

INTRODUCTION

The primary goal of this research project was to develop a system capable of efficiently harnessing the sensor infrastructure of a connected building to generate a sensor oriented summary of a user's day. To achieve this, a neural sensor network capable of predicting the motion of a person moving through Donald Bren Hall and summarizing user related sensor data was developed. Around this prediction engine, several other components were developed, including two computer vision modules and a web application. The theory and implementation used in this project can be applied to a variety of sensor network problems, and is optimized for distributed systems. This research project is part of the wider TIPPERS effort. TIPPERS stands for Testbed for IoTbased Privacy-Preserving PERvasive Spaces. It is a DARPA funded program that explores the methodologies, technologies, and frameworks needed to harness the power of ubiquitous sensors in working spaces without jeopardizing the privacy of its occupants.

CHALLENGES

- **Reduce** the amount of camera footage to be analyzed with computationally expensive computer vision algorithms.
- **Combine** the unique abilities of both wifi and camera sensor types to create a full picture of what is occurring.
- **Create** a generalizable model of sensor relationships.

SOLUTION OVERVIEW

Record Gathering Process

- 1. User Enters Time Range, Net ID, and Clothing Colors.
- 2. Webpage requests wifi connections with that Net ID from the TIPPERS server.
- 3. Webpage triggers the neural graph prediction engine with the first wifi record.
- 4. The prediction engine gathers and returns photos of the person until the trail is lost
- 5. Until there are no wifi connection records left, the webpage continues to restart the prediction engine process and receive the results.
- 6. When finished, the webpage displays all wifi and camera sensor records found.

Neural Graph Formulation for Visitor Activity Summarization

Kyle Norland²

Sharad Mehrotra¹, Roberto Yus¹ NSF REU IoT-SITY Summer Research Program ¹Donald Bren School of Information & Computer Sciences, University of California, Irvine ²University of Arizona, Tucson

NEURAL GRAPH REPRESENTATION

Benefits of neural graph representation

- **Distributed deployment** and operation for low connectivity environments.
- **Autonomous** and ad-hoc construction using machine learning.
- **Easy integration** of different sensors due to sensor agnostic interface.

Sensor network represented as node-edge graph

Each sensor represented as a node with a three neuron substructure

TRACKING PROCESS

- User detected on sensor
- 2. Sensor captures/stores user data.
- 3. Sensor loses track of user.
- 4. Transmit neuron fires (Left image)
- 5. Connected sensors triggered. (Right Image)
- 6. Sensors with firing input
- neurons check for the user. 7. Repeat until trail is lost.

COMPUTER VISION

Checked Image

Background

Two Stage Computer Vision Analysis: Quick check for motion using background subtraction. (Above) More time consuming check for user among detected persons if

- there is any motion.

Motion entification Module

Clothing Color Module

TIPPERS

WEB INTERFACE

My Day at DBH

Camera

Net ID:	user@email.com	
Start Time:	07/18/2018 16:40	
End Time:	07/18/2018 16:44	
Top Color:	Blue	
Bottom Color:	Black	
Summarize Day	Create Video	
Events of the Day		
Events of the Day Type of Event	Start Time	
- 165-3 	Start Time 2018-07-18 16:40:08	
Type of Event		

2018-07-18 16:40:28

- Sensor records of user displayed in table
- Playable video of recorded images.
- Easy to use guided user interface (GUI)

FUTURE WORK

- Improved computer vision capabilities.
- Self Constructing Network

Donald Bren Hall in UCI

TIPPERS is an internet of things(IoT) testbed at the University of California, Irvine. It is housed at Donald Bren Hall.

- Over 300 sensors
- Suite of IoT Applications
- Data Management and Storage Engine
- Privacy Policy Database

Video Cameras

End Time	Location	Clickable	Not You?
2018-07-18 16:40:08	2059	ClickMe!	
2018-07-18 16:40:24	2051	ClickMe!	
2018-07-18 16:40:28	Camera 13	ClickMe!	
2018-07-18 16:40:28	Camera 14	ClickMe!	

Interactive summary of a user's time in Donald Bren Hall • Records displayed progressively as they are found.

• Automatic Pairing of MAC address and image • Uses of the neural architecture for other projects.