
Core Resource Allocation and Power Management Optimization
Using PARSEC Benchmark and MARS Framework

Nicolas Casilli, Northeastern University Class of 2022; Biswadip Maity, PhD Candidate at U.C. Irvine; Tiago Muck, PhD; and Nikil Dutt, PhD
NSF REU IoT-SITY Summer Research Program

Donald Bren School of Information & Computer Sciences, University of California, Irvine
Northeastern University

ABSTRACT

With the rise in popularity of multicore systems, there emerges a unique
problem regarding constraints on power management and resource
allocation. Thus, it is important to create a framework that enables all
programs to benefit from performance gains by improving how processing
resources are allocated in a multicore system. Through the use of the
Heartbeat API, application performance can be measured to determine
whether the current framework is optimizing resource usage as well as
how the framework can be modified to intelligently optimize power and
resource allocation management in real time. By adding the Heartbeat API
to PARSEC Benchmarks, we obtained performance data on different
applications with different thread counts to see how resource intensive
those programs are as well as how much power those programs consume.

PARSEC AND MARS

What is PARSEC and why do we need it?

PARSEC is a benchmark suite that contains 13 different
applications that represent expectations for future code with
regards to features like: multiple threads, emerging workloads,
diversity, and not HPC-focused. The diversity of these programs
range from video and imaging processing to data mining and
financial analysis.

What is MARS and why do we need it?

MARS is a framework that is planted between the OS and kernel
levels of computer architecture. Currently, MARS records
performance evaluations of applications annotated with the
Heartbeat API and better optimizes processor resource allocation.
When activated, the framework can change the performance of
programs to match desired power saving levels.

OBJECTIVES

To ensure the progress of the research, it was necessary to create an isolated
Docker environment to run MARS and PARSEC applications on any machine and
understand and apply the Heartbeats API to the necessary PARSEC programs.
These programs needed to be modified and cross compiled. After cross
compilation, the programs were run on an ODROID embedded with the MARS
framework. These runs were conducted with differing thread counts so that
information can be gained regarding ideal program runtime parameters. The
final objective of the lab was to see how resource allocation would theoretically
differ in multicore systems using the MARS framework when also accounting for
real-time power management.

HEARTBEATS AND DOCKER

What is Heartbeats API and why do we need it?

Heartbeats API is a modifications system added to PARSEC applications
used to transfer bits to/from the program and the kernel. These bits are
referred to as “beats” and are implemented in computationally intensive
functions in programs. Beat counts give information on the processing
intensity required by certain programs as well as how much power those
programs use within the context of the MARS framework.

Why do we need Docker?

Docker is needed to create an isolated environment to enable researchers on other
systems to compile, run tests, and produce data using the MARS framework.

Location of MARS and Heartbeat in relation to other features of modern
computer architectures

RESULTS

As opposed to not having any operational modified PARSEC
applications, there are 10, of which 5 were run for data
acquisition. The data acquired in the lab involved application
performance during different thread count configurations (1, 2, 4,
8, 16, 32). In relation to this, it was found that performance gains
improved at a much smaller rate at a configuration larger than 8
threads. A final result is the successful integration of Docker into
the research lab, as the Docker enables other researchers to
produce experimental results remotely.

RESULTS

CONCLUSIONS

MARS can be used as a QoS(Quality of Service) metric from the
application side so that runtime resource managers/policy
designers can more intelligently make decisions. This could be
applied to using beat count parameters to establish a threshold of
processing power so that performance can be assured during
critical executions. The nature of the work conducted was very
intermediary, but many conclusions were drawn describing the
behaviors of the various PARSEC benchmarks, like each
application’s unique execution functions.

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4

H
EA

R
TB

EA
TS

TIME (S)

FLUIDANIMATE PERFORMANCE BENCHMARK
1 FRAME NATIVE INPUT

1 Thread 2 Thread 4 Thread 8 Thread 16 Thread

Beats v. Time for PARSEC applications: Fluidanimate and Blacksholes with
thread counts of: 1, 2, 4, 8, 16, and 32.

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5

H
EA

R
TB

EA
TS

TIME (S)

BLACK-SCHOLES PERFORMANCE BENCHMARK
SIMLARGE INPUT

1 Thread 2 Thread 4 Thread 8 Thread 16 Thread

Applications (PARSEC)

MARS & Heartbeat API

Kernel

CPU MEMORY DEVICES

