-186.080,-59.25) value = 0.00
Key=(-186.25,-59.25) value = 0.00
Key=(-1808.508,-59.25) value = 0.00
Key=(-1808.75,-59.25) value = 0.00
Key=(-180.00,-59.50) value = -99.00
Key=(-188.25,-59.50) value = -99.008
Key=(-186.50,-59.50) value = -99.00
Key=(-186.75,-59.50) value = -99.00
Key=(-186.00,-59.75) value = -99.00
Key=(-180.25,-59.75) value = -99.00
Key=(-186.50,-59.75) value = -99.00
Key=(-1868.75,-59.75) value = -99.00

Fig 4 : A screen-shot of the consumer program generating coordinates from the bounding box
given by the user and using the coordinates generated to find and print out the values at the
location

UCI Donalo Bren

Methodology iRain Description

& g @ [
CHRS iRain
o - =
=(HRS® 2
%q gﬁ

* In conclusion, the primary purpose for the research was
achieved. We created a data exchange that is faster and
more efficient.

« \We were able to create a system where applications can
recelve their data directly from the data sources without
having to download the file containing the data each
time they needed data.

e Users can now request only the data they need and do
not need to go through the entire data file to get a
section.

Future Work

 Producers and consumers should be able to recelve data
IN real time.

e Consumers should be able to subscribe to more than one
topic at a time and receive data from them at the same
time or concurrently.

* Producers should receive notifications when there is a
new consumer that subscribers to the topic they are
sending data to .

e Consumers should receive notifications when there Is a
new message from the Kafka broker(server).

Acknowledgements

 Dr. Nalini Venkatasubramanian for her mentorship

e Dr. Kuo-lin Hsu, Dr. Phu Nguyen and the center for
nydrometeorology and remote sensing for the resources
orovided and their mentorship

* Praveen Venkateswaran for his mentorship and help
through out the project

 The loT-SITY REU directors for the opportunity to take
part in this research

 University of California, Irvine and Donald Bren Hall for
the space and resources

561001 of nformation & Computer Scences

	Slide Number 1

