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A DATA EXCHANGE MESSAGING SYSTEM FOR INTERNET OF THINGS SYSTEMS

Introduction
• Internet of things(IoT) is an internetworking of different 

devices, so there is a collection and exchange of data 
through the network.

• There is no way for the data from these sources to 
collaborate so we designed a software that will enable 
collaboration and incorporation of these data sources.

• Our goal is to make a software that will incorporate data 
from hydro meteorological instruments like rain gauge, 
sensors etc. to assist hydro meteorological decisions like 
rainfall, flooding, etc.. 

• Also since it’s a lot of data coming in we want the users 
or applications to be able to take a portion of the data 
without looking at the whole data .

Methodology

The Kafka producer and consumers classes are 
designed using Java on Eclipse IDE 

ProducerFile.java: Producer Class

1. Create a Java project and class in Eclipse
2. Save the data file in the project created
3. Import all the files needed for both Kafka and the

reader
4. Open the data file and using a while loop read the

data in the file, line by line into an array
5. In the while loop use the split command to split each

line and put the values in a 2-dimensional array
6. Calculate coordinates of each data in the data file

using the yllvalue and xllvalue given to us at the
beginning of the file

7. The first coordinates are (xllvalue, (yllvalue +
rows*cell size)); cell size and number of rows is
given at the beginning of the file

8. Increase the xllvalue by cell size to get the next x
coordinate and the (yllvalue + rows*cell size) by
cell size to get the next y coordinate

9. save the coordinates as the key and the data at the
coordinate as the value

10. Send the values to the consumer using the Kafka
command

ConsumerFile.java: Consumer class

1. Create a Java project and class in Eclipse
2. Use the Java scanner class to ask the user for the

topic they will like to connect to
3. Save the value entered in a variable and use it to

connect to the topic using Kafka commands
4. Ask the user for the starting and ending coordinates,

they would like to get the values
5. Calculate the number of rows and columns using

rows= (y2-y1)/cellsize, column= (x2-x1)/cellsize
6. Use a for loop to generate these values and save

them into a 2-dimensional array
7. Using a while loop, receive the values from the

producer class and save it into record
8. In the while loop, split record.value and save the

values in an array
9. Use a for loop to go through the coordinates saved in

the array above, use an if statement to check if the
coordinates matches with the one sent through the
topics by the producer and if it matches print the
coordinate and the value.

Results

Conclusion

Future Work
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System Architecture

• The producers are the data sources e.g. rain gauge, water 
sensors, rainfall satellite data, data from users etc.

• The consumers are the users or applications that receive 
data from the producers.

• The Kafka brokers are the servers that run Kafka . Used 
by producers to publish data into topics. Used by 
consumers to pull data from topics.

• The consumers are the users or applications that receive 
the data from the producer based on their preferences.

• The zookeeper is used for managing the system. It 
notifies the publisher and subscriber of a new message in 
the system.

Data Sources
(Producers)

Bounding box to show the 
beginning and ending coordinates 
of the area a user is interested in 

getting the rainfall values.
Figure 2 : iRain is a website designed by the center of Hydrometeorology and remote sensing UCI 
and it is used as the test case for the research

Fig 3: A screen-shot of the producer sending coordinates and the values at the coordinates to the 
topic broker

Fig 4 : A screen-shot of the consumer program generating coordinates from the bounding box 
given by the user and using the coordinates generated to find and print out the values at the 
location

Figure 1: A diagram of data exchange system flow
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